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Abstract

The present paper extends the existing literature on lapse risk by presenting a flexible way to
model the lapse decisions in a life insurance portfolio. Correlation and contagion effects among
policyholders are embedded in the modeling and risk margins estimates can be easily obtained
under both stable regimes and stress scenarios. The proposed approach integrates the effects
of policyholders’ behaviors through the definition of a mathematical framework where the lapse
intensity follows a dynamic contagion process: an external component, the shot-noise intensity,
is added to the Hawkes-based one ([2], [6]). Contrary to previous works, our shot-noise intensity
is not constant and the resulting intensity process is not Markovian. We study the influence of
the interest rates dynamics on policyholders’ behaviors and the resulting impact on lapse risk
margins. Closed-form expressions for the moments of the lapse intensity are provided, showing
how the lapse risk is affected by massive copycat behaviors. A sensitivity analysis studies the
lapse risk metrics as function of the model’s parameters, while a simulation study compares
our results with the ones obtained using standard practices. The numerical outputs highlight
a potential strong misestimation of lapses under extreme scenarios with classical stress testing
methodologies.
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1 Introduction

Since the 1980s’, the lapse risk has become one of the three main risks faced by life insurance
companies (with market risk and credit risk1). This is the reason why an accurate modeling of the
lapse rate dynamics is crucial for both risk managers and regulators. Regulators need to under-
stand the lapse dynamics in order to properly define adequate capital requirements; risk managers
need to monitor the lapse dynamics in order to properly capture the real risk embedded in their
life insurance contracts and underlying their exposure to potential massive surrenders. A proper
measurement of lapse risk can in fact prevent the company to incur huge losses and/or liquidity
needs. As observed by [14], lapses can affect the risk management activity in a life-insurance com-
pany from three main viewpoints: 1) the insurer may suffer huge losses from unexpected lapsed
contracts due to upfront investments for the business activity; 2) the insurer may face the loss of
potential future profitability opportunities due to lapsed contracts; 3) the insurer may experience
adverse selection w.r.t. mortality/morbidity of policyholders. The key aspects are thus the pricing
and hedging of the surrender option embedded in most of life insurance contracts. Knowing that
this option can be exercised at any time, it is fundamental to consider the dynamic aspect of pol-
icyholders’ behaviors in the lapse risk modeling. Not only the amount of surrenders is impacting
the company’s exposure to lapse risk but also a timing risk component, due to the American-style
nature of these implicit options.

How to model lapse dynamics has been addressed in various papers (e.g. [20], [13], [12], [18]);
and statistical methodologies include classification trees, generalized linear models, and survival
analysis. However, these techniques globally fail at giving accurate individual lapse predictions
since policyholders’ behaviors are very heterogeneous. Indeed, it is well-known that the lapse dy-
namics depends on many risk factors such as: tax relief, financial markets, contract features, firm’s
reputation, competition, and regulation. In P&C insurance, for instance, the best explanatory vari-
able is known to be the price elasticity due to yearly renewable contracts ([8]). In life business, the
question seems instead more complex, since the contracts remain in force for years. This is crucial
to understand why life risk managers are used to model lapses as the result of two components:
structural lapses (the baseline risk, depending on policyholder’s characteristics) and temporary
lapses (related to short-term disturbances of the environment, financial incentives). In the same
spirit, [19] has shown through empirical studies that the most relevant causes of lapses come from
two main economic variables: liquidity needs for personal projects (e.g. purchase a new car), and
agents’ rationality. Despite the fact that policyholders’ personal plans are very difficult to antici-
pate, in practice it has been observed that they remain quite stable and independent events over
time in a large portfolio. This is the reason why risk managers mainly focus on the implications of
agents rationality. If agents are rational, a changing environment can make policyholders’ decisions
become correlated and, on top of this, contagion effects can be observed in the market (following
some experts’ recommendations, largely broadcasted rumors, ...). Correlation and contagion effects
among policyholders’ behaviors could have dramatic consequences on the life insurance industry’s
exposure to lapse risk since the main assumption underlying every classical statistical model used
in practice is the independence among individuals. When the markets show a breakdown of this
assumption, standard practices for pricing and reserving are not suited to properly capture the real
risk faced by insurance companies. And when it arrives, it should already be too late to adjust
the model without facing relevant losses. Defining stress scenarios under i) sudden (interest) rates

1See EIOPA Report on the fifth Quantitative Impact Study (QIS5) for Solvency II, 2011.
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movements and ii) the breakdown of behavioral assumptions is one of the main requirements also
for banks to be compliant to the most recent EBA regulation for the management of interest rate
risk2. Copycat behaviors have been observed in life insurance, e.g. in Japan in the 2000s, and
represent the major threat for risk managers under whatever potential future scenario: no lapses or
massive lapses could be both potentially dangerous, depending on the product guarantees and the
economic context. The riskiness increases for the company since the policyholders simultaneously
take the same decision before the contractual maturity. Massive surrenders can thus be observed
at any point in time (timing risk) before the natural expiring date of the contracts.

To monitor the lapse risk, regulators have historically defined simple risk management rules
to calculate the Solvency Capital Requirement (SCR): in general, computing the SCR requires to
assess a baseline risk to which arbitrary shocks are applied (see the technical specifications of the
5th QIS in the European directive Solvency II3). For instance, in life insurance and to compute the
SCR related to the lapse risk, the upper-shock consists in adding temporary lapses to the struc-
tural part, where the temporary lapse rate can represent up to 30% of the whole portfolio exposure.
On the other side, when building an internal model, most practitioners currently use a standard
deterministic model based on a S-shaped curve4 that links the lapse rate to the policyholder’s satis-
faction. In [16], the authors suggest a stochastic extension to this framework by modeling insured’
decisions with a common shocks model, resulting in a bimodal lapse distribution to account for
this 0-1 decision in adverse market scenarios.

