

Benchmark solution of 3D natural convection flows with surface radiation in air-filled cavity

Liyuan Hu, Shihe Xin, Yvonne Chávez Chenaa, Jalel Chergui, Patrick Le

Quéré

To cite this version:

Liyuan Hu, Shihe Xin, Yvonne Chávez Chenaa, Jalel Chergui, Patrick Le Quéré. Benchmark solution of 3D natural convection flows with surface radiation in air-filled cavity. Second International conference on computational methods for thermal problems, Sep 2011, Dalian, China. hal-01282536

HAL Id: hal-01282536 <https://hal.science/hal-01282536>

Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BENCHMARK SOLUTION OF 3D NATURAL CONVECTION FLOWS WITH SURFACE RADIATION IN AIR-FILLED CAVITY

Liyuan Hua,b, Shihe Xina*, Yvonne Chávez Chena^a , Jalel Chergui^c , Patrick Le Quéré^c

a INSA-Lyon,Cethil,UMR5008,20 av.Albert Einstein 69621 Villeurbanne, France ^bInst. of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, 200240,P.R.China ^cLIMSI-CNRS, BP 133,91403 Orsay, France *Correspondence author: Fax: +00 33 472438811, Email: shihe.xin@insa-lyon.fr

ABSTRACT

A benchmark problem of 3D natural convection/surface radiation coupling in an air-filled square cavity is investigated. The benchmark problem and reference solutions are provided for $Ra=10^4,10^5$ and 10⁶. The relationship between the two spatial resolutions (one for the Navier-Stokes and another for the surface radiation) is also discussed.

Key Words: *Natural Convection, Surface Radiation, Benchmark Problem*

1. INTRODUCTION

Natural convection in an air-filled square cavity became a reference problem for validating the CFD codes after the pineering work of De Vahl Davis [1]. There was still no benchmark problem in an air-filled cavity for the coupling of natural convection with surface radiation in 3D cases, and it is difficult to validate the parallel 3D code developed [2]. Colomer *et al.* [3] have provided the 3D simulation results of convection and radiation in a differentially heated cavity, but according to the dimensionless parameters that he supplied, it is hard to determine the values of physical quantities such as averaged temperature T_0 temperature difference ΔT , cavity height H and so on. The aim of this work is to provide the reference solutions on the purpose of validating numerical procedures developed for investigating the interaction of natural convection with surface radiation.

2. NUMERICAL METHODS AND BENCHMARK PROBLEMS

Spectral methods and MPI (Message Passing Interface) are used for both natural convection and surface radiation. Parallel DNS is performed for the coupling laminar natural convection with surface radiation in air-filled cavities. Parallel multi-domain has been implemented by using influence matrix technique for constructing Schur complement [2].

The Benchmark problem concerns a 3D air-filled cubic cavity of height H, width W and depth D, which is an extension of the 2D benchmark problem [2]. Air in the cavity is considered as a transparent medium. The two vertical walls at $x=0$ and W are maintained at constant but different temperatures (T_h, T_c and $\Delta T = T_h - T_c$) and other walls are adiabatic with the convection-radiation balance. No slip condition is applied on the cavity walls. Buoyancy-driven air flow in the cavity is governed by the Navier-Stokes equations under Boussinesq assumption. The representative parameters are the geometrical aspect ratios $A_x=H/W$ and $A_y=D/H(A_x=A_y=1)$, Prandtl number, Pr= v/α =0.71, and Rayleigh number, Ra=(g $\beta\Delta TH^3$) /(v α). The six cavity walls (grey, diffuse and opaque) have the same emissivity, ε =0.1. T_0 (=(T_h+T_c)/2) is set to 293.5K, then λ at T is $0.025W/(m.K)$. g $\frac{\beta}{\sqrt{k}}=1.08E8$.Table 1 displays the values of H and ΔT corresponding to each Rayleigh number investigated.

THERMACOMP2011, September 5-7, 2011, Dalian, China *X.K.Li, N.Massarotti and P.Nithiarasu (Eds*.*)*

TABLE 1. Ra investigated and the corresponding H and ΔT

3. RESULTS

At first, the simulation results are compared with that in [3](TABLE 2).Although Colomer *et al*. [3] did not give the clear physical parameters, we can estimate the value of ΔT according to the values of Ra, Pl, and Tc/ ΔT . The estimated value of ΔT is 17.954K in case of T_0 =278.29K, accordingly, H=0.03369m. TABLE 2 shows that our simulation results agree well with that of Colomer *et al.* [3]. For $w_{max}(z=0.5)$, the sum of two y values approaches to 1 because the fluid field is symmetrical along y direction.

