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Abstract
This paper is devoted to sequential decision mak-
ing under uncertainty, in the multi-prior framework
of Gilboa and Schmeidler [1989]. In this setting,
a set of probability measures (priors) is defined in-
stead of a single one, and the decision maker selects
a strategy that maximizes the minimum possible
value of expected utility over this set of priors. We
are interested here in the resolute choice approach,
where one initially commits to a complete strat-
egy and never deviates from it later. Given a de-
cision tree representation with multiple priors, we
study the problem of determining an optimal strat-
egy from the root according to min expected utility.
We prove the intractability of evaluating a strategy
in the general case. We then identify different prop-
erties of a decision tree that enable to design dedi-
cated resolution procedures. Finally, experimental
results are presented that evaluate these procedures.

1 Introduction
In many sequential decision problems, agents must act under
uncertainty. This issue arises in several applications of arti-
ficial intelligence (AI), e.g. medical diagnosis (sequence of
medical treatments/tests), troubleshooting under uncertainty
(sequence of observations/repairs), poker-playing program
(sequence of raise/call/fold). Decision theory provides use-
ful tools to deal with uncertainty in decision problems. A
decision under uncertainty is classically viewed as a function
that maps states of the word to consequences - denoting Θ the
set of states, X the set of consequences, D = {f : Θ 7→ X}
is the set of potential acts. Following the theory of expected
utility [von Neuman and Morgenstern, 1947], a probability P
can model the uncertainty about the state of the world, and a
utility function u : X 7→ U ⊂ R will capture the utility of
the consequences. Then each decision f can be evaluated by
its expected utility EUP,u(f) = Σθ∈Θ u(f(θ)) . P (θ) and
compared to other decision. The best decision should be the
one that maximizes expected utility.

However, it has been shown that expected utility cannot al-
ways capture the behaviour of rational decision makers. Ells-
berg’s counter example [1961] is the following: let U be an
urn containing 1

3 of red balls and 2
3 of black or yellow balls.

One ball will be drawn and guessing the right color leads to
a gain of 1 (0 otherwise). The decision to bet on red (resp.
black) is denoted by fR (resp. fB). The decision to bet
on “red or yellow” (resp. “black or yellow”) is denoted by
fRY (resp. fBY ).Most of people prefer fR to fB and fBY
to fRY . But there exist no probability measure P and no
utility function u such that EUP,u(fR) > EUP,u(fB) and
EUP,u(fBY ) > EUP,u(fRY ). The point is that the knowl-
edge about the world is ambiguous: the underlying probabil-
ity measure could be any probability in the set
P = {P : P ({red}) = 1

3 , P ({black, yellow}) = 2
3}.

Gilboa and Schmeidler [1989] have then shown that most de-
cision makers do use the expected utility model, but on the
basis of the whole set of priors: they maximize the min, over
P , of the possible values of the expected utility. In Ellsberg’s
example, for instance, the probability of {black} belongs to
[0, 2

3 ]: the minimum value of EU for act fB is thus 0; for act
fR, P ({red}) = 1

3 , hence the expected utility is 1
3 in any case:

fR is preferred to fB . The probability of P ({red, yellow})
varies between 1

3 and 1, hence the min expected utility of act
fRY is 1

3 (it is possible that there is no yellow ball). Prob-
ability P ({black, yellow}) is equal to 2

3 , hence the expected
utility of act fBY is 2

3 in any case: fBY is preferred to fRY .
The topic of this paper is to study how to optimize min

expected utility in problems of sequential decision making
under uncertainty involving multiple priors. More precisely,
we tackle the problem of optimizing this criterion in a tree
endowed with multiple priors. The choice of decision trees
as the basic way of representing sequential problems is mo-
tivated by its generality: no linearity assumption on utility
under certainty is indeed made, and even the Markov prop-
erty is not required. Note that the algorithms proposed here
can nevertheless be used to “solve” an influence diagram by
“unfolding” the decision diagram in a decision tree, and then
selecting an optimal strategy in this tree. This approach is
suitable for small or medium size decision problems.

