Méthodes d'ordre élevé pour le couplage de la convection naturelle avec le rayonnement de surface en cavité remplie d'air
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Nomenclature

E émission, W/m 2 H hauteur, m I éclairement, W/m 2 J radiosité, W/m 2 L largeur, m N u nombre de Nusselt N résolution spatiale P r nombre de Prandtl (= ν/α) q densité de flux, W/m 2 Ra nombre de Rayleigh (= gβ∆T H 3 /(να)) r distance, m S surface ou élément de surface, m 2 T température, K Symboles grecs α diffusivité thermique, m 2 /s β coefficient de dilatation thermique, K -1 ε émissivité λ conductivité, Wm -1 K -1 σ constante de Stefan-Boltzmann (= 5.67 × 10 -8 Wm -2 K -4 ) θ angle Indices et exposants c convection ou chaud f froid r rayonnement

Introduction

La convection naturelle en cavité carrée a fait l'objet de nombreuses études numériques en tant que configuration générique des applications potentielles [START_REF] De Vahl Davis | Laminar natural convection in an enclosed rectangular cavity[END_REF][START_REF] De Vahl Davis | Natural convection of air in a square cavity : A comparison exercise[END_REF]. Bien que le couplage avec le rayonnement soit inhérent en convection naturelle, rares sont des études qui tiennent compte de ce couplage. La conséquence est qu'il n'existe pas de problèmes de benchmark ni de solutions de références pour le couplage entre la convection naturelle et le transfert radiatif sous la forme la plus simple. L'objectif du présent travail est de développer des méthodes numériques d'ordre élevé pour ce type de couplage et de proposer à terme un problème de benchmark et des solutions de référence.

Dans le passé, nous avons proposé en tant que problème de benchmark la configuration utilisée par Akiyama et Chong [START_REF] Akiyama | Numerical analysis of natural convection with surface radiation in a square enclosure[END_REF], à savoir une cavité carrée remplie d'air avec la même émissivité sur les les quatre parois et réalisé des études pour tenter de fournir des solutions de référence [START_REF] Xin | Méthode de collocation Chebyshev pour le couplage entre la convection naturelle en cavité remplie d'air et le rayonnement pariétal[END_REF]. La mise en oeuvre des méthodes numériques d'ordre élevé n'a malheureusement pas abouti [START_REF] Xin | Méthode de collocation Chebyshev pour le couplage entre la convection naturelle en cavité remplie d'air et le rayonnement pariétal[END_REF], d'où la motivation du présent travail. En effet, les études précédentes sont basées sur la formulation de la radiosité et les facteurs de formes : nous avons montré que l'utilisation des facteurs de formes implique l'ordre 2 des résultats numériques peu importe les méthodes utilisées (les méthodes spectrales compatibles avec la représentation constante par morceaux ont été employées [START_REF] Xin | Méthode de collocation Chebyshev pour le couplage entre la convection naturelle en cavité remplie d'air et le rayonnement pariétal[END_REF].).

Le présent travail est basé sur une formulation ponctuelle de la radiosité, au lieu de celle constante par morceaux conduisant classiquement à des facteurs de formes. A partir de la forme intégrale du rayonnement de surface, la forme ponctuelle est obtenue et transformée par l'intégration par parties faisant apparaître des fonctions plus régulières dans les intégrales. Les intégrales et les oprérateurs de dérivation sont évaluées respectivement par des quadratures et des formules de dérivation appropriées. Nous montrons que la nouvelle formulation permet l'implémentation en méthodes spectrales Chebyshev et des différences finies d'ordre 4 et l'obtention du bon comportement en convergence et en ordre.

Dans ce qui suit, nous présenterons d'abord le problème physique et les équations mathématiques, ensuite la nouvelle formulation, puis les implémentations numériques réalisées et enfin quelques résultats avant de conclure.