	$U_{\text{max}}(x=0.5)$		z	$W_{\text{max}}(z=0.5)$	X		Hot Nu	Hot Nu_{u}
Colomer <i>et al.</i> [3]	0.1869	0.285	0.869	0.2865	0.069	0.115	3.983	3.385
simulated	0.1874	0.2815	0.8746	0.2890	0.0744	0.8813	3.9761	3.6471

TABLE 2. Local extreme values for velocity and average Nusselt numbers in hot wall($Ra=10^5$, $Pl = 0.043$, $Tc/\Delta T = 15$, $\varepsilon = 1$ and $Pr = 0.71$)

TABLE 3 shows average convection Nusselt numbers, maximum and minimum velocity and their positions when $y=0.5$ at Ra= 10^4 . Numerical results are compatible with that in 2D cases [2]. It indicates that (Ni^*Nj^*Nk) _r has almost no influence and they can be considered as converged solutions. Convection Nusselt numbers are more sensible to $(Ni*Nj*Nk)_{NS}$. TABLE 4 lists average Nusselt numbers in planes, maximum velocity in the cavity and their positions at $Ra=10^4$. Numerical results also indicate that coarser $(Ni*Nj*Nk)$ _r can be used as is shown in 2D cases [2]. TABLE 5 and 6 lists the numerical solutions in planes and in the cavity at Ra = 10^5 and Ra= 10^6 .

$(Ni*Nj*Nk)_{NS}$	$32*32*8$			48*48*12		
$(Ni*Nj*Nk)_{r}$	$16*16*4$	$32*32*8$	48*48*12	$16*16*4$	$24*24*6$	48*48*12
Nu_c Hot	$2.2493E+00$	$2.2492E + 00$	$2.2492E + 00$	$2.2486E + 00$	$2.2486E + 00$	$2.2486E+00$
Nu_c W/2	$2.3151E+00$	$2.3152E + 00$	$2.3152E + 00$	$2.3152E+00$	2.3152E+00	$2.3152E + 00$
Nu_c Cold	2.2549E+00	$2.2549E + 00$	$2.2549E + 00$	$2.2543E+00$	$2.2543E+00$	$2.2543E+00$
$W/2 U_{max}$	1.6967E-01	1.6967E-01	1.6967E-01	1.6967E-01	1.6967E-01	1.6967E-01
Z	8.2796E-01	8.2796E-01	8.2796E-01	8.2796E-01	8.2796E-01	8.2796E-01
$W/2$ U _{min}	$-1.6979E-01$	$-1.6979E-01$	$-1.6979E-01$	$-1.6979E-01$	$-1.6979E - 01$	$-1.6979E-01$
z	1.7186E-01	1.7186E-01	1.7186E-01	1.7185E-01	1.7185E-01	1.7185E-01
$H/2$ W _{max}	1.8774E-01	1.8774E-01	1.8774E-01	1.8774E-01	1.8774E-01	1.8774E-01
X	1.1651E-01	1.1651E-01	1.1651E-01	1.1653E-01	1.1653E-01	1.1653E-01
$H/2$ W _{min}	$-1.8796E - 01$	$-1.8796E-01$	$-1.8796E-01$	$-1.8796E - 01$	$-1.8796E-01$	$-1.8796E-01$
X	8.8353E-01	8.8353E-01	8.8353E-01	8.8355E-01	8.8355E-01	8.8355E-01

TABLE 3. Benchmark solutions at $Ra=10^4$ in a cubic cavity (y=0.5)

THERMACOMP2011, September 5-7, 2011, Dalian, China *X.K.Li, N.Massarotti and P.Nithiarasu (Eds*.*)*