Although trying to integrate (artificially or not) the correlation effect that can potentially arise
among policyholders’ behaviors, these approaches have some limits in that they are static models.
Shocks are determined a priori, and the potential contagion among policyholders’ behaviors in
extreme situations is not considered. The present paper extends the existing literature on lapses
by presenting a flexible way to model the lapse decisions in a life insurance portfolio: correlation
and contagion among policyholders are embedded in the modeling and risk margins estimates can
be easily obtained also under stress scenarios. The main novelty of the proposed approach is to
integrate correlation and contagion effects among policyholders’ behaviors into the dynamics of
the lapse intensity process. This technique represents a suitable outlet to model the lapse rate
dynamics under both unstressed and stressed scenarios, by keeping a full analytical tractability of
the relevant risk measures. The proposed methodology leverages on a specific extension of Hawkes
contagion processes, firstly introduced in [11]. Hawkes processes are a powerful tool applied in
finance and insurance ([10], [4, 5]), based on a piecewise deterministic intensity (see [7]). Hereafter,
an external component, the shot-noise intensity, is added to the Hawkes-based intensity ([2], [6]).
This external component aims at capturing the correlation among policyholders’ behaviors, when
reacting to changes in market interest rates under stress scenarios. Our shot-noise intensity is not
assumed to be constant and is instead derived from an inverse Gaussian distribution: the resulting
lapse intensity process is then not Markovian. The main contribution of the paper thus lies in

2See the ”Final Report” entitled Guidelines on the management of interest rate risk arising from non-trading
activities, issued by the European Banking Authority (EBA) in May 2015.

3More precisely concerning the lapse risk, see http://archive.eiopa.europa.eu/fileadmin/tx_dam/files/

consultations/QIS/QIS5/QIS5-technical_specifications_20100706.pdf, pp.155-159
4See the ONC document by the french regulator (ACPR): https://acpr.banque-france.fr/fileadmin/user_

upload/acp/International/Les_grands_enjeux/Exercice-preparation-solvabilite-II/20130527-ONC-2013.

pdf. Note that ACPR does not encourage everyone to use it (to avoid systemic risk).
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the definition of a flexible theoretical setting integrating correlation and contagion effects among
policyholders behaviors. A sensitivity analysis shows the main lapse risk metrics as function of
the model’s parameters, while a simulation study compares our results with those obtained using
standard practices. The numerical outputs highlight a potential strong misestimation of lapses
under extreme scenarios using classical stress testing methodologies.

The paper is organized as follows. Section 2 discusses the financial setting and describes the
proposed mathematical framework by defining the intensity process. Section 3 provides closed-form
expressions for the moments of the lapse intensity. Section 4 shows the sensitivity analysis per-
formed in order to determine the qualitative impact of the model parameters on the mean risk level.
Finally, numerical results on risk margins and capital requirements are given in Section 5 through
simplified real-life examples by comparing our methodology with standard practices (Solvency II,
S-shaped curve). Section 6 provides some concluding remarks and Appendix A contains the proofs
of our main theoretical results.

2 The mathematical model for the lapse dynamics

As already mentioned, lapses are provoked either by structural or temporary risk factors. Struc-
tural risk factors indicate the drivers arising from specific policyholders’ needs or taxation, while
temporary risk factors are more often related to macroeconomic conditions. The proposed method-
ological framework aims at modeling the policyholders’ propensity to lapse by means of a dynamic
contagion process ([6]), in order to build an integrated setting allowing to capture both structural
and temporary drivers.

For the sake of simplicity, assume that the only temporary risk factor is the market interest rate
level. This makes sense from a business viewpoint, because the interest rate level is widely recog-
nized as a key underlying variable of the firm’s exposure to the lapse risk. In the current financial
context of very low interest rates, a sudden increase of interest rates would represent a real risk
faced by insurance companies5 since new (more interesting) opportunities would probably appear
in the market. Indeed, observed temporary lapses can be triggered by policyholders’ behaviors in
reaction to interest rates movements, and a structured stress testing framework is required so as to
monitor the impact of policyholders’ behaviors on specific company’s risk metrics.

More concretely, let us consider a life insurance portfolio of individuals holding saving contracts
with guaranteed return Rg, embedding a surrender option that can be exercised at any time. All
along the contract lifetime, policyholders usually compare their contract credited rate (further de-
noted with (Rct)t≥0) to some benchmark rate observed in the market (e.g. a long-term interest rate,
further denoted by (rt)t≥0). The credited rate encompasses a potential profit benefit depending on
the company’s profitability, and can sometimes be higher than the guaranteed rate. The economic
intuition underlying the model is that lapse decisions can be driven by the comparison between the
contract credited rate and the interest rate level6. How the risk free interest rate trajectory rt can
impact on the lapse risk? A rational policyholder is obviously more inclined to lapse as the spread

5See https://www.banque-france.fr/fileadmin/user_upload/banque_de_france/publications/Revue_de_

la_stabilite_financiere/etud4_0605.pdf
6In the following sections, the dynamics of (rt)t≥0 is given as the solution of a stochastic differential equation.
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between the interest rate and the credited rate increases. Let us indicate this spread at time t = 0
as the first relative gap RG0

t , defined as:

RG0
t :=

rt −Rc0
Rc0

, (1)

where rt is the risk-free interest rate at time t, and Rc0 := Rg coincides with the guaranteed rate
Rg (close to 0 for most of life insurers in 2015). A large relative gap RG0

t indicates that alternative
investment opportunities become more attractive than the current insurance position held by the
insured. At the contract inception, rt at least equals Rg since the life insurance contract offers more
guarantees than a sole risk-free return. We thus have RG0

0 ≥ 0, with RG0
0 ≈ 0 for market clearing

competitive reasons. The same relative gap can be defined for each point in time, and the com-
pany can adjust the contract credited rate to prevent massive copycat behaviors. The economic
intuition is based on policyholders’ reactions towards the profitability of alternative investment
opportunities: if the relative gap at time t becomes greater than a certain level, the insurer can
reasonably expect to experience some temporary surrenders. Assume that subsequent adjustments
of the contractual credited rate can be made by the insurer each time the relative gap becomes
greater than an exogenous threshold B > 0 (generalization of this setting to the case of a decreasing
interest rate regime would be quite straightforward).

Let us assume T̂1 being the first time the relative gap hits the exogenous threshold B, and say
that the insurer instantaneously updates the contract credited rate by rising it up to the market
interest rate level, i.e. Rc

T̂1
= rT̂1 . As a consequence, the new relative gap RG1

t is given by

RG1
t =

rt −RcT̂1
Rc
T̂1

=
rt − rT̂1
rT̂1

, T̂1 ≤ t <∞.

