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Summary

Green's identity is a well-known mathematical tool usually used to solve acoustic problems. If two

functions are twice continuously di�erentiable, an integral over a volume can be replaced by an

integral over the surfaces of this volume. Mostly, one of these functions is the acoustic pressure but

the other one is completely arbitrary. The possibilities given by this arbitrary choice are numerous.

In the present paper, the powerful capabilities of the Green's identity will be illustrated on a 3D

acoustic problem consisting in an oil pan radiating in a semi-in�nite medium. The radiated �eld

obtained by In�nite Elements (considered here as a reference) will be compared to two solutions

provided by the application of the Green's identity on a �nite virtual volume surrounding the vibrating

surface. Indeed, thanks to Green's identity, the choice of the boundary conditions of this virtual

volume is arbitrary. The cases of uniform (Neumann) and mixed (Neumann and Dirichlet) boundary

conditions will be presented. Finally, it will be shown how Green's identity and FEM solver can be

used as acoustic inverse method. The so-called "uniform iPTF" (inverse Patch Transfer Functions

with uniform BC) and "mixed iPTF" (inverse Patch Transfer Functions with mixed BC) will be

presented and experimentally applied on the case of the oil pan. Velocity, pressure and intensity

�elds reconstructed by the inverse methods will be compared to direct measurements.

PACS no. 43.35.Sx, 43.60.Pt

1. Introduction

Source identi�cation methods like Near-�eld Acoustic
Holography [1, 2] aim to locate a source of noise or to
reconstruct its vibratory �eld. The diversity of appli-
cations in this �eld of research has caused to develop
several di�erent methods with their own domain
of validity (acoustic environment, frequency range,
shape of the source, etc.) and their own experimental
setup (synchronous or sequential measurements,
microphones antennas, etc.).
Despite the number of existing methods, there are
still some issues for industrial applications. Measure-
ments in non-anechoic conditions, reconstruction of
�elds on 3D sources, �eld separation are some of
the di�culties that still slow down the industrial
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applications.
The present paper deals with a way to develop new
source identi�cation methods based on the use of
Green's identity. Green's identity is a well-known
technique to solve problems in acoustics. Two di�er-
ent developments will be shown here to illustrate the
possibilities of the Green's identity in the framework
of inverse methods. These developments, called
u-iPTF [3, 4] (inverse Patch Transfer Functions with
uniform boundary conditions) and m-iPTF (inverse
Patch Transfer Functions with mixed boundary con-
ditions) have several advantages: (i) the properties of
the Green's identity ensure the decon�nement of the
source from its acoustic environment (ii) the judicious
choice of the associate problem opens a lot of devel-
opment possibilities (iii) the use of a numerical solver
permits to treat irregularly shaped sources (iv) the
source is fully characterized (pressure, normal veloc-
ity, normal intensity �elds, acoustic power, radiation
e�ciency). These examples of developments using



Figure 1. A ba�ed structure radiates in an acoustic envi-
ronment.

Green's identity will be presented and illustrated by
a numerical example and experimental applications.

2. Green's identity in acoustics

Let's take the classical case presented in Fig. 1 of a
ba�ed structure radiating in any acoustic environ-
ment. In this acoustic environment, some other (sta-
tionnary) sources may contribute to the noise mea-
sured at point N. To compute the pressure at point
N, one can use the Green's identity. This well known
method is extensively used in acoustics to compute
the pressure anywhere in an acoustic volume knowing
pressure and particle velocity �elds at boundaries. In
the case of Fig. 1 there is no strictly speaking acoustic
volume, just an (semi-in�nite) acoustic environment.
In fact, in Green's identity, there is no need of a "real"
acoustic volume, a "virtual" volume suits well. Let's
de�ne a "virtual" acoustic volume Ω containing the
point N and the vibrating surface Σ and excluding
other sources as presented in Fig. 2. Obviously, the
pressure and particle velocity �elds on the "virtual"
surface Σ′′ are due to the contribution of the radi-
ating surface Σ and to the contribution of all other
sources, re�ections, absorption outside the volume Ω.
Let's consider that the pressure and the particle veloc-
ity are continuously known on surfaces Σ (vibrating
surface), Σ′ (physically rigid surface) and Σ′′ ("vir-
tual" surface).