$(Ni*Nj*Nk)_{NS}$	32*32*8			48*48*12			
$(Ni*Nj*Nk)$ _r	$16*16*4$	32*32*8	48*48*12	$16*16*4$	24*24*6	48*48*12	
Nu_{c} Hot	2.0914E+00	2.0913E+00	2.0913E+00	2.0907E+00	2.0907E+00	2.0906E+00	
Nu_{c} W/2	1.9541E+00	1.9541E+00	1.9541E+00	1.9541E+00	1.9541E+00	1.9541E+00	
Nu_{c} Cold	2.0973E+00	2.0972E+00	2.0972E+00	2.0966E+00	2.0966E+00	2.0966E+00	
Nu_r Hot	2.2754E-01	2.2747E-01	2.2746E-01	2.2754E-01	2.2749E-01	2.2746E-01	
Nu_r Cold	2.2160E-01	2.2154E-01	2.2153E-01	2.2160E-01	2.2156E-01	2.2153E-01	
Nu_r Front	$-1.7197E-03$	$-1.7195E-03$	$-1.7195E-03$	$-1.7197E-03$	$-1.7196E-03$	$-1.7195E-03$	
Nu_r Rear	1.7197E-03	1.7195E-03	1.7195E-03	1.7197E-03	1.7196E-03	1.7195E-03	
Nu_r Bottom	$-8.2632E-02$	$-8.2632E - 02$	$-8.2632E-02$	$-8.2633E-02$	$-8.2633E-02$	$-8.2633E-02$	
Nu_r Top	$-8.0132E - 02$	$-8.0132E - 02$	$-8.0132E-02$	$-8.0132E-02$	$-8.0133E-02$	$-8.0133E-02$	
$U_{\hbox{\scriptsize max}}$	1.6987E-01	1.6987E-01	1.6987E-01	1.6987E-01	1.6987E-01	1.6987E-01	
$\mathbf X$	5.1791E-01	5.1791E-01	5.1791E-01	5.1791E-01	5.1791E-01	5.1791E-01	
y	5.0000E-01	5.0000E-01	5.0000E-01	5.0000E-01	5.0000E-01	5.0000E-01	
z	8.2670E-01	8.2670E-01	8.2670E-01	8.2672E-01	8.2672E-01	8.2672E-01	
V_{max}	2.1908E-02	2.1908E-02	2.1908E-02	2.1909E-02	2.1909E-02	2.1909E-02	
$\mathbf X$	1.1926E-01	1.1926E-01	1.1926E-01	1.1926E-01	1.1927E-01	1.1926E-01	
y	7.8080E-01	7.8080E-01	7.8080E-01	7.8081E-01	7.8081E-01	7.8082E-01	
z	1.5452E-01	1.5452E-01	1.5452E-01	1.5448E-01	1.5447E-01	1.5447E-01	
W_{max}	1.9105E-01	1.9105E-01	1.9105E-01	1.9105E-01	1.9105E-01	1.9105E-01	
$\mathbf X$	1.1774E-01	1.1774E-01	1.1774E-01	1.1773E-01	1.1773E-01	1.1773E-01	
y	7.2637E-01	7.2637E-01	7.2637E-01	2.7362E-01	2.7362E-01	2.7361E-01	
$\mathbf{Z}% ^{T}=\mathbf{Z}^{T}\times\mathbf{Z}^{T}$	4.8360E-01	4.8358E-01	4.8358E-01	4.8358E-01	4.8358E-01	4.8358E-01	

TABLE 4. Benchmark solutions at $Ra=10^4$ in a cubic cavity

$(Ni*Nj*Nk)r$	$24*24*6$	48*48*12	24*24*6	48*48*12
$D/2$ U_{max}	1.4646E-01	1.4646E-01	1.4493E-01	1.4493E-01
$\mathbf X$	3.2116E-01	3.2116E-01	1.9983E-01	1.9983E-01
Z	8.8920E-01	8.8920E-01	9.4030E-01	9.4030E-01
$D/2$ $\underline{W_{max}}$	2.0862E-01	2.0862E-01	2.1892E-01	2.1892E-01
X	6.4433E-02	6.4433E-02	3.7136E-02	3.7136E-02
Z	5.0388E-01	5.0388E-01	4.8592E-01	4.8592E-01
Hot Nu _{cmax}	8.9824E+00	8.9753E+00	1.8685E+01	1.8666E+01
v	4.9999E-01	4.9999E-01	7.8530E-01	7.8541E-01
z	$0.0000E + 00$	$0.0000E + 00$	$0.0000E + 00$	$0.0000E + 00$
$W/2$ Nu _{cmax}	$1.1247E + 01$	$1.1247E + 01$	$2.5672E + 01$	2.5672E+01
V	6.3992E-01	6.3995E-01	7.7637E-01	7.7637E-01
Z	8.7567E-01	8.7567E-01	1.1460E-01	1.1462E-01
Cold Nu _{cmax}	8.9710E+00	8.9642E+00	1.8684E+01	1.8666E+01
V	4.9999E-01	4.9999E-01	2.5770E-01	7.4233E-01
Z	1.0000E+00	$1.0000E + 00$	1.0000E+00	1.0000E+00
Hot Nu _{rmax}	5.3527E-01	5.3530E-01	1.1566E+00	1.1566E+00
y	5.0004E-01	5.0000E-01	5.0004E-01	5.0000E-01
z	2.8060E-01	2.8050E-01	2.3773E-01	2.3753E-01