If the insurer follows this mechanism to set the contract credited rate, subsequent adjustments will
be operated as soon as RG1

t = B, RG2
t = B, the generic RGkt = B, and so on. These events thus

characterize the sequence (T̂j)j=0,1,... such that

T̂j+1 = inf{t > T̂j , RG
j
t = B}, (2)

with the generic relative gap defined as

RGjt =
rt −RcT̂j
Rc
T̂j

=
rt − rT̂j
rT̂j

, T̂j ≤ t <∞. (3)

and T̂0 = 0. Figure 1 illustrates the updating mechanism of the credited rate for a simulated path
of the interest rate rt, whose dynamics follows a geometric Brownian motion (GBM) as:

drt
rt

:= µdt+ σdWt, r0 > 0, (4)

with µ, σ ∈ <+ and (Wt)t≥0 a standard Brownian motion.

The adjustments of the credited rate are not instantaneous in practice, thus we deem reasonable
and more realistic to consider that the propensity of policyholders to lapse can jump. In particular,
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Figure 1: Market interest rate dynamics and contract credited rate adjustments. Sim-
ulated path of a GBM with r0 = 1.5%, µ = 5%, σ = 30%. The dates T̂j at which the contract
credited rate Rct is adjusted are reported. Here, the exogenous threshold B equals 10%.

we suppose it to jump at dates T̂j , and then to vanish over time thanks to subsequent efforts made
by the insurer. Let (Nt)t≥0 be the counting process describing the number of lapses over the whole
portfolio at time t, where lapses occur at dates (Ti)i=1,2,.... Define the intensity λt associated to Nt:

λt = λ∞ + (λ0 − λ∞)e−βt +
∑
i≥1

Xi e
−β(t−Ti)1{Ti≤t} +

∑
j≥1

Yj e
−β(t−T̂j)1{T̂j≤t}, (5)

where λ0, λ∞, β are real positive constants; Xi, Yj are random variables for the magnitudes of jumps.

The model in Equation (5) corresponds to a dynamic contagion process (see [6]), i.e. an
extension of the classical Hawkes intensity. By using the same notation, the classical Hawkes
intensity is given as:

λt = λ∞ + (λ0 − λ∞)e−βt +
∑
i≥1

Xi e
−β(t−Ti)1{Ti≤t}. (6)

Differently from a deterministic Cox-type constant intensity which has been widely used in the
actuarial literature (e.g. [3] for lapses), Hawkes-like intensity is stochastic and increases whenever
the point process Nt jumps. These self-excited jumps lead to natural contagion and allow to cap-
ture massive lapses generated by the breakdown of classical behavioral assumptions. A widespread
panic situation in the market could make policyholders much more inclined to lapse due to corre-
lation and contagion effects, and thus making lapse risk much more difficult to monitor ([17]) for
insurance companies.

When looking at Equation (6), the contract lapsation at time Ti has an impact of magnitude
Xi on the intensity process λt. This impact exponentially vanishes over time at the (constant)
rate β until the mean-reversion level λ∞ is reached. However, the temporary risk factor that can
originally cause the contagion is not explicitly incorporated, while this is the case in Equation (5)
thanks to the external jumps at dates (T̂j). In our setting, parameters λ0 and λ∞ respectively
account for initial and long-term hazard rates related to structural lapses. Section 5 provides some
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explanations concerning the calibration of these parameters based on empirical data.

Without loss of generality, we assume that the magnitudes of self-excited and external jumps
are exponentially-distributed with, respectively, parameters γ and δ. The lapse intensity process
λt therefore depends on both (i) the point process Nt (i.e. introduced as technical tool to model
contagion inside the portfolio), and (ii) another external point process (N̂t)t≥0 related to the jumps
dates T̂j : N̂t =

∑
j≥1 1{T̂j≤t}. The mixture of these two risk sources provides a suitable framework

to integrate and capture in the modeling both contagion and correlation effects observed among
policyholders’ behaviors. Figure 2 shows a typical trajectory of our intensity process λt in Equation
(5), corresponding to the interest rate trajectory depicted in Figure 1. Notice that Nt does not
jump at T̂j : the only quantity impacted by the external jumps is λt itself.

3 Theoretical results: moments of the lapse intensity

This section is devoted to the derivation of theoretical results concerning the moments of the lapse
intensity λt defined in Equation (5). The expected number of lapses within a given time horizon
will also be given in closed form. First, let us briefly recall some useful properties of the counting
process (N̂t)t≥0, and the external events dates T̂j associated to jumps in the intensity process.

3.1 External jumps

The event dates (T̂j)j=0,1,... are hitting times of the process describing the evolution of the relative

gaps RGjt defined in Equation (3). Our methodology is developed under the assumption of a specific
stochastic dynamics for the interest rate. Here, a GBM with drift µ and volatility σ is considered
(see Equation (4)), and the solution is given by

rt = r0 · e(µ−σ
2/2)t+σWt . (7)

The generic relative gap RGjt thus satisfies log(RGjt +1) = µ(t− T̂j)+σ(Wt−WT̂j
), and the events

T̂j can be characterized as follows:

T̂j = T̂j−1 + inf{t > 0, (µ− σ2/2)t+ σWt = log(1 +B)}, (8)

by exploiting the independence of the Brownian increments. This property guarantees that the
inter-arrival times ∆T̂j = T̂j− T̂j−1 are independent, with a well known distribution ([24]). Indeed,
(∆T̂j)j=1,2,... are inverse Gaussian random variables with mean θ1 = 2 log(1 + B)/(2µ − σ2) and
shape θ2 = (log(1 + B))2/σ2. Hence, for t > 0, their density and cumulative distribution function
(CDF) are respectively given in closed form by

f(t) =

(
θ2

2πt3

) 1
2

exp

{
−θ2(t− θ1)

2

2θ21t

}
, (9)

F (t) = Φ

(√
θ2
t

(
t

θ1
− 1

))
+ exp

{
2θ2
θ1

}
Φ

(
−
√
θ2
t

(
t

θ1
+ 1

))
, (10)

with Φ(·) being the standard normal CDF (see [23, p. 43]).
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Notice also that T̂j =
∑j

k=1 ∆T̂k, and introduce the renewal function h(t) = E[N̂t]. Knowing that

the ∆T̂j ’s are independent and identically distributed (i.i.d.), we have P(T̂j ≤ t) = F j∗(t) where
F j∗ is the j-fold convolution of F . Using E[N̂t] =