Then, the Green's identity writes∫
Ω

(∆p(N) + k∗2p(N))Φ(N)dN =∫
Ω

(∆Φ(N) + k∗2Φ(N))p(N)dN

+

∫
Σ

p(Q)
∂Φ(Q)

∂n
− Φ(Q)

∂p(Q)

∂n
dQ

+

∫
Σ′
p(Q′)

∂Φ(Q′)

∂n
− Φ(Q′)

∂p(Q′)

∂n
dQ′

+

∫
Σ′′
p(Q′′)

∂Φ(Q′′)

∂n
− Φ(Q′′)

∂p(Q′′)

∂n
dQ′′,

(1)

Figure 2. De�nition of a "virtual" volume Ω and its bound-
ary surfaces Σ, Σ′ and Σ′′ for the application of Green's
identity.

where k∗ = k(1 − jη) is the complex wavenumber,
with η is the damping loss factor and n is the outward
normal. The boundary conditions are prescribed by
the pressure and particle velocity on the surfaces Σ,
Σ′ and Σ′′. In addition, the Euler relation gives

∂p(Q)

∂n
= −jωρ0Vn(Q) ∀Q ∈ Σ, (2)

∂p(Q′)

∂n
= 0 ∀Q′ ∈ Σ′, (3)

∂p(Q′′)

∂n
= −jωρ0Vn(Q′′) ∀Q′′ ∈ Σ′′, (4)

where Vn(Q) is the normal velocity at pointQ, ω is the
angular frequency and ρ0 is density of air. In addition,
if there is no source inside the volume Ω, then the
pressure p(N) is given by the Helmholtz equation

∆p(N) + k∗2p(N) = 0 ∀N ∈ Ω. (5)

Considering Eqs. (1) to (5), one can write

−
∫

Ω

(∆Φ(N) + k∗2Φ(N))p(N)dN =

+

∫
Σ

p(Q)
∂Φ(Q)

∂n
+ jωρ0Vn(Q)Φ(Q)dQ

+

∫
Σ′
p(Q′)

∂Φ(Q′)

∂n

+

∫
Σ′′
p(Q′′)

∂Φ(Q′′)

∂n
dQ′′

+

∫
Σ′′
jωρ0Vn(Q′′)Φ(Q′′)dQ′′.

(6)

The main interest of Green's identity is that the func-
tion Φ can be arbitrarily chosen provided that it is
twice di�erentiable. Let's choose Φ as a mode shape
φn(N) of the equivalent �nite volume Ω such as

∆φn(N) + k2
nφn(N) = 0 ∀N ∈ Ω, (7)

where kn is the natural wavenumber of mode n of
the virtual acoustic volume Ω. Mode shapes φn(N)



Figure 3. Oil pan.

constitute an orthonormal basis of functions on which
the pressure at point N can be decomposed

p(N) =

∞∑
n=0

anφn(N) (8)

Introducing Eqs. (7) and (8) in Eq. (6) and using the
orthonormal property of mode shapes, one obtains

p(N) =
∞∑
n=1

φn(N)

Λn(k∗2 − k2
n)
Cn, (9)

where

Cn =

∫
Σ

p(Q)
∂φn(Q)

∂n
dQ

+jωρ0

∫
Σ

Vn(Q)φn(Q)dQ

+

∫
Σ′
p(Q′)

∂φn(Q′)

∂n
dQ′

+

∫
Σ′′
p(Q′′)

∂φn(Q′′)

∂n
dQ′′

+jωρ0

∫
Σ′′
Vn(Q′′)φn(Q′′)dQ′′.

(10)

Eqs. (9) and (10) are valid whatever the boundary
conditions of the "virtual" mode shapes φn(N). De-
pending on the chosen boundary conditions, some
terms in Eq. (10) will be suppressed. Then, it has
been here proven that the pressure at point N can
be expressed using a "virtual" problem for which the
boundary conditions can be arbitrarily chosen.

3. Acoustic radiation of an oil pan

A ba�ed oil pan, shown in Fig. 3 is excited by a point
force and radiates in an semi-in�nite acoustic environ-
ment.

3.1. Reference computation

A classical computation based on the use of in�nite
elements has been done using ACTRAN software. An
example of a pressure map is given in Fig. 4 at 2000Hz.

Figure 4. Map of the pressure �eld computed with in�nite
elements at 2000Hz.