The question of selecting a strategy in a decision tree en-
dowed with imprecise probabilities has received little atten-
tion in the literature. It raises two types of issues: decision-
theoretic ones [Jaffray and Jeleva, 2007; Jaffray, 1999], i.e.
the suitability –from the normative point of view– of various
decision criteria under imprecise probability in a sequential
decision setting, and algorithmic ones [Kikuti et al., 2011;



Huntley and Troffaes, 2008], i.e. the effective computation
of an optimal strategy. In this paper, we are more concerned
with the algorithmic issues.

In a decision tree endowed with clear probabilities, it is
well-known that an optimal strategy can be recovered in lin-
ear time by rolling back the decision tree, i.e. computing a
strategy recursively in a dynamic programming manner. Nev-
ertheless, this approach is not valid anymore when optimizing
min expected utility in a decision tree with multiple priors,
since Bellman’s principle of optimality does not hold any-
more. From this point, two research directions can be ex-
plored. The first one, followed by Kikuti et al. [2011] is
to add an assumption of dynamic feasibility, which amounts
at seeking the strategy returned by rolling back the decision
tree. This strategy will be preferred by a consequentialist de-
cision maker, i.e. a decision maker whose present decision
does not depend on the past nor on what she plan to do when
making her first decision. Though appealing from an algo-
rithmic viewpoint, this approach does not necessarily prevent
the decision maker from selecting a strategy that could be
“dominated” in some sense [Hammond, 1988]. The alter-
native way, proposed by [McClennen, 1990], is the resolute
choice approach, where the decision maker commits to an op-
timal strategy viewed from the root of the decision tree, and
never deviates from it later. It raises a challenging algorith-
mic problem, provided the combinatorial number of potential
strategies. Huntley and Troffaes [2008] have adressed this is-
sue by proposing a very generic method to compute the set
of non-dominated strategies (to be defined later), but without
entering into computational considerations: they do not study
the computational complexity of the problem, and the method
they provide is not implementable as it stands.

The paper is organized as follows. After introducing the
framework (Section 2), we show that evaluating a strategy
according to min expected utility is NP-hard (Section 3) and
we study how linear programming can be used to automa-
tize this evaluation. We then provide operational algorithms
to compute an optimal strategy (Section 4), and conclude by
reporting the results of numerical tests (Section 5).

2 Decision Trees with Multiple Priors
In multistage decision making, one studies problems where
one has to make a sequence of decisions conditionally to
events. Decision trees provides a simple and explicit repre-
sentation of a sequential decision problem under uncertainty.
A decision tree T involves three kinds of nodes: a set ND of
decision nodes (represented by squares), a set NC of chance
nodes (represented by circles) and a set NU of utility nodes
(leaves of the tree). A decision node can be seen as a deci-
sion variable, the domain of which corresponds to the labels
of the branches starting from that node. A random variable
X is assigned to each chance node, and there is one outgoing
branch for each possible value x ∈ D(X), where D(X) is
the domain of X . These branches are labelled by the proba-
bilities of the corresponding events. The values indicated at
the leaves correspond to the utilities of the consequences. For
illustration, we now present an example of a decision tree rep-
resenting a sequential problem involving an Ellsberg’s urn.

Figure 1: A decision tree involving an Ellsberg’s urn.

Example 1 Consider a game beginning with a toss coin, be-
fore a ball is drawn in an Ellsberg’s urn (the same as in the in-
troduction). Depending on whether the coin comes up heads
or tails (random variable X1, with D(X1) = {H,T} for
heads and tails), the decision maker is asked to bet on red
or black (decision D1), or red or yellow (decision D2). The
color of the ball is a random variable X2, with D(X2) =
{R,B, Y } for red, black or yellow. If the decision maker bets
on red (fR) and a red ball is drawn, it yields a gain of 1 − ε
(with ε > 0). If she bets on black or yellow (fB or fY ) and
the guess is correct, it yields a gain of 1. The overall game
can be represented by the decision tree of Figure 1. Note that
random variable X2 appears several times in the decision
tree since the draw can be made in several contexts (the coin
comes up heads and the decision maker chooses red, the coin
comes up heads and the decision maker chooses black, etc.).