Problème physique et équations mathématiques

Nous nous intéressons au couplage convection naturelle-rayonnement de surface dans une cavité carrée remplie d'air avec la même émissivité ε sur les quatre parois (Figure 1). Les deux parois verticales sont soumises à un écart de température ∆T = T c -T f et celles horizontales sont adiabatiques au sens de l'équilibre convection-rayonnement. L'air dans la cavité est considéré comme un milieu transparent et les parois sont supposées opaques, grises et diffuses. Le couplage convection naturelle-rayonnement de surface se fait donc uniquement sur les parois horizontales à travers les conditions aux limites thermiques. L'écoulement de convection naturelle dans la cavité est gouverné par les équations de Navier-Stokes sous les hypothèses de Boussinesq. Elles sont bien connues et omises ici afin d'alléger la présentation et d'insister sur le rayonnement de surface. Les conditions aux limites sont l'adhérence sur les parois pour la vitesse, T = T c sur la paroi chaude, T = T f sur la paroi froide, -λ∂T /∂y + q r = 0 sur la paroi basse et λ∂T /∂y + q r = 0 sur la paroi haute.

La densité de flux net radiatif q r est la solution du problème radiatif et donnée par q r = J -

I = E -εI avec E = εσT 4 . Nous avons J -(1 -ε)I = E et la relation entre J et I permet H g x S 1 S 2 S 3 S 4 0 z T c T f (y 1 , z 1 ) (x 4 , z 4 ) (y 2 , z 2 ) (x 3 , z 3 ) L y Figure 1 Configuration d'une cavité 2D et notations utilisées.
d'obtenir l'équation de J. Soit S une surface fermée constiuée de N éléments surfaciques S j , le transfert radiatif entre S i et les autres s'écrit :

S i J i ds i = S i E i ds i + (1 -ε i ) S i N j=1 S j J j cos(θ i ) cos(θ j ) πr 2 ds j ds i (1) 
En quantité moyenne on a

J i = E i + (1 -ε i ) N j=1 1 
S i S i S j J j cos(θ i ) cos(θ j ) πr 2 ds j ds i et

J i = E i +(1-ε i ) N j=1
F ij J j où F ij sont les facteurs de forme usuels. Le remplacement de J j par J j introduit une erreur qui s'exprime comme

S i N j=1 S j (J j -J j ) cos(θ i ) cos(θ j ) πr 2 ds j ds i .
Elle ne serait pas nulle si J j = J j (J j n'est pas uniforme). Cette hypothèse est loin d'être vérifiée et ceci explique l'ordre 2 des versions précédentes des méthodes spectrales [START_REF] Xin | Méthode de collocation Chebyshev pour le couplage entre la convection naturelle en cavité remplie d'air et le rayonnement pariétal[END_REF].

Nouvelle formulation radiative

Nous nous proposons de repartir de l'équation (1) et d'aboutir à une équation intégrodifférentielle. En effet, au lieu de travailler avec des quantités moyennes qui ne sont pas compatibles avec les méthodes spectrales ou différences finies, nous travaillerons avec des quantités ponctuelles et des intégrations numériques. Quand S i tend vers zéro (un point l), l'équation (1) devient simplement

(J i ) l = (E i ) l + (1 -ε i ) N j=1 S j J j cos(θ i ) cos(θ j ) πr 2 ds j (2) 
où (J i ) l et (E i ) l ne représentent que de valeurs ponctuelles. Pour approcher les intégrales surfaciques sur les S j , on peut utiliser des quadratures faisant appel elles-aussi à des valeurs collocatives. Cette formulation devra être automatiquement compatible avec les méthodes spectrales de collocation et des différences finies. Malheureusement elle se heurte à l'irrégularité de la fonction cos(θ i ) cos(θ j )/r 2 . Lorsqu'elle n'est pas régulière, un traitement supplémentaire est nécessaire et sera détaillé ci-dessous avec l'exemple d'une cavité 2D.