∑∞
j=0 P(N̂t ≥ j), we have

h(t) = E[N̂t] =
∞∑
j=0

F j∗(t). (11)

As shown in [23], the CDF F j∗ is still an inverse Gaussian, with mean jθ1 and shape jθ2.
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Figure 2: Intensity dynamics λt and counting process Nt. The two first graphs respectively
show one particular sample path of the interest rate and the corresponding intensity λt given in
Equation (5). Vertical lines stand for the external jump times. The third graph is associated to the
counting process Nt. The barrier for the relative gap is B = 10%, while the base case parameters
of the dynamic contagion process are λ0 = 0.5, λ∞ = 0.4, β = 2, δ = 2, γ = 1.5.
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3.2 Recursive formulas for moments derivation

The aim of this section is to derive the moments of the intensity λt as well as of the number of
lapses. To this end, we consider the moment generating function (MGF) of the intensity, denoted
by m(t, θ) = E[eθλt ]. Let m(n)(t, θ) be the nth derivative of m with respect to θ, such that m(n)(t, 0)
is the nth moment of λt. Seemingly, denote by ξ(t, θ) and ξ̂(t, θ) the MGF of the processes Zt and
Ẑt, defined as

Zt =

Nt∑
i=1

Xie
βTi and Ẑt =

N̂t∑
i=1

Yie
βT̂i . (12)

These processes are discounted compounded renewal processes (see [15]), and ξ(n)(t, θ) and ξ̂(n)(t, θ)
refer to the nth derivative of ξ(t, θ) and ξ̂(t, θ) with respect to θ. Hence, the process λt can be written
in the following form

λt = (λ∞ + (λ0 − λ∞)e−βt) + e−βtZt + e−βtẐt,

which is useful for the results stated in the propositions below.

Proposition 1 The MGF of λt can be decomposed as follows:

m(t, θ) = eθ(λ∞+(λ0−λ∞)e−βt)ξ(t, θe−βt)ξ̂(t, θe−βt), (13)

with ξ(t, θ) and ξ̂(t, θ) being the MGF of Zt and Ẑt.

Proof: see Appendix A.1 �

The moments of the lapse intensity thus directly depend on those of Zt and Ẑt, which are derived
via a recursive formula ([15]).

Lemma 1 The MGFs ξ, ξ̂ of Zt =
∑Nt

i=1Xie
βTi and Ẑt =

∑N̂t
j=1 Yje

βT̂j are given by the recursive
formulas:

ξ(t, θ) = 1 +

∫ t

0

(
θeβu

γ − θeβu

)
ξ(t− u, θeβu)m(1)(u, 0)du, (14)

ξ̂(t, θ) = 1 +

∫ t

0

(
θeβu

δ − θeβu

)
ξ̂(t− u, θeβu)dh(u), (15)

where h(t) is given in (11). The moments of Zt, Ẑt have the following form:

ξ(n)(t, 0) =
n−1∑
k=0

n!

k!

1

γn−k

∫ t

0
enβuξ(k)(t− u, 0)m(1)(u, 0)du, (16)

ξ̂(n)(t, 0) =

n−1∑
k=0

n!

k!

1

δn−k

∫ t

0
enβuξ̂(k)(t− u, 0)dh(u), (17)

Proof: see Appendix A.2. �
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Notice that the functions ξ(n)(t, θ) are mainly dependent on the knowledge of m(1)(t, 0), which is
the expectation of the lapse intensity. This first moment can be inferred using arguments similar
to those of [6], whose technique is based on the infinitesimal generator of a Markov process and
a martingale argument. In their paper, the exponential distribution of the inter-arrival times
of external jumps makes the process λt be Markovian, an assumption which is not fulfilled in
our setting. Indeed, in our case, the lapse intensity λt is not a Markov process. Referring to the
method in [9], the process λt can be transformed to a Markovian one by introducing a supplementary
process, namely the time elapsed since the last external jump (or the time remaining to the next
one). Here we rather rely on a differential argument based on the recursive formulas of Proposition
1 and Lemma 1. This allows us to deduce another recursive equation satisfied by the derivatives
of m(t, θ).

Proposition 2 For n ≥ 1, the nth derivative of the lapse intensity MGF is given recursively as
follows:

m(n)(t, θ) = (λ∞ + (λ0 − λ∞)e−βt)m(n−1)(t, θ) (18)

+

n−1∑
i=0

(
n− 1

i

)
e−(n−i)βt

(
Ii(t, θ) + Îi(t, θ)

)
m(i)(t, θ),

where Ik and Jk for {k = 1, 2, . . . } are given by

Ik(t, θ) = I
(1)
k−1(t, θ)− kIk−1(t, θ)ξ

(1)(t, θe−βt),

Îk(t, θ) = Î
(1)
k−1(t, θ)− kÎk−1(t, θ)ξ̂

(1)(t, θe−βt),

with I0(t, θ) = ξ(1)(t, θe−βt)/ξ(t, θe−βt) and Î0(t, θ) = ξ̂(1)(t, θe−βt)/ξ̂(t, θe−βt).

Proof: see Appendix A.3. �

A particular application of the above result is the derivation of the consecutive moments of the
intensity process λt by letting θ = 0 in (18). This recursive formula is then used to get the analytic
expression of the first moment of the intensity process as shown in the Lemma below.

Lemma 2 (First moment) The expectation of the lapse intensity λt is given by

E[λt] := m(1)(t, 0) =

(
λ0 −

βλ∞
β − 1/γ

)
e
−(β− 1

γ
)t

+
βλ∞

β − 1/γ
+

1

δ

∫ t

0
e
−(β− 1

γ
)(t−s)

h′(s)ds. (19)

It is the solution of the differential equation

∂m(1)(t, 0)

∂t
= βλ∞ −

(
β − 1

γ

)
m(1)(t, 0) +

1

δ
h′(t),

with h(t) given in Equation (11).

Proof: see Appendix A.4. �
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This result is crucial for the derivation of some relevant risk indicators and the quantification of
correlation and contagion effects on lapse rates. For instance, we can derive the expected number
of lapses over a given time horizon. Using Lemma 2, we formally have:

E[Nt] = E
[∫ t

0
λsds

]
=

∫ t

0
m(1)(s, 0)ds, (20)

where Fubini-Tonelli’s theorem has been used to intervene the expectation sign and the integral.