When crisp probabilities are known, the joint probability
measure over the random variables Xi is not given in ex-
tenso, but through the labelling on the tree by conditional
probabilities : each branch starting from a chance node Xj

i
represent an event Xi = x and is endowed with a number,
that represents the probability P (Xi = x|past(Xj

i )), where
past(Xj

i ) denotes all the value assignments to random and
decision variables on the path from the root to Xj

i . Further-
more, in this paper, we assume that P (Xi = x|past(Xj

i ))

only depends on the random variables in past(Xj
i ). In the

case of multiple priors, the joint probability is imprecise and
it is not possible to represent it by a labeling of the edges with
numbers. In the present paper, we propose to label them by
variables representing the (ill-known) possible values of the
conditional probabilities. Each branch starting from a chance
node Xj

i represents an event Xi = x and is labelled by a
variable pi,j,x (for P (Xi = x|past(Xj

i ))).
The joint imprecise probability should be expressed explic-

itly, by a set of joint probability measures, but it is not always
feasible, e.g. when random variables have an infinite range
of possible values. In this paper, we consider the case where
the set of measures are represented by probability intervals
P (Xi ∈ E|past(Xj

i )) on events E, where E ⊆ D(Xi). For-
mally, we have sets of linear constraints Cji locally defined
over subsets of variables pi,j,x at each chance node Xj

i . A



Figure 2: Lottery for strategy (D1 = fB , D2 = fY ).

constraint c ∈ Cji takes the form p−c ≤
∑
x∈Dc pi,j,x ≤ p+

c ,
where Dc = {x : pi,j,x is in the scope of c} ⊆ D(Xi) and
p−c , p+

c are reals (if p−c = p+
c the interval is said degener-

ated). In Figure 1, these constraints are defined as follows:
C1

1 = { 1
2 ≤ p1,1,H ≤ 1

2 ,
1
2 ≤ p1,1,T ≤ 1

2}
Cj2 = { 1

3 ≤ p2,j,R ≤ 1
3 ,

2
3 ≤ p2,j,B + p2,j,Y ≤ 2

3} for all j
Obviously, if the probabilities are precisely known at node
Xj
i , then Cji simply assigns a value to each pi,j,x.
Furthermore, some independencies can be taken into ac-

count by explicitly adding a set Ce of equality constraints over
the pi,j,x. In the example, since X1 and X2 are independent,
we have p2,1,x=p2,2,x=p2,3,x=p2,4,x for all x. We denote by
PT the set of possible probability measures over decision tree
T that are compatible with constraints C = (

⋃
i,j C

j
i ) ∪ Ce.

In a decision tree T , a strategy consists in setting a value to
every decision node, i.e. to every decision variable condition-
ally to the past. The decision tree in Figure 1 includes 4 feasi-
ble strategies, among which for instance strategy s = (D1 =
fB , D2 = fY ). In our setting, a strategy can be associated
to a compound lottery over the utilities, where the probabili-
ties of the involved events are ambigous. For instance, strat-
egy s corresponds to the compound lottery pictured in Fig-
ure 2. Comparing strategies amounts therefore to compare
compound lotteries. The evaluation of a strategy (more pre-
cisely, of the corresponding compound lottery) according to
min expected utility depends on the multi-prior set PT . In
this setting, we denote by EU(s) = minP∈PT EU(P, s) the
min expected utility of strategy s, where EU(P, s) is the ex-
pected utility of s for probability measure P . A strategy s is
preferred to s′ if EU(s) > EU(s′). We show in the next sec-
tion that the evaluation of a strategy is a combinatorial prob-
lem in itself due to the combinatorial nature of PT .

3 Evaluating a Strategy
We now prove that evaluating a strategy according to its min
expected utility is an NP-hard problem, where the size of an
instance is the number of involved chance nodes.