Pour une cavité 2D de largeur L et de hauteur H, elle est constituée de quatre surfaces de taille infinie dans la direction z. Les quatre sufaces sont notées respectivement par S 1 , S 2 , S 3 et S 4 : S 1 à gauche, S 2 à droite, S 3 en bas et S 4 en haut. Par conséquent, S 1 et S 2 ne dépendent que de y et z et

S 3 et S 4 que de x et z avec (y 1 , z 1 ) ∈ S 1 , (y 2 , z 2 ) ∈ S 2 , (x 3 , z 3 ) ∈ S 3 et (x 4 , z 4 ) ∈ S 4 .
De la même manière, J et E sont notées en fonction de la surface. Sous l'hypothèse 2D, la température et la radiosité ne dépendent plus de z. Nous avons donc J 1 (y 1 ), J 2 (y 2 ), J 3 (x 3 ) et J 4 (x 4 ). Si le point l = (y 1 , z 1 ) ∈ S 1 , l'équation (2) s'écrit pour la cavité 2D : 

(J 1 ) l = (E 1 ) l + (1 -ε 1 ) 4 j=2 S j J j cos(θ 1 ) cos(θ j ) πr 2 ds j = (E 1 ) l + (1 -ε 1 )(I 2 + I 3 + I 4 ) où I 2 , I 3 et I 4 représentent les éclairements provenant des surfaces S 2 , S 3 et S 4 . Pour j = 2, r 2 = (y 1 -y 2 ) 2 + (z 1 -z 2 ) 2 + L 2 , cos(θ 1 ) = cos(θ 2 ) = L/r. I 2 = H 0 +∞ -∞ J 2 L 2 πr 4 dy 2 dz 2 = H 0 J 2 L 2 2[(y 1 -y 2 ) 2 + L 2 ] 3/2 dy 2 . La fonction L 2 [(y 1 -y 2 ) 2 + L 2 ] 3/2 , com- prise entre 1/L et 1/{L[(H/L) 2 + 1] 3/2
Pour j = 3, r 2 = y 2 1 + x 2 3 + (z 1 -z 3 ) 2 , cos(θ 1 ) = x 3 /r et cos(θ 3 ) = y 1 /r. I 3 = L 0 +∞ -∞ J 3 x 3 y 1 πr 4 dx 3 dz 3 = L 0 +∞ -∞ J 3 y 1 2πr 4 d(x 2 3 )dz 3 = L 0 +∞ -∞ J 3 y 1 2π d -1 x 2 3 +y 2 1 + (z 3 -z 1 ) 2 dz 3 = +∞ -∞ -J 3 y 1 2π[x 2 3 + y 2 1 + (z 3 -z 1 ) 2 ] x 3 =L x 3 =0 dz 3 + L 0 +∞ -∞ y 1 (J 3 ) ′ 2π[x 2 3 + y 2 1 + (z 3 -z 1 ) 2 ] dx 3 dz 3 = J 3 (0) 2 - y 1 J 3 (L) 2 L 2 + y 2 1 + L 0 y 1 (J 3 ) ′ 2 x 2 3 + y 2 1 dx 3 .
Notons que l'intégration par parties est indispensable car elle conduit à la fonction, y 1 / x 2 3 + y 2 1 , plus régulière pour y 1 → 0 et x 3 → 0. C'est la régularité des fonctions à intégrer qui nous impose la démarche de l'intégration par parties.

Pour j = 4, r 2 = (H -y 1 ) 2 + x 2 4 + (z 1 -z 4 ) 2 , cos(θ 1 ) = x 4 /r et cos(θ 4 ) = (H -y 1 )/r. I 4 = L 0 +∞ -∞ J 4 x 4 (H -y 1 ) πr 4 dx 4 dz 4 = J 4 (0) 2 - (H -y 1 )J 4 (L) 2 L 2 +(H -y 1 ) 2 + L 0 (H -y 1 )(J 4 ) ′ 2 x 2 4 +(H -y 1 ) 2 dx 4 .
De manière analogue,