Notice that the first moment in Lemma 2 involves an infinite series associated with the external
jumps component. Knowing that h(t) =

∑∞
j=0 F

j∗(t) is linked to a distribution function and has a

density given by h′(t) =
∑∞

j=0 f
j∗(t) (where f j∗ is the derivative of F j∗), we can write

E[λt] =

(
λ0 −

βλ∞
β − 1/γ

)
e
−(β− 1

γ
)t

+
βλ∞

β − 1/γ
+

1

δ

∑
j≥1

∫ t

0
f j∗(s) e

−(β− 1
γ
)(t−s)

ds

 . (21)

The numerical calculation of (21) is closely related to the computation of the infinite sum∑
j≥1

∫ t

0
f j∗(s)e−(β−1/γ)(t−s) ds.

Nevertheless, only the first k terms of this sum have a significant quantitative impact on the
expectation, and the number of relevant terms k depends on the values of the parameters θ1 and
θ2. The inverse Gaussian density f j∗ is flattening as j increases, which makes the product with the
exponential density quickly go to zero. This also explains why there exists a closed-form formula for
the expectation of the intensity process, as reported in Proposition 3. To illustrate this behavior,
Figure 3 reports these densities for various values of j.

Proposition 3 Set k := (θ2/θ
2
1)−2(β− 1

γ ), where (θ1, θ2) are the parameters of the inverse Gaus-
sian law given in (9). The first moment of the intensity process can be written in closed form as a
function of the parameters defining the dynamic contagion process.

(i) If (β − 1
γ ) ≤ (µ−σ2/2)2

2σ2 (or equivalently k ≥ 0), then

E[λt] =

(
λ0 −

βλ∞
β − 1/γ

)
e
−(β− 1

γ
)t

+
βλ∞

β − 1/γ
+

1

δ
e
−(β− 1

γ
)t × (22)

∑
j≥1

e
j
θ2
θ1

[
e−j
√
kθ2 Φ

(
t
√
k − j

√
θ2√

t

)
+ ej

√
kθ2 Φ

(
− t
√
k + j

√
θ2√

t

)]
,

(ii) else

E[λt] =

(
λ0 −

βλ∞
β − 1/γ

)
e
−(β− 1

γ
)t

+
βλ∞

β − 1/γ
+

1

δ

∑
j≥1

e
− θ2
θ21

(jθ1−t)
2

2t ×Re(w(zj)), (23)

where Re(.) is the real part of w(zj) = e−z
2
j (1−erf(−izj)), with zj =

√
−kt
2 +ij

√
θ2
2t and erf(z) =

(2/
√
π)
∫ z
0 e
−t2 dt.
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Figure 3: Density f j∗(t) of the sum of j i.i.d. inverse Gaussian random variables. The
graph reports the behavior of the density function f j∗(t) of an inverse Gaussian law for different
values of j ∈ {1, 2, 3, 5, 10, 15}, where the density function f(t) is given in Equation (9).

Proof: see Appendix A.5. �

We are now interested in deriving the limiting behavior (as t tends to infinity) of the mean intensity,
since it is a key driver for monitoring the lapse risk profile. This can be done by leveraging on the
stability assumption of the form γβ > 1, similar to the one used in the original Hawkes framework
(see [2] for general decay functions, as well as the externally excited framework considered in [6] and
[1] among others). This condition ensures the stability of the lapse intensity in the long run, i.e.
the lapse intensity converges to its long-run equilibrium level. The following proposition reports
the limiting behavior of the first moment of the intensity process λt.

Proposition 4 The limiting expected lapse intensity can be written as follows:

lim
t→∞

E[λt] =
βλ∞

β − 1/γ
+

1

δθ1(β − 1/γ)
. (24)

with E[λt] given in Equation (21).

Proof: see Appendix A.6. �

4 Lapse intensity: sensitivity to the model parameters

Our goal is to understand the role that each model parameter plays in our framework, in terms of
influence on the lapse risk. To measure it from both a qualitative and quantitative viewpoint, we
consider the expectation of the intensity process E[λt] as the main risk indicator, see Proposition
3 and Figure 4.
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This indicator has been chosen for two reasons. First, it gives the most relevant information
concerning the impact of the dynamic integration of correlation and contagion on the mean risk
level supported by the insurance company. Secondly, it enables to derive other qualitative and
quantitative results (such as the average number of lapses) quite easily. The sensitivity analysis
presented below is based on a coeteris paribus comparison of the proposed dynamic contagion pro-
cess λt in (21), whose base case parameters are given in Figure 4 (left side).

To start with, let us consider how changes of the GBM parameters affect the first moment of
the intensity process λt. First, look at the drift µ: according to Figure 5, the greater the drift
the higher the mean intensity process (for each time horizon). A greater drift naturally makes the
exogenous barrier B be hitted more often, thus increasing the external risk component by gener-
ating the occurrence of additional external jumps. The resulting long-term mean of the intensity
process is also higher, while the time to reach this stationary equilibrium regime does not seem to
be significantly impacted. Figure 5 shows that this long-term behavior is approximately reached at
t = 50, for each considered level of the drift parameter µ. On the contrary, the volatility σ reveals
to have an impact on the time needed by the mean intensity to reach this long-run equilibrium:
the more σ increases, the longer this time. Increasing the volatility in the interest rate dynamics
means increasing the level of uncertainty characterizing the system, and more uncertainty obvi-
ously postpones the stability. In mathematical terms, this can be seen by looking at Equation (24)
and Proposition 3: increasing σ makes the mean intensity process raising in the short run and
decreasing in the long-term.
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Figure 4: Expectation of the lapse intensity process for t ∈ [0, 100]. The plots compare
the outcome of a Monte Carlo simulation (2 · 104 trajectories) to the theoretical expressions of
Proposition 3. On the left the case of Equation (22), with parameters: r0 = 1.5%, µ = 1%,
σ = 1%, B = 10%, λ0 = 0.3, λ∞ = 0.2, δ = 1.5, γ = 2, and β = 0.6. The plot on the right
corresponds to the case of Equation (23), with the same values of parameters except that σ = 5%.
The two plots also report the long term value of the lapse intensity derived in Equation (24).
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Now, focus on the exogenous barrier B defined for the relative gaps RGjt capturing the spread
between the contract credited rate and the market rate. The barrier B can be seen as a proxy for
an elasticity-based measure in a pure economic sense: this threshold is indeed introduced to reflect
the policyholders’ sensitivity to interest rates movements. It is therefore linked to the propensity
of policyholders to react when the relative gap tends to increase: the higher B gets, the lower the
mean intensity process is. More external jumps will occur if B is low, making λt greater most of
the time. Though, the long-run stable regime does not change when we modify this barrier: B is
indeed not appearing in (24) while it is directly impacting the external source of risk affecting λt.

