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Introduction

Source identication methods like Near-eld Acoustic Holography [START_REF] Williams | Sound source reconstructions using microphone array[END_REF][START_REF] Maynard | Neareld acoustic holography: I. Theory of generalized holography and the development of NAH[END_REF] aim to locate a source of noise or to reconstruct its vibratory eld. The diversity of applications in this eld of research has caused to develop several dierent methods with their own domain of validity (acoustic environment, frequency range, shape of the source, etc.) and their own experimental setup (synchronous or sequential measurements, microphones antennas, etc.). Despite the number of existing methods, there are still some issues for industrial applications. Measurements in non-anechoic conditions, reconstruction of elds on 3D sources, eld separation are some of the diculties that still slow down the industrial (c) European Acoustics Association applications. The present paper deals with a way to develop new source identication methods based on the use of Green's identity. Green's identity is a well-known technique to solve problems in acoustics. Two dierent developments will be shown here to illustrate the possibilities of the Green's identity in the framework of inverse methods. These developments, called u-iPTF [START_REF] Aucejo | Identication of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method[END_REF][START_REF] Totaro | Sound elds separation and reconstruction of irregularly shaped sources[END_REF] (inverse Patch Transfer Functions with uniform boundary conditions) and m-iPTF (inverse Patch Transfer Functions with mixed boundary conditions) have several advantages: (i) the properties of the Green's identity ensure the deconnement of the source from its acoustic environment (ii) the judicious choice of the associate problem opens a lot of development possibilities (iii) the use of a numerical solver permits to treat irregularly shaped sources (iv) the source is fully characterized (pressure, normal velocity, normal intensity elds, acoustic power, radiation eciency). These examples of developments using Green's identity will be presented and illustrated by a numerical example and experimental applications.

Green's identity in acoustics

Let's take the classical case presented in Fig. 1 of a baed structure radiating in any acoustic environment. In this acoustic environment, some other (stationnary) sources may contribute to the noise measured at point N. To compute the pressure at point N, one can use the Green's identity. This well known method is extensively used in acoustics to compute the pressure anywhere in an acoustic volume knowing pressure and particle velocity elds at boundaries. In the case of Fig. 1 there is no strictly speaking acoustic volume, just an (semi-innite) acoustic environment. In fact, in Green's identity, there is no need of a "real" acoustic volume, a "virtual" volume suits well. Let's dene a "virtual" acoustic volume Ω containing the point N and the vibrating surface Σ and excluding other sources as presented in Fig. 2. Obviously, the pressure and particle velocity elds on the "virtual" surface Σ are due to the contribution of the radiating surface Σ and to the contribution of all other sources, reections, absorption outside the volume Ω. Let's consider that the pressure and the particle velocity are continuously known on surfaces Σ (vibrating surface), Σ (physically rigid surface) and Σ ("virtual" surface).

Then, the Green's identity writes

Ω (∆p(N ) + k * 2 p(N ))Φ(N )dN = Ω (∆Φ(N ) + k * 2 Φ(N ))p(N )dN + Σ p(Q) ∂Φ(Q) ∂n -Φ(Q) ∂p(Q) ∂n dQ + Σ p(Q ) ∂Φ(Q ) ∂n -Φ(Q ) ∂p(Q ) ∂n dQ + Σ p(Q ) ∂Φ(Q ) ∂n -Φ(Q ) ∂p(Q ) ∂n dQ , (1) 
Figure 2. Denition of a "virtual" volume Ω and its boundary surfaces Σ, Σ and Σ for the application of Green's identity.

where k * = k(1 -jη) is the complex wavenumber, with η is the damping loss factor and n is the outward normal. The boundary conditions are prescribed by the pressure and particle velocity on the surfaces Σ, Σ and Σ . In addition, the Euler relation gives

∂p(Q) ∂n = -jωρ 0 V n (Q) ∀Q ∈ Σ, (2) 
∂p(Q ) ∂n = 0 ∀Q ∈ Σ , (3) 
∂p(Q ) ∂n = -jωρ 0 V n (Q ) ∀Q ∈ Σ , (4) 
where V n (Q) is the normal velocity at point Q, ω is the angular frequency and ρ 0 is density of air. In addition, if there is no source inside the volume Ω, then the pressure p(N ) is given by the Helmholtz equation

∆p(N ) + k * 2 p(N ) = 0 ∀N ∈ Ω. (5) 
Considering Eqs. ( 1) to ( 5), one can write

- Ω (∆Φ(N ) + k * 2 Φ(N ))p(N )dN = + Σ p(Q) ∂Φ(Q) ∂n + jωρ 0 V n (Q)Φ(Q)dQ + Σ p(Q ) ∂Φ(Q ) ∂n + Σ p(Q ) ∂Φ(Q ) ∂n dQ + Σ jωρ 0 V n (Q )Φ(Q )dQ . (6) 
The main interest of Green's identity is that the function Φ can be arbitrarily chosen provided that it is twice dierentiable. Let's choose Φ as a mode shape φ n (N ) of the equivalent nite volume Ω such as