(J 2 ) l = (E 2 ) l +(1-ε 2 )(I 1 +I 3 +I 4 ) avec I 1 = H 0 J 1 L 2 2[(y 1 -y 2 ) 2 +L 2 ] 3/2 dy 1 , I 3 = J 3 (L) 2 - y 2 J 3 (0) 2 L 2 +y 2 2 - L 0 y 2 (J 3 ) ′ 2 (L-x 3 ) 2 +y 2 2 dx 3 et I 4 = J 4 (L) 2 - (H -y 2 )J 4 (0) 2 L 2 + (H -y 2 ) 2 - L 0 (H -y 2 )(J 4 ) ′ 2 (L -x 4 ) 2 + (H -y 2 ) 2 dx 4 . (J 3 ) l = (E 3 ) l + (1 -ε 3 )(I 1 + I 2 + I 4 ) avec I 1 = J 1 (0) 2 - x 3 J 1 (H) 2 H 2 +x 2 3 + H 0 x 3 (J 1 ) ′ 2 x 2 3 +y 2 1 dy 1 , I 2 = J 2 (0) 2 - (L -x 3 )J 2 (H) 2 H 2 +(L-x 3 ) 2 + H 0 (L -x 3 )(J 2 ) ′ 2 (L -x 3 ) 2 + y 2 2 dy 2 et I 4 = L 0 J 4 H 2 2[(x 3 -x 4 ) 2 + H 2 ] 3/2 dx 4 . (J 4 ) l = (E 4 ) l + (1 -ε 4 )(I 1 + I 2 + I 3 ) avec I 1 = J 1 (H) 2 - x 4 J 1 (0) 2 H 2 + x 2 4 - H 0 x 3 (J 1 ) ′ 2 x 2 4 + (H -y 1 ) 2 dy 1 , I 2 = J 2 (H) 2 - (L -x 4 )J 2 (0) 2 H 2 + (L -x 4 ) 2 - H 0 (L -x 4 )(J 2 ) ′ 2 (L -x 4 ) 2 + (H -y 2 ) 2 dy 2 et I 3 = L 0 J 3 H 2 2[(x 3 -x 4 ) 2 + H 2 ] 3/2 dx 3 .
En résumé, la formulation présentée par l'équation (2) est modifiée par l'intégration par parties lorsque la fonction cos(θ i ) cos(θ j )/r 2 n'est pas régulière. L'intégration par parties fait apparaître une fonction plus régulière dans les intégrales d'une part et d'autre part dans la dérivée première des J j et les valeurs des J j aux bords des S j .

Implémentations numériques

Afin de montrer la faisabilité et l'avantage de la nouvelle formulation radiative, nous avons réalisé deux implémentations numériques : l'une en méthodes spectrales de collocation Chebyshev et l'autre en schéma compact des différences finies d'ordre 4. Les méthodes spectrales de collocation Chebyshev et celles des différences finies schéma compact d'ordre 4 sont connues pour la résolution des équations de Navier-Stokes, les détails omises ici se trouvent dans [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Canuto | Spectral Methods in fluid dynamics[END_REF][START_REF] Peyret | Spectral Methods for incompressible viscous flows[END_REF][START_REF] Quéré | An improved Chebyshev collocation algorithm for direct simulation of 2D turbulent convection in differentially heated cavities[END_REF][START_REF] Xin | An extended chebyshev pseudo-spectral benchmark for the 8 :1 differentially heated cavity[END_REF][START_REF] Knikker | Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows[END_REF][START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF].

Méthodes spectrales de collocation Chebyshev

Le champ de température est défini dans la partie Navier-Stokes sur les N + 1 points de collocation de Gauss-Lobatto. Les J i , E i et (q r ) i sont définies dans la partie radiative sur les N r points de Gauss avec N r < N car un maillage plus grossier peut être utilisé en rayonnement.

Dans ce sens, une matrice de passage est nécessaire pour passer les N + 1 valeurs des E i aux N r valeurs sur les points de Gauss. Les (q r ) i définies sur les N r points de Gauss doivent être passées aux N + 1 points de Gauss-Lobatto où les conditions aux limites thermiques sont imposées. Ces passages se font facilement à l'aide des matrices de passage physique-spectrale et des matrices de passage spectrale-physique modifiées : les matrices de passage physiquespectrale permettent d'obtenir les coefficients spectraux des polynômes de Chebyshev à partir des valeurs connues aux points de Gauss ou Gauss-Lobatto ; la connaissance des coefficients spectraux autorise l'évaluation de chaque polynôme de Chebyshev à des points quelconques ; la combinaison des matrices de passage physique-spectrale et des matrices de passage spectralephysique modifiées fournit des matrices rectangulaires permettant de passer aisément de l'une série de valeurs à l'autre. De la même manière, la modification des matrices de passage permet de calculer les valeurs de J i aux bords du domaine à partir des valeurs aux points de Gauss.