Let us consider now the parameters of the intensity process itself: the exponential decay β has
one of the most relevant impacts. This parameter represents the speed at which the intensity λt
decreases once a jump has occurred. Not surprisingly, a low β has two main consequences: i) it
makes the time to reach the long-run expected level longer; ii) it considerably increases the mean
intensity E[λt], for each date t. As time passes, a low β increases the gap with respect to the base
case intensity process, highlighting that the effect of β clearly accumulates over time and leads to
a much higher long-term mean intensity.

The same argument applies when considering a variation of γ parameter, which is in line with
the stationarity condition: as long as β is greater than the mean size 1/γ of self-excited jumps,
the mean intensity process remains finite in the long run. This relation explains why their effect
is similar: when γ gets higher, the mean size of internal jumps decreases, so that the mean lapse
intensity process is lower, as well as the elapsed time before reaching the stationary level. Recall
that these two parameters capture the self-excited component of our dynamic contagion process.

Finally, changing the parameter δ produces an impact on the external component of the intensity
process. This impact is similar to the influence produced by a bump in the GBM drift µ and the
exogenous barrier B, since the ratio 1/δ directly relates to the mean size of external jumps. The
initial intensity level λ0 has no long-term effect on the mean intensity level and on the time to
reach the stationary regime; whereas λ∞ obviously impacts the long-term mean intensity. This is
consistent with the analytic expression given in (21), where it is evident that E[λt] increases if λ∞
is higher. Table 1 summarizes all these results and Figure 5 gives a graphical illustration of the
qualitative behavior described above.
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Figure 5: Sensitivity of the expected lapse intensity to the model parameters for t ∈ [0, 100]. The
comparison is made referring to the case depicted on the left in Figure 4, with the same parameter values. This
is a coeteris paribus analysis: everything else fixed, the sensitivity is analyzed by changing only the value of the
parameter under analysis, i.e. only one parameter each time.
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Profile of Mean intensity level E[λt]: Time to reach
trajectory short-term mid-term long-term stationarity

Reference
model Figure 4 (left)
µ ↑ unchanged + + + '
σ ↑ modified + ' − +
B ↑ unchanged − − − '
β ↑ modified − − − −
γ ↑ modified − − − −
δ ↑ unchanged − − − −
λ0 ↑ modified + ' = '
λ∞ ↑ unchanged + + + '

Table 1: Qualitative impact of the model parameters on the expected lapse intensity. We
summarize the impact of an increase in each model parameter on E[λt]. The sign “+” corresponds
to a positive impact (increase) on the quantity of interest (as compared to the reference case, see
Figure 4 left side); the sign “−” stands for a decrease of E[λt]; and “'” means that there is roughly
no change, i.e. the impact is quite negligible.

5 Application to risk management

From a risk management perspective, insurance companies are interested in properly capturing and
monitoring the lapse risk (linked to underlying surrender options) for hedging and capital reserving
purposes. Thus, estimating key measures driving this source of risk becomes a crucial activity
to be carried out on a regular basis. In this section we perform a comparative study between the
most widely used approaches currently considered to estimate potential losses in practice (S-shaped
curve and standard formula of Solvency II) and the outcomes of our methodology. The study is
conducted via a simulation exercise, useful to illustrate the main ideas of the paper and their im-
plications in terms of real life practical issues for a company’s risk profile estimation.

The first step of the analysis is the calibration of the parameters involved in the proposed
model, and the question is: How can the model be calibrated on real data by an insurance company?
Consider firstly the initial intensity level λ0 and its long-run stationary mean λ∞. As already
discussed in Section 2, λ0 represents the initial force of lapse and is a constant: the underlying
lifetime distribution before lapsation is thus exponential. Therefore, for a given insurance portfolio,
a suitable value for λ0 could be the inverse of the empirical mean of times before lapsation in a
stable regime. Inside insurance companies, this quantity is usually well-known, and an a priori seg-
mentation could be performed to integrate some risk factors specific to the structural component
underlying lapses. Assume that there are 1.000 contracts in the portfolio, and that the company
stores data on a daily basis. Up to the date of the analysis, let us say that 3 lapses are observed
every 10 trading days, which means that λ0 = 0.3. In a 1-year time horizon (250 trading days),
the company should experience around 75 lapses (hence a yearly structural lapse rate of 7.5%).
With a similar logic, the long-run lapse intensity level λ∞ can be fixed by the risk managers as
the target level embedding limits coming from risk management purposes. Indeed, when the time
horizon is given, this quantity is linked to the final expected number of lapses since the mean con-
tract lifetime would approximately be known (at least under the assumption of a stable economic
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regime). Say for instance that the insurer would like to experience no more than 2 lapses every
10 trading days, or equivalently 50 structural lapses a year. The mean inter-arrival time for these
events is thus 5 days, which leads to λ∞ = 0.2.
Other parameters ideally have to be calibrated from empirical data, still keeping in mind that
some of them are connected to the risk appetite of the company. For instance, β relates to the
ability of the company to reassure the policyholders, and parameters γ and δ tie in with the mean
size (in terms of sum insured) of lapsed contracts. Typically, δ should be lower than γ, because
the lapsation by the richest policyholders may have a deeper (even much more critical) impact on
the insurer’s balance sheet. Since they are often advised, the richest individuals globally behave
more rationally, and are the first to react in unfavorable situations. In other words, external jumps
should be fewer but have a more significant quantitative impact on the P&L of the company. The
parameters of the interest rate dynamics can be calibrated from historical data, while the barrier
B, capturing the sensitivity of policyholders to market movements, usually comes from an expert-
based estimation (e.g. depending on companies, it can vary between 10% and 50%).