∆φ n (N ) + k 2 n φ n (N ) = 0 ∀N ∈ Ω, (7) 
where k n is the natural wavenumber of mode n of the virtual acoustic volume Ω. Mode shapes φ n (N ) constitute an orthonormal basis of functions on which the pressure at point N can be decomposed

p(N ) = ∞ n=0 a n φ n (N ) (8) 
Introducing Eqs. ( 7) and (8) in Eq. ( 6) and using the orthonormal property of mode shapes, one obtains

p(N ) = ∞ n=1 φ n (N ) Λ n (k * 2 -k 2 n ) C n , (9) 
where

C n = Σ p(Q) ∂φ n (Q) ∂n dQ +jωρ 0 Σ V n (Q)φ n (Q)dQ + Σ p(Q ) ∂φ n (Q ) ∂n dQ + Σ p(Q ) ∂φ n (Q ) ∂n dQ +jωρ 0 Σ V n (Q )φ n (Q )dQ . (10) 
Eqs. ( 9) and (10) are valid whatever the boundary conditions of the "virtual" mode shapes φ n (N ). Depending on the chosen boundary conditions, some terms in Eq. (10) will be suppressed. Then, it has been here proven that the pressure at point N can be expressed using a "virtual" problem for which the boundary conditions can be arbitrarily chosen.

Acoustic radiation of an oil pan

A baed oil pan, shown in Fig. 3 is excited by a point force and radiates in an semi-innite acoustic environment.

Reference computation

A classical computation based on the use of innite elements has been done using ACTRAN software. An example of a pressure map is given in Fig. 4 Let's consider the modes shapes φ n (N ) with Neumann boundary conditions on surfaces Σ, Σ and Σ as

∂φ n (Q) ∂n = 0 ∀Q ∈ Σ ∪ Σ ∪ Σ (11) 
In that case, C n simplies to

C n = jωρ 0 Σ V n (Q)φ n (Q)dQ +jωρ 0 Σ V n (Q )φ n (Q )dQ , (12) 
and the pressure p(N ) at any point of the domain Ω is computed knowing the particle velocities on surfaces Σ and Σ only. One can see in Eq. ( 12) that the choice of a Neumann condition on surface Σ allows not to need to know information on this surface. This is actually due to the fact that the chosen boundary condition for the associate problem (the mode shapes) is the same as the real problem.

Green's function with mixed boundary condition

A second possibility is to consider the boundary condition on the surface Σ as a Dirichlet boundary condition. In that case,

∂φ n (Q) ∂n = 0 ∀Q ∈ Σ ∪ Σ (13) 
and

φ n (Q ) = 0 ∀Q ∈ Σ . (14) 
Thus, C n simplies to

C n = jωρ 0 Σ V n (Q)φ n (Q)dQ + Σ p(Q ) ∂φ n (Q ) ∂n dQ , (15) 
and the pressure p(N ) at any point in the domain Ω is computed knowing the particle velocity on surface Σ and pressure on surface Σ . However, in this formulation, one has to know the spatial derivative of the mode shapes expressed in terms of pressure. These are proportional to the modes shapes expressed in terms of particle velocity as

∂φ n (Q) ∂n = -jω n ρ 0 χ n (Q), (16) 
where χ n (Q) is the mode shapes of the virtual acoustic volume expressed in particle velocity. These mode shapes can be obtained with a numerical solver as ACTRAN.

Comparion of computations

The aim is here to verify if Eq. ( 12) (uniform conditions) and Eq. (15) (mixed conditions) permit to compute the pressure at point N by comparing the results to reference calculation presented in Fig. 4. For that purpose, the integrals are replaced by sums (discretisation of the surfaces) and the pressure and/or particle velocities on surfaces Σ and Σ are taken from reference calculation. The modes shapes φ n (N ) and its derivative ∂φn ∂n are computed using a numerical solver (ACTRAN) up to 5kHz on the virtual volume presented in Fig. 5. The pressures p(N ) obtained with the three computations are compared in Fig. 6 which demonstrates that Green's identity can be used to compute the pressure in a domain whatever the chosen boundary conditions. The slight discrepancies between curves are due to the discretisation of the problem and to the convergence of the modal sums. It is important to underline that neither the Neumann nor the Dirichlet boundary conditions are representative of the real conditions. This does not prevent the calculation. However, the convergence of the calculation seems to be quicker with Dirichlet condition.

Source reconstruction using

Green's identity

In both equations ( 12) and (15) the normal velocity of surface Σ appears. Let's consider now that this veloc- ity eld is unknown. If the pressure p(N ) is measured at several points, these equations can be inverted and the velocity eld can be identied. This is the principle of the method called inverse Patch Transfer Function [START_REF] Aucejo | Identication of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method[END_REF][START_REF] Totaro | Sound elds separation and reconstruction of irregularly shaped sources[END_REF]. This method corresponds here to the inversion of the Green's identity with Neumann boundary conditions. In this paper, it will be called u-iPTF. The other possibility, also presented here, will be called m-iPTF.