Afin d'obtenir le système discret de la nouvelle formulation, il reste à évaluer les différentes intégrales. Malheureusement pour les polynômes de Chebyshev, les quadratures de Gauss ne peuvent pas être utilisées à cause de la fonction poids différente de 1. Le remède consiste à obtenir d'abord les coefficients spectraux de la quantité connue aux points de collocation et intégrer ensuite chaque polynôme de Chebyshev. Les coefficients spectraux s'obtiennent à l'aide de la matrice de passage physique-spectrale et l'intégration des polynômes de Chebyshev est analytique :

1 -1 cos[narcos(x)]dx est égale à 0 pour n impair et à 2/(1 -n 2 ) pour n pair. Pour n variant de 0 à N r -1, ceci donne un vecteur Int = (2, 0, -2/3, 0, -2/15, • • • , 0, 2/[1 - (N r -2) 2 ]
, 0) pour N r pair. Un changement de variable est nécessaire lorsque le domaine d'intégration est différent de [-1, 1]. La combinaison de Int et de la matrice de passage physiquespectrale produit un nouveau vecteur ligne, Ĩ nt, permettant de réaliser directement des intégrations numériques. Toutesfois l'évaluation des intégrales de la nouvelle formulation est un peu plus complexe. Prenons (J 1 ) l comme exemple, le calcul de I 2 nécessite d'intégrer J 2 L 2 /{2[(y 1y 2 ) 2 + L 2 ] 3/2 } et le vecteur ligne Ĩ nt sera modifié en post-multiplication par une matrice diagonale contenant les valeurs de L 2 /{2[(y 1 -y 2 ) 2 + L 2 ] 3/2 } aux points de Gauss, c'est ce vecteur ligne modifié qui contient les coefficients à utiliser pour former le système matriciel. L'intégrale contenue dans I 3 se fait avec la modification de Ĩ nt en post-multiplication d'abord par une matrice diagonale contenant les valeurs de y 1 /{2 x 2 3 + y 2 1 } aux points de Gauss et ensuite par la matrice de dérivation première, le résultat reste un vecteur ligne et sera utilisé pour former le système matriciel. Le même principe est utilisé pour l'évaluation des autres intégrales et surtout pour former le système matriciel portant sur les J i aux points de collocation de Gauss, A[J] = [E] où [E] le vecteur émission propre aux points de Gauss a la dimension de 4N r et est obtenu des valeurs connues aux points de Gauss-Lobatto, [J] le vecteur de dimension 4N r contient la solution des J i aux points de Gauss et A de dimension 4N r × 4N r est la matrice formée. [J] s'obtient par une méthode directe,

[J] = A -1 [E]. Malgré [q r ] = ε 1 -ε ([J] -[E]), la formule [q r ] = [J] -[I], également valable pour ε = 1
(surface noire), est préférée. Les différents vecteurs utilisés pour construire A servent aussi à établir B et à calculer

[q r ] (= B[J]). Comme [J] = A -1 [E], [q r ] = B[J] = BA -1 [E] : la construction de BA -1 permet de calculer directement [q r ] sans avoir [J].

Différences finies schéma compact d'ordre 4

La méthode de différence finies est basée sur des schémas compacts d'ordre 4 et utilise un maillage décalé où la température est au centre des cellules. Le maillage est non uni-forme et la variation de la taille des cellules est assurée par une transformation des coordonnées cartésiennes (x, y) aux coordonnées dans l'espace de calcul (i, j) où le maillage est régulier, ∆i = ∆j = 1. Les frontières des cellules du maillage sont ici définies par x i+1/2 = 1 2 L(1 + tanh(γ(2i -1 -N)/N)/ tanh(γ)) avec γ = 1.5 et 0 ≤ i ≤ N. Notons que seules les expressions en x sont détaillées, celles en y étant similaires. Afin de résoudre le problème de rayonnement de surface, nous allons supposer que la température est connue sur la frontière du domaine de calcul. Ceci est obtenu par l'extrapolation de la température au centre des cellules en utilisant un schéma compact d'ordre 4, qui s'écrit pour une variable quelconque f :