3.2. Green's function with Neumann bound-

ary conditions

Let's consider the modes shapes φn(N) with Neu-
mann boundary conditions on surfaces Σ, Σ′ and Σ′′

as

∂φn(Q)

∂n
= 0 ∀Q ∈ Σ ∪ Σ′ ∪ Σ′′ (11)

In that case, Cn simpli�es to

Cn = jωρ0

∫
Σ

Vn(Q)φn(Q)dQ

+jωρ0

∫
Σ′′
Vn(Q′′)φn(Q′′)dQ′′,

(12)

and the pressure p(N) at any point of the domain Ω
is computed knowing the particle velocities on sur-
faces Σ and Σ′′ only. One can see in Eq. (12) that the
choice of a Neumann condition on surface Σ′ allows
not to need to know information on this surface. This
is actually due to the fact that the chosen boundary
condition for the associate problem (the mode shapes)
is the same as the real problem.

3.3. Green's function with mixed boundary

condition

A second possibility is to consider the boundary con-
dition on the surface Σ′′ as a Dirichlet boundary con-
dition. In that case,

∂φn(Q)

∂n
= 0 ∀Q ∈ Σ ∪ Σ′ (13)

and

φn(Q′′) = 0 ∀Q′′ ∈ Σ′′. (14)

Thus, Cn simpli�es to

Cn = jωρ0

∫
Σ

Vn(Q)φn(Q)dQ

+

∫
Σ′′
p(Q′′)

∂φn(Q′′)

∂n
dQ′′,

(15)

and the pressure p(N) at any point in the domain Ω
is computed knowing the particle velocity on surface



Figure 5. Virtual volume modeled by Finite Elements.

Σ and pressure on surface Σ′′. However, in this formu-
lation, one has to know the spatial derivative of the
mode shapes expressed in terms of pressure. These are
proportional to the modes shapes expressed in terms
of particle velocity as

∂φn(Q)

∂n
= −jωnρ0χn(Q), (16)

where χn(Q) is the mode shapes of the virtual acous-
tic volume expressed in particle velocity. These mode
shapes can be obtained with a numerical solver as
ACTRAN.

3.4. Comparion of computations

The aim is here to verify if Eq. (12) (uniform con-
ditions) and Eq. (15) (mixed conditions) permit to
compute the pressure at point N by comparing the re-
sults to reference calculation presented in Fig. 4. For
that purpose, the integrals are replaced by sums (dis-
cretisation of the surfaces) and the pressure and/or
particle velocities on surfaces Σ and Σ′′ are taken
from reference calculation. The modes shapes φn(N)
and its derivative ∂φn

∂n are computed using a numeri-
cal solver (ACTRAN) up to 5kHz on the virtual vol-
ume presented in Fig. 5. The pressures p(N) obtained
with the three computations are compared in Fig. 6
which demonstrates that Green's identity can be used
to compute the pressure in a domain whatever the
chosen boundary conditions. The slight discrepancies
between curves are due to the discretisation of the
problem and to the convergence of the modal sums.
It is important to underline that neither the Neumann
nor the Dirichlet boundary conditions are representa-
tive of the real conditions. This does not prevent the
calculation. However, the convergence of the calcula-
tion seems to be quicker with Dirichlet condition.

4. Source reconstruction using

Green's identity

In both equations (12) and (15) the normal velocity of
surface Σ appears. Let's consider now that this veloc-

Figure 6. Pressure at point N as a function of frequency.
Black solid line: reference computation using In�nite El-
ements; Blue dashed-dotted line: Green's function with
Neumann BC; Red dotted line: Green's function with
mixed BC.

Figure 7. Mean Square Velocity as function of frequency.
Black solid line: Reference; Blue dashed-dotted line: u-
iPTF; Red dotted line: m-iPTF

ity �eld is unknown. If the pressure p(N) is measured
at several points, these equations can be inverted and
the velocity �eld can be identi�ed. This is the princi-
ple of the method called inverse Patch Transfer Func-
tion [3, 4]. This method corresponds here to the inver-
sion of the Green's identity with Neumann boundary
conditions. In this paper, it will be called u-iPTF. The
other possibility, also presented here, will be called m-
iPTF.

4.1. Uniform BC: u-iPTF

If the vibrating surface Σ is discretized into Ns ele-
mentary surfaces called patches and the "virtual" sur-



face Σ′′ is discretized into Nm patches, then, Eqs. (9)
and (12) lead to

p̄i =

Nm∑
j=1

Zij V̄j +

Ns∑
l=1

ZilV̄l (17)

where p̄i and V̄j are the space averaged pressure and
particle velocity on patches i and j of surface Σ′′ and
V̄l is velocity of patch l on surface Σ. Zij is the acoustic
impedance between patches i and j. In a matrix form,
one obtains

p̄i = ZijV̄j + ZilV̄l (18)

The velocities space averaged on patches l on the vi-
brating surface Σ can then be deduced using

V̄l = Z−1
il

(
p̄i − ZijV̄j

)
(19)

The velocity �eld on the surface of the source can be
obtained measuring pressure and particle velocity on
a virtual surface Σ′′. These colocated measurements
can be done using pU probe.