We now compare the different methodologies (current market practices and ours) to provide
some key risk indicators, in particular the expected number of lapses and associated risk measures.
To be compliant with the Solvency II framework, we work under the following assumptions: i)
the insurance portfolio is in run-off, and ii) the reference time horizon is 1 year. With respect to
the current financial context characterized by extremely low interest rates, we focus on potential
parallel upward shocks of interest rates curves and the corresponding potential massive lapses (i.e.
the most likely problematic scenario). The risk measures under consideration are the Value-at-Risk
(V aR) and the Tail-Value-at-Risk (TV aR), respectively defined at the threshold α ∈ (0, 1) by

V aRα(Nt) = inf{k : P(Nt ≤ k) ≥ α}; TV aRα(Nt) =
1

1− α

∫ 1

α
V aRp(Nt) dp, (25)

with k ∈ N: they enable to quantify the riskiness of behaviors’ changes via the tail of the distribu-
tion of the number of lapses. Indeed, V aRα(Nt) tells us that the number Nt of lapses for a given
period t will be lower than V aRα(Nt) with probability α. It somewhat gives the information about
how the SCR would be modified by the consideration of both correlation and contagion effects.
The TV aRα risk measure is nothing else than the average of V aRp from the threshold α to 1, and
thus informs us about the whole behavior of the tail.

Numerical results are summarized in Table 2. The first conclusion is straightforward: looking
at the results about shocks and V aRα(Nt), it seems that classical stress tests procedures (e.g. Sol-
vency II and S-shaped approaches) lead to an overall underestimation of the actual lapse risk faced
by life insurance companies. This is not surprising, since correlation and contagion effects among
policyholders behaviors are not taken into account in such methodologies. We should also mention
that the results obtained from the Solvency II standard formula are neither really consistent nor
realistic here, since the Solvency II shock applied to the baseline risk was calibrated on a single
product in a specific market. In practice, the resulting estimation is thus not conservative and
a greater reserve (roughly 2.5 times bigger than using a S-shaped curve approach, even more in
the Solvency II case) should instead be considered to cover unexpected potential losses coming
from lapses. Concerning the mean risk level as well as stressed scenarios, notice that the standard
Hawkes process ([11]) provides lower bounds for the dynamic contagion case, which is consistent
with their economic and financial interpretation. Moreover, the TV aRα(Nt) results show that the
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Solvency II S-shaped Hawkes counting Dynamic contagion
Standard formula curve (ONC) process process

Parameters Risk level Shocks Risk level Shocks E[Nt] V aRα(Nt) TV aRα(Nt) E[Nt] V aRα(Nt) TV aRα(Nt)
10% 455 1028 1142

B 30% 75 1127 75 3758 291 776 837 312 818 930
50% 293 778 886
0.1 2461 4286 4559

δ 0.5 75 112 75 375 291 776 837 702 1460 1594
1.5 455 1028 1142

Table 2: Impact of contagion and correlation on risk metrics for Nt. Various levels of
the barrier B and mean external jump size 1/δ are considered to study the results on V aRα(Nt)
and TV aRα(Nt), with α = 99.5% and t = 250 (1-year time horizon). All other model parameters
remain the same as in Figure 4 (left).

right tail of the distribution of the number of lapses is heavier in our setting than in all other cases,
including the Hawkes model.

Let us now focus on the policyholders’ sensitivity to interest rate movements. Table 2 highlights
a a non-linear behavior. Starting from an exogenous barrier B equal to 50%, a 20%-decrease of
B causes a 7%-increase of the expected number of lapses, whereas the latter rises by around 30%
when B goes from 30% to 10%. This is confirmed by Figure 6, which considers the relationship
between the Value-at-Risk of the number of lapses obtained though our methodology based on
dynamic contagion, namely V aRDcα (Nt), and the one obtained by following Solvency II guidelines,
namely V aRSolα (Nt). The idea is to study the functional relationship between the Value-at-Risk of
the number of lapses under the two approaches and analyze how this relationship (e.g. shape and
magnitude of the ratio V aRDcα (Nt)/V aR

Sol
α (Nt)) is affected by: i) the barrier B for the interest

rate relative gaps, determining the times at which external jumps are observed; ii) the mean size
of external jumps, i.e. through the variation of δ parameter.

The z-axis in Figure 6 expresses the ratio of these two Value-at-Risk measures, by reporting
V aRDcα (Nt)/V aR

Sol
α (Nt). Most of time, the introduction of correlation through the external com-

ponent seems to have a reduced but not negligible impact on the quantities of interest. As we can
see from Figure 6, while the mean size of external jumps remains lower than a certain threshold
(roughly given by δ = 0.4), the risk measures tend to increase slowly (yellow area). However, as
soon as the mean size of external jumps increases, the relationship between both quantities becomes
instead exponential (orange and red areas), highlighting the material impact of this component.
The economic insight behind this behavior suggests that the portfolio composition is crucial, and
insurers most exposed to lapse risk are the ones having a great proportion of rich policyholders.
Indeed, this population is usually the first-to-react, with possibly huge amount of notional asso-
ciated to the surrenders (a big notional is associated to a low δ). The proportionality coefficient
between those two VaRs (V aRDcα (Nt)/V aR

Sol
α (Nt)) can be very high. For instance it reaches 40

in our example, when the mean size of external jumps is set to 5 (e.g. δ = 0.2). Remember that
these results are only illustrative in the sense that the parameters were not calibrated on real his-

7Defined in the calibration papers of the 5th QIS: up to 1.5 times the structural lapses.
8Defined in the ONC (see Section 1): corresponds to structural lapses to which temporary lapses are added (with

a maximum of 30% of the global exposure). Here it is thus 75 + 30% ×1000 = 375 lapses.
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torical data, but they corroborate the idea that standard stress-test procedures are not capturing
a significant component underlying the real lapse risk faced by life insurance companies.
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Figure 6: Impact of B and the mean size of external jumps 1/δ on V aRα(Nt). The z-axis
expresses the ratio between the dynamic contagion-based risk metric and the one based on Solvency
II definition. This relationship is studied as function of two drivers: the barrier B defined for the
interest rates relative gap; and the mean size of external jumps through the parameter δ.