TABLE 5. Benchmark solutions at Ra= 10^5 and 10^6 in a cubic cavity ((Ni*Nj*Nk)_{NS}=48*48*12)

THERMACOMP2011, September 5-7, 2011, Dalian, China X.K.Li, N.Massarotti and P.Nithiarasu (Eds.)

$(Ni*Nj*Nk)r$	24*24*6	48*48*12	24*24*6	48*48*12
Nu_c Hot	4.2726E+00	4.2726E+00	8.3238E+00	8.3237E+00
Nu_c W/2	4.0964E+00	4.0964E+00	8.1167E+00	8.1168E+00
Nu_c Cold	4.2848E+00	4.2848E+00	8.3500E+00	8.3499E+00
Nu_r Hot	5.1519E-01	5.1514E-01	1.1172E+00	1.1171E+00
Nu_r Cold	5.0300E-01	5.0295E-01	1.0904E+00	1.0903E+00
Nu_r Front	$-3.8124E-03$	$-3.8123E-03$	$-8.5169E-03$	$-8.5167E-03$
Nu_r Rear	3.8124E-03	3.8123E-03	8.5169E-03	8.5167E-03
Nu_r Bottom	$-2.3525E-01$	$-2.3524E - 01$	$-5.4921E-01$	$-5.4920E - 01$
Nu_r Top	$-2.3066E - 01$	$-2.3066E - 01$	$-5.3942E - 01$	$-5.3941E-01$
$U_{\underline{max}}$	1.4914E-01	1.4914E-01	1.4784E-01	1.4784E-01
$\mathbf X$	3.2282E-01	3.2282E-01	2.0535E-01	2.0535E-01
y	2.7687E-01	2.7687E-01	7.9359E-01	7.9359E-01
Z	8.9243E-01	8.9243E-01	9.4072E-01	9.4072E-01
$\rm V_{\rm max}$	3.3471E-02	3.3471E-02	3.2452E-02	3.2452E-02
$\mathbf X$	8.5880E-02	8.5880E-02	5.5735E-02	5.5746E-02
y	8.3668E-01	8.3668E-01	8.9530E-01	8.9530E-01
z	1.1297E-01	1.1297E-01	6.6302E-02	6.6288E-02
$W_{\underline{max}}$	2.2834E-01	2.2834E-01	2.4122E-01	2.4122E-01
$\mathbf X$	7.0803E-02	7.0803E-02	4.0173E-02	4.0173E-02
V	8.7281E-01	8.7281E-01	7.0221E-02	7.0232E-02
Z	5.0324E-01	5.0324E-01	4.7692E-01	4.7692E-01

TABLE 6. Benchmark solutions at Ra= 10^5 and 10^6 in a cubic cavity ((Ni*Ni*Nk)_{NS}=48*48*12)

4. CONCLUSIONS

Benchmark solutions are provided for $Ra=10^4,10^5$ and 10^6 by code coupling between Navier-stokes and surface radiation parallel codes. The simulation results indicate that $(Ni*Nj*Nk)$ _r can be coarser than $(Ni*Nj*Nk)_{NS}$ in 3D cases.

REFERENCES

- [1] G. de Vahl Davis and I.P. Jones, Natural convection in a square cavity: a comparison exercise, Int. J. Num. Mech. in fluids, 3, 227-248, 1983.
- [2] S.Xin, Benchmark problem of natural convection coupled with surface radiation in an air-filled square cavity: Part I Chebyshev collocation methods, *submitted to Int. J Therm. Sciences*, 2011.
- [3] G. Colomer, M. Costa, R. Consul and A. Oliva, Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method, Int. J Heat & Mass Trans., 47(2), 257-269, 2004.