4.2. Mixed BC: m-iPTF

Using Eqs. (9) and (15), the pressure at one point N
in the domain can be expressed as

p(N) =

Nm∑
j=1

Y ∗Nj p̄j +

Ns∑
l=1

Z∗NlV̄l (20)

If the pressure is measured at several points in the
cavity, Eq. (20) can be written in a matrix form

pi = Y∗ijp̄j + Z∗ilV̄l (21)

Finally, the velocity �eld on the source is obtained by

V̄l = Z∗−1
il

(
pi −Y∗ijp̄j

)
(22)

Compared to Eq. (19), the velocity �eld V̄l is ob-
tained measuring the pressure on the virtual surface
Σ′′ and at several points in the domain Ω. In addition,
impedance Z∗il and the admittance Y∗ij are computed
with mode shapes with mixed BC while Zil and Zij
are obtained with Neumann BC.

4.3. Application on the oil pan

In both cases, Eqs. (19) and (22), the problem is re-
duced to the classical form Ax = b. Both resolution
are ill-posed and need regularization. In the following,
the GCV method [5] will be used to �nd the best reg-
ularization parameter of the classical Tikhonov regu-
larization technique.
Fig. 7 shows the mean square velocity of the vibrat-
ing surface Σ obtained with reference calculation and
identi�cation methods and Fig. 8 presents the com-
parison between the reference and the velocity �elds
identi�ed by u-iPTF and m-iPTF at 700Hz. This ap-
plication shows that these approaches, based on the
use of the Green's identity coupled to FEM solver, can
lead to powerful inverse methods. These methods are
intrinsically independent of the acoustic environment
and can handle sources with complex geometries.

Figure 9. Experimental setup. Left: oil pan and line of
microphones; right: electrodynamic shaker.

Figure 10. Amplitude of the velocity �eld at 976Hz. Left:
measured with pU probe; Right: identi�cation using m-
iPTF.

4.4. Experimental validation

An experimental validation of the described procedure
has been performed with both approaches. However,
as the results using u-iPTF have already been exposed
in [4], only the results obtained using m-iPTF will be
presented here.
The oil pan was �xed on a wall and excited by a
shaker. It was radiating in a semi-anechoic chamber.
Some reference measurements have been done using a
pU probe near the oil pan (on a rectangular box close
to the surface of the oil pan). An example of these
measurements can be seen in Fig. 10 (left).
Then, to apply m-iPTF, the pressures have been

measured on a virtual surface (a bigger rectangular
box) and inside the virtual volume. The result ob-
tained at 976Hz is shown in Fig. 10 (right). The com-
parison in Fig. 10 demonstrates that the source �eld
reconstruction is possible in real conditions. In addi-
tion, contrary to reachable measurements, the identi-
�cation is computed on the real surface of the struc-
ture.
Finally, the source is completely characterized as pres-
sure and intensity �elds can be deduced from identi-
�ed velocity �eld and the direct formulation, Eq. (19)
or (22). As a demonstration, the acoustic power of the
source, measured with pU probe or identi�ed, is plot-
ted in Fig. 11. Both curves agree. As a consequence,
the acoustic power of the source is obtained measuring
pressures only thanks to m-iPTF.



Figure 8. Velocity �eld of the vibrating surface Σ at 700Hz. Left: Reference; Center: u-iPTF; Right: m-iPTF

Figure 11. Acoustic power as a function of frequency. Black
solid line: measured with pU probe; Red dotted line: iden-
ti�cation using m-IPTF.

5. CONCLUSIONS

The Green's identity is a technique extensively used
in acoustics to solve vibro-acoustic problems. In this
paper, it is shown how the Green's identity and FEM
solver can be used to develop source �eld reconstruc-
tion methods. Two developments are presented here.
The �rst one, the u-iPTF, permits to reconstruct the
velocity �eld of a source with complex geometry mea-
suring colocated pressure and particle velocity on a
virtual surface surrounding the source. The second
one, the m-iPTF, only needs pressure measurements
on a virtual surface and inside the virtual volume.
Both of them need regularization as the problem is
ill-conditionned. However, both of them allow source
�elds reconstructions in non-anechoic room on com-
plex geometry. In addition, the source is then fully
described by velocity, pressure, intensity �elds and
acoustic power and radiation e�ciency.
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