6 Conclusion

This paper defines a methodology that enables to deal with both stressed and unstressed scenarios
for the risk management activity of surrender events. Due to the optionality embedded in most
life insurance contracts, correlation and contagion among policyholders’ behaviors in reaction to
interest rates movements appear to be crucial drivers underlying a proper measurement of the lapse
risk. We show through numerical examples that by properly considering their impact, we could end
up to around a 2.5 factor times the capital requirement obtained via standard S-shaped/Solvency II
procedures. This is the reason why insurance companies must pay attention to correlation and con-
tagion when evaluating both risk margins and related capital requirements: a proper measurement
is fundamental for capital reserving purposes, for the definition of adequate stress test scenarios and
for the building up of proper stress testing procedures. We propose a mathematical framework that
allows to dynamically integrate these effects into the modeling of the lapse risk (dynamic contagion
model) and give in closed form the moments of the lapse intensity process. Our numerical analysis
highlights that the lapse risk margins are probably underestimated when using current practices
(e.g. Solvency II-based) and the magnitude of this underestimation can be significant in terms of
capital reserves depending on the sensitivity of policyholders’ reactions to changes in the financial
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environment (i.e. timing risk for the surrender event, number of surrenders, notional involved).

Further developments of the model could focus on different aspects: separating the impacts of a
global crisis scenario affecting all policyholders and a critical scenario only affecting some of them;
alternative definitions of the barrier B embedding time dependency, in order to capture a dynamic
sensitivity of policyholders. In the same spirit, we could also think of introducing delayed reactions
of both policyholders and insurance companies, respectively to surrender the contract and to adjust
the level of the guaranteed rates. However, these extensions go beyond the scope of this paper and
we leave the investigation of such interesting questions for future research.
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A Proofs

This Appendix contains the proofs of the main theoretical results derived in this paper.

A.1 Proof of Proposition 1

The function m can be written as

m(t, θ) = E
[
eθ(λ∞+(λ0−λ∞)e−βt)eθe

−βtZteθe
−βtẐt

]
.

Then, the decomposition follows by conditioning on I = {T1, · · · , TNt+1} ∪ {X1, . . . , XNt+1}:

m(t, θ) = eθ(λ∞+(λ0−λ∞)e−βt)E
[
E
[
eθe
−βtẐt

∣∣I] eθe−βtZt] ,
= eθ(λ∞+(λ0−λ∞)e−βt)ξ(t, θe−βt)ξ̂(t, θe−βt),

since Ẑt is independent of I in the second equality. �
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A.2 Proof of Lemma 1

(i) The first identities directly follow from [15] as:

ξ(n)(t, 0) =
n−1∑
k=0

n!

k!

1

γn−k

∫ t

0
enβuξ(k)(t− u, 0)dh(u),

where h(t) = E[Nt] is the renewal function. Note that due to the martingale property ofNt−
∫ t
0 λudu

and Fubini-Tonelli’s theorem we can write dE[h(u)] = E[λu]du. Substituting this in the last equa-
tion and noting that E[λt] = m(1)(t, 0) leads to the desired formula.
(ii) The equalities directly follow from the results in [15] up to some basic algebraic calculation. �

A.3 Proof of Proposition 2

Let I0(t, θ) = ξ(1)(t, θe−βt)/ξ(t, θe−βt), and consider the decomposition in (13) and the consecutive
derivation. First, we have

m(1)(t, θ) =
(

(λ∞ + (λ0 − λ∞)e−βt) + e−βt
ξ(1)(t, θe−βt)

ξ(t, θe−βt)
+ e−βt

ξ̂(1)(t, θe−βt)

ξ̂(t, θe−βt)

)
m(t, θ),

= (λ∞ + (λ0 − λ∞)e−βt)m(t, θ) + e−βt
(
I0(t, θ) + Î0(t, θ)

)
m(t, θ).

Secondly, we get by differentiation of the above equation with respect to θ the function m(n)(t, θ)

m(2)(t, θ) = (λ∞ + (λ0 − λ∞)e−βt)m(1)(t, θ) + e−βt
(
I0(t, θ) + Î0(t, θ)

)
m(1)(t, θ)

+ e−βt
(
I
(1)
1 (t, θ) + Î

(1)
1 (t, θ)

)
m(1)(t, θ).

Thus, by induction, some algebraic calculus and the relationship linking the Ik(t, θ)’s and (resp.
Îk(t, θ)) we come with the desired recursion of the m(n)(t, θ). �

A.4 Proof of Lemma 2

(i) Letting n = 1 in Equation (18), gives

m(1)(t, θ) =
(

(λ∞ + (λ0 − λ∞)e−βt) + e−βt
ξ(1)(t, θe−βt)

ξ(t, θe−βt)
+ e−βt

ξ̂(1)(t, θe−βt)

ξ̂(t, θe−βt)

)
m(t, θ).

Now, letting θ = 0 and noting that m(t, 0) = ξ(t, 0) = ξ̂(t, 0) = 1, we can write the above equation
as follows

m(1)(t, 0) = (λ∞ + (λ0 − λ∞)e−βt) + e−βtξ(1)(t, 0) + e−βtξ̂(1)(t, 0). (26)

This equation does not directly yield to the desired formula for m(1)(t, 0), as the ξ(1)(t, 0) depends
on m(1)(t, 0). Indeed, we have from (16)

ξ(1)(t, 0) =
1

γ

∫ t

0
eβum(1)(u, 0)du,
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which makes (26) be an integral equation. Thus, it suffices to substitute ξ(1)(t, 0) and ξ̂(1)(t, 0)
(given in (17)) into (26) and take the derivative with respect to the first variable to get the desired
differential equation.
(ii) The explicit form is straightforward given the initial condition m(1)(0, 0) = λ0. �

A.5 Proof of Proposition 3

Observe that the integral in the last term of Equation (21) can be interpreted as the convolution of
inverse Gaussian and exponential random variables, see [21]. By defining k := (θ2/θ

2
1)− 2(β − 1

γ ),
where (θ1, θ2) are the parameters of the inverse Gaussian law, we can directly derive the above
result for the first moment of the intensity process by analytic computation. �

A.6 Proof of Proposition 4

The result follows by applying the stability condition γβ > 1. Observe that the limiting behavior
of the lapse intensity first moment strongly depends on the limit of the last term in (19). The latter
is nothing but the convolution of the derivative h′ of the renewal function with the exponential
function, with h(t) given in (11). Using the key renewal theorem, see [22, Theorem 35, p. 119], we
have

lim
t→∞

∫ t

0
e
−(β− 1

γ
)(t−s)

dh(s) =
1

θ1

∫ ∞
0

e
−(β− 1

γ
)(t−s)

ds =
1

θ1

1

β − 1/γ
.

As a consequence, the first moment given in Equation (21) tends to the limit given in (24) as t goes
to +∞. �
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