4 f 1/2,j + 20 f 3/2,j = 15 f 1,j + 10 f 2,j -f 3,j f i-1/2,j + 6f i+1/2,j + f i+3/2,j = 4(f i+1,j -f i,j ) 4 f N +1/2,j + 20 f N -1/2,j = 15 f N,j + 10 f N -1,j -f N -2,j (3) 
où f i,j est au centre des cellules et f i+1/2,j est la valeur aux bords verticaux des cellules. Une deuxième application de ce schéma dans l'autre direction permet d'obtenir les valeurs f i+1/2,j+1/2 sur les coins des cellules. Le schéma (3) est aussi utilisé pour déterminer les valeurs de (J 3 ) i+1/2 et (J 4 ) i+1/2 à partir de (J 3 ) i et (J 4 ) i , et en particulier les valeurs de J 3 (0) = (J 3 ) 1/2 et J 3 (L) = (J 3 ) N +1/2 figurant dans les intégrales I 3 et I 4 pour S 1 . Ces intégrales contiennent aussi la dérivée spatiale de J 3 et de J 4 , qui est obtenue avec le schéma compact d'ordre 4 :

f ′ 1 -f ′ 2 = -f 1/2 + 2 f 3/2 -f 5/2 f ′ i-1 + 22 f ′ i + f ′ i+1 = 24 (f i+1/2 -f i-1/2 ) f ′ N -1 -f ′ N = -f N +1/2 + 2 f N -1/2 -f N -3/2 (4) 
où f ′ ≡ ∂f /∂i est la dérivée de f dans l'espace de calcul. La dérivée dans l'espace physique est obtenue par ∂f /∂x = f ′ (∂i/∂x) où les coefficients (∂i/∂x) sont déterminés en applicant le schéma (4) sur les coordonnées x i+1/2 . Afin de calculer les intégrales, un schéma de reconstruction est utilisé pour déterminer l'intégrale sur une cellule f i ≡ i i+1/2 i i-1/2 f di ′ à partir des valeurs ponctuelles f i . Ce schéma est obtenu en applicant le schéma (4) à la fonction primitive

F (i) = i 0 f (i ′ )di ′ avec F ′ i = f i et f i = F i+1/2 -F i-1/2 , ce qui donne : f 1 -f 2 = f 1 -f 2 f i-1 + 22 f i + f i+1 = 24 f i f N -1 -f N = f N -1 -f N (5) 
Ce schéma peut être écrit sous la forme matricielle C li f i = D li f i . L'intégration numérique peut ensuite être obtenue par sommation,

L 0 f dx = i N+1/2 i 1/2 f (∂x/∂i)di = N i=1 f i (∂x/∂i) i = N i=1 w i f i (∂x/∂i) i où w i sont les poids définis par w i = N l=1 (D -1 C) li ce qui donne w 1 = w N = 26/24, w 2 = w N -1 = 21/24, w 3 = w N -2 = 25/24 et w i = 1 pour 4 < i < N -3.
Cette intégration numérique est semblable à la méthode de Simpson composite avec le même ordre de précision formel de 4. L'ensemble d'équations (3), ( 4) et (5) permet donc de déterminer les intégrales I k à partir des radiosités J k . Identique à la méthode spectrale, les valeurs de (J 1 ) j , (J 2 ) j , (J 3 ) i et (J 4 ) i sont regroupées dans le vecteur [J] et (E 1 ) j , (E 2 ) j , (E 3 ) i et (E 4 ) i dans le vecteur [E]. La forme discrète de l'Eq. (2) s'écrit alors A[J] = [E], où la matrice A contient les facteurs de multiplication pour (J k ) l resultant des opérateurs d'interpolation, de différentiation et d'integration décrits ci-dessus.

Résultats

Dans ce qui suit, nous présentons seulement les résultats obtenus pour une cavité carrée (H = L) à Ra = 10 4 . Les propriétés thermophysiques de l'air sont prises à T 0 = (T h + T c )/2 = 293.5 K et p 0 = 101325 Pa. Nous avons donc P r = 0.71, gβ/(αν) = 108 K -1 cm -3 et λ = 0.025 Wm -1 K -1 . Les parois de la cavité ont une émissivité de ε = 0.2. À Ra = 10 4 , les H et ∆T utilisés sont respectivement de 0.021 m et de 9.998120 K.