Uniform BC: u-iPTF

If the vibrating surface Σ is discretized into N s elementary surfaces called patches and the "virtual" sur-face Σ is discretized into N m patches, then, Eqs. ( 9) and ( 12 where pi and Vj are the space averaged pressure and particle velocity on patches i and j of surface Σ and Vl is velocity of patch l on surface Σ. Z ij is the acoustic impedance between patches i and j. In a matrix form, one obtains

pi = Z ij Vj + Z il Vl (18)
The velocities space averaged on patches l on the vibrating surface Σ can then be deduced using

Vl = Z -1 il pi -Z ij Vj (19)
The velocity eld on the surface of the source can be obtained measuring pressure and particle velocity on a virtual surface Σ . These colocated measurements can be done using pU probe. 9) and (15), the pressure at one point N in the domain can be expressed as

p(N ) = Nm j=1 Y * N j pj + Ns l=1 Z * N l Vl (20) 
If the pressure is measured at several points in the cavity, Eq. ( 20) can be written in a matrix form

p i = Y * ij pj + Z * il Vl
(21) Finally, the velocity eld on the source is obtained by

Vl = Z * -1 il p i -Y * ij pj (22) 
Compared to Eq. ( 19), the velocity eld Vl is obtained measuring the pressure on the virtual surface Σ and at several points in the domain Ω. In addition, impedance Z * il and the admittance Y * ij are computed with mode shapes with mixed BC while Z il and Z ij are obtained with Neumann BC.

Application on the oil pan

In both cases, Eqs. ( 19) and ( 22), the problem is reduced to the classical form Ax = b. Both resolution are ill-posed and need regularization. In the following, the GCV method [START_REF] Leclère | Acoustic imaging using under-determined inverse approaches: Frequency limitations and optimal regularization[END_REF] will be used to nd the best regularization parameter of the classical Tikhonov regularization technique. Fig. 7 shows the mean square velocity of the vibrating surface Σ obtained with reference calculation and identication methods and Fig. 8 presents the comparison between the reference and the velocity elds identied by u-iPTF and m-iPTF at 700Hz. This application shows that these approaches, based on the use of the Green's identity coupled to FEM solver, can lead to powerful inverse methods. These methods are intrinsically independent of the acoustic environment and can handle sources with complex geometries. 

Experimental validation

An experimental validation of the described procedure has been performed with both approaches. However, as the results using u-iPTF have already been exposed in [START_REF] Totaro | Sound elds separation and reconstruction of irregularly shaped sources[END_REF], only the results obtained using m-iPTF will be presented here. The oil pan was xed on a wall and excited by a shaker. It was radiating in a semi-anechoic chamber. Some reference measurements have been done using a pU probe near the oil pan (on a rectangular box close to the surface of the oil pan). An example of these measurements can be seen in Fig. 10 (left).

Then, to apply m-iPTF, the pressures have been measured on a virtual surface (a bigger rectangular box) and inside the virtual volume. The result obtained at 976Hz is shown in Fig. 10 (right). The comparison in Fig. 10 demonstrates that the source eld reconstruction is possible in real conditions. In addition, contrary to reachable measurements, the identication is computed on the real surface of the structure. Finally, the source is completely characterized as pressure and intensity elds can be deduced from identied velocity eld and the direct formulation, Eq. ( 19) or (22). As a demonstration, the acoustic power of the source, measured with pU probe or identied, is plotted in Fig. 11. Both curves agree. As a consequence, the acoustic power of the source is obtained measuring pressures only thanks to m-iPTF. 

CONCLUSIONS

The Green's identity is a technique extensively used in acoustics to solve vibro-acoustic problems. In this paper, it is shown how the Green's identity and FEM solver can be used to develop source eld reconstruction methods. Two developments are presented here. The rst one, the u-iPTF, permits to reconstruct the velocity eld of a source with complex geometry measuring colocated pressure and particle velocity on a virtual surface surrounding the source. The second one, the m-iPTF, only needs pressure measurements on a virtual surface and inside the virtual volume. Both of them need regularization as the problem is ill-conditionned. However, both of them allow source elds reconstructions in non-anechoic room on complex geometry. In addition, the source is then fully described by velocity, pressure, intensity elds and acoustic power and radiation eciency.
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 1 Figure 1. A baed structure radiates in an acoustic environment.
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 4 Figure 4. Map of the pressure eld computed with innite elements at 2000Hz.
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 5 Figure 5. Virtual volume modeled by Finite Elements.
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 6 Figure 6. Pressure at point N as a function of frequency. Black solid line: reference computation using Innite Elements; Blue dashed-dotted line: Green's function with Neumann BC; Red dotted line: Green's function with mixed BC.
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 7 Figure 7. Mean Square Velocity as function of frequency. Black solid line: Reference; Blue dashed-dotted line: u-iPTF; Red dotted line: m-iPTF
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 9 Figure 9. Experimental setup. Left: oil pan and line of microphones; right: electrodynamic shaker.
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 10 Figure 10. Amplitude of the velocity eld at 976Hz. Left: measured with pU probe; Right: identication using m-iPTF.
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 8 Figure 8. Velocity eld of the vibrating surface Σ at 700Hz. Left: Reference; Center: u-iPTF; Right: m-iPTF
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