Proposition 1 Evaluating a strategy according to its min
expected utility is an NP-hard problem, even if all non-
degenerated probability intervals are [0, 1].

Proof. The proof relies on a polynomial reduction from
problem 3-SAT, which can be stated as follows: given a set
X of boolean variables and a collection C of clauses on X
such that |c| = 3 for every clause c ∈ C, does there exist an
assignment of truth values to the boolean variables of X that
satisfies simultaneously all the clauses of C ?
Let X = {x1, . . . , xn} and C = {c1, . . . , cm}. Note that

evaluating a strategy amounts to evaluating a compound lot-
tery. One associates a random variable Xi to every booolean
variable xi, with domain {true, false}. The polynomial
generation of a compound lottery from an instance of 3-SAT
is performed as follows. One generates a subtree Tk for
each clause ck ∈ C. The indices of the boolean variables
appearing in clause ck are denoted uk, vk, wk. For instance,
for clause c2 = x1 ∨ x3 ∨ x4, u2 = 1, v2 = 3 and w2 = 4.
Subtree Tk is a complete binary tree such that:
- the root (depth 0) is a chance node labeled by Xuk ,
- nodes of depth 1 are chance nodes labeled by Xvk ,
- nodes of depth 2 are chance nodes labeled by Xwk ,
- nodes of depth 3 are utility nodes.
Each chance node Xj

i has two outgoing branches:
- one corresponding to Xi = true and labelled by pi ∈ [0, 1],
- one corresponding to Xi = false and labelled by 1− pi.
Finally, the value of a utility node is 1 if it is on the path
making false all the literals of ck, otherwise its value is 0.
Once all subtrees Tk have been generated, a unique root
node X0 is generated, which is parent of all subtrees Tk. A
probability 1/m is assigned to each branch from X0. This
concludes the reduction. Clearly, the generated tree can be
computed in polynomial time. As an illustration, in Figure 3,
we give the compound lottery generated from the following
instance of 3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).
Let us show that the 3-SAT formula is satisfiable if and only
if the min expected utility of the compound lottery is 0. If
there is an instantiation {x1 = a1, x2 = a2, . . . , xn = an}
that satisfies the 3-SAT formula, then the min expected
utility of the compound lottery L is 0. Indeed, setting each
variable pi to 1 if ai is equal to “true”, and 0 otherwise,
yields a min expected utility equal to 0. This is related to the
fact that each utility node of value 1 is the terminal node of
the unique path in Tk that makes false clause ck. As clause
ck is made true by the instanciation, this utility node has
probability 0 to be reached.
Conversely, if the min expected utility of L is 0, then the
3-SAT formula is satisfiable. Indeed, given an instantiation
of parameters pi making zero the min expected utility of
the lottery, the probability to reach a nonzero utility node is
necessarily 0. This implies that, for every path to a nonzero
utility node, at least one probability pi is 0 (label pi) or 1
(label 1 − pi). By setting value “true” (resp. “false”) to xi if
pi = 1 (resp. 0), the 3-SAT formula is satisfied. �

We now describe a procedure to evaluate a strategy, based
on a mathematical programming formulation. Before provid-
ing the formal expression of min expected utility EU(s) of a
strategy s, we need to introduce some notations. We denote
by X1, . . . , Xn the set of random variables appearing in a de-
cision tree T , and by X = 〈X1, . . . , Xn〉 the corresponding
random vector. We denote by D(Y ) the domain of a random
variable (or random vector) Y . Furthermore, given a sub-
set I ⊆ {1, . . . , n} of indices, we denote by XI the random
vector whose components are Xi (i ∈ I). Besides, given a
node N , we denote by π(N) the set of indices of the random
variables on the path from the root to N (random variable



Figure 3: An example of reduction for the following instance
of 3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

in N excluded if N ∈ NC). The complementary set is de-
noted by π̄(N) = {1, . . . , n} \ π(N). Finally, we denote
by x(N) the assignment vector of Xπ(N) that leads to node
N . For instance, consider the decision tree of Figure 1. We
have π(X1

2 ) = {1} since random variable X1 (node X1
1 ) ap-

pears on the path from X1
1 to X1

2 . Thus Xπ(X1
2 ) = 〈X1〉, and

x(X1
2 ) = 〈H〉 since X1 = H on the considered path.