Les résultats numériques présentés concernent seulement les nombres de Nusselt globaux (moyennés sur chaque paroi) : il s'agit des densités de flux définies dans les directions du système des coordonnées et rendues sans dimension par λ∆T /H. Concernant le comportement des implémentations numériques, Nu c et Nu r globaux sur les quatre parois sont listés dans les Tableaux 1 and 2. Le Tableau 1 détaille les résultats des méthodes spectrales Chebyshev et le Tableau 2 ceux obtenus par l'implémentation de la nouvelle formulation en différences finies schéma compact d'ordre 4. N r < N a été testé en méthodes spectrales Chebyshev tandis que N r = N est conservé en différences finies. La nouvelle formulation du rayonnement de surface, mise en oeuvre numériquement en couplage avec la convection naturelle dans une cavité carrée, montre un bon comportement de convergence : les deux implémentations fournissent des résultats convergés qui disposent au moins six (6) chiffres significatifs. Il est important de souligner la convergence de Nu pour N r < N (Tableau 1) : N r = 5 a permis d'avoir quatre (4) chiffres significatifs ; six (6) chiffres significatifs obtenus avec N r = 10 semblent indiquer une convergence spectrale. Cela confirme l'observation que le rayonnement de surface a besoin des résolutions spatiales plus faibles [START_REF] Xin | Méthode de collocation Chebyshev pour le couplage entre la convection naturelle en cavité remplie d'air et le rayonnement pariétal[END_REF], ce qui est un point très intéressant pour de futures implémentations 3D. Figure 2 

Conclusions

Dans le but de disposer des méthodes d'ordre élevé pour le couplage de la convection naturelle avec le rayonnement dans une cavité 2D remplie d'air, nous avons proposé une formulation du rayonnement de surface et mis en oeuvre deux implémentations numériques, l'une en méthodes spectrales Chebyshev et l'autre en différences finies d'ordre 4. Les résultats obtenus pour une cavité carrée ont montré le bon comportement de convergence en ordre, ce qui donne la perspective de fournir des solutions de référence à des problèmes de benchmark 2D en couplage convection naturelle-rayonnement de surface.

La suite naturelle du présent travail sera la proposition des problèmes de benchmark 2D et des solutions de référence et l'implémentation numérique en 3D de la nouvelle formulation.

  présente d'une manière différente les résultats des différences finies d'ordre 4 listés dans le Tableau 2 : l'extrapolation de Richardson est utilisée pour obtenir les solutions de référence et calculer les erreurs commises à faibles résolutions spatiales. La figure montre que la nouvelle formulation fournit des résultats d'ordre 4, tandis que l'implémentation directe de l'équation (2) n'est même pas d'ordre 2 ! Les erreurs importantes et la convergence lente de l'implémentation directe de l'équation (2) sont dues à l'irrégularité de la fonction cos θ i cos θ j /r 2 et témoignent l'intérêt et le fondement de la nouvelle formulation qui permet en plus de différentes implémentations d'ordre élevé. N u c = -N u r N u c = -N u r

  }, est très régulière et il ne reste plus qu'à trouver la quadrature numérique afin d'évaluer I 2 .

  Nombres de Nusselt en fonction de la résolution spatiale pour Ra = 10 4 . Résultats des méthodes spectrales Chebyshev.

	5065174 2.267361 0.4985713	0.1798514	0.1722934
	20 10 2.259785 0.5064366 2.267551 0.4986663	0.1791427	0.1713693
	40 10 2.259419 0.5064360 2.267190 0.4986661	0.1791424	0.1713694
	40 20 2.259399 0.5064390 2.267170 0.4986665	0.1791445	0.1713717
	60 20 2.259331 0.5064390 2.267103 0.4986665	0.1791445	0.1713717
	60 30 2.259331 0.5064393 2.267103 0.4986666	0.1791444	0.1713717
	Tableau 1		
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