In a decision tree T , a strategy s is characterized by the
subset Us ⊂ NU of utility nodes it enables to reach. The min
expected utility EU(s) of s can thus be written as follows:

EU(s) = min
P∈PT

∑
N∈Us

P (Xπ(N) = x(N))× u(N)

where P (Xπ(N) = x(N)) represents (in accordance with our
notations) the probability to reach node N when following
strategy s. For instance, strategy (D1 = fB , D2 = fY ) in
Figure 1 yields the following formula:

EU(s) = min
P∈PT

P (X1 = H,X2 = B)+P (X1 = T,X2 = Y )

Given the combinatorial nature of PT , we formulate a math-
ematical program to evaluate a strategy s. The main diffi-
culty consists in characterizing the set of measures P ∈ PT .
The fact that the crisp probabilities satisfies constraints C is
indeed not sufficient to ensure the global consistency of the
probability measure over T [Jeantet and Spanjaard, 2009],
due to the possibility of several instances of the same ran-
dom variable in T . For instance, assume that the proba-
bilities P (X1), P (X2) and P (X2|X1) appear in the deci-
sion tree. Then, the total probability theorem should hold:
P (X2) =

∑
x∈D(X1) P (X2|X1 = x)P (X1 = x). In order

to characterize set PT of “feasible” probability measures, we
define constraints upon atomic probabilities P (X = x) in-
stead of variables pi,j,x. Furthermore, we consider the prob-
abilities P (X(N) = x(N)) to reach each of the nodes N of
the tree, provided the node is compatible with the followed
strategy. The variables used in our formulation are thus not
the pi,j,x, and their number is exponential in n (number of
distinct random variables), but the interest is that they are

sufficient to both properly characterize a probability measure
and insure its compatibility with C. So that Kolmogorov’s ax-
ioms hold, it is necessary to satisfy the following constraint:∑

x∈D(X)

P (X = x) = 1

In Example 1, one has:
∑

x1∈D(X1)

x2∈D(X2)

P (X1 = x1, X2 = x2) = 1.

Besides, in order to link atomic probabilities P (X = x) to
probabilities P (Xπ(N) = x(N)), we introduce the following
linear constraints for all N ∈ N (there are some redundan-
cies, but we do not elaborate here to save space):

P (Xπ(N) = x(N)) =
∑

y∈D(Xπ̄(N))

P (X = (x(N), y))

where (x, y) denote the assignment of X such that Xπ(N) =

x and Xπ̄(N) = y. In Example 1, for N = X1
2 , it writes:

P (X1 = H) =
∑

x2∈D(X2)

P (X1 = H,X2 = x2)

Then, to insure that constraints Cji are satisfied, we introduce
the following constraints for each chance node Xj

i by using
Bayes’ rule: ∀c ∈ Cji ,

P (X
π(X

j
i )

= x(Xj
i ))×p−c ≤

∑
z∈Dc

P (X
π(X

j
i )∪{i}

= (x(Xj
i ), z))∑

z∈Dc

P (X
π(X

j
i )∪{i}

= (x(Xj
i ), z)) ≤ P (X

π(X
j
i )

= x(Xj
i ))×p+c

where Dc is the subdomain of Xi involved in constraint
c (see Section 2), and Xπ(Xji )∪{i} = (x, z) means that
Xπ(Xji ) = x and Xi = z. In Example 1, it writes for X1

2 , :
1
3P (X1 = H) ≤ P (X1 = H,X2 = R) ≤ 1

3P (X1 = H)
2
3P (X1 = H) ≤ P (X1 = H,X2 = B) + P (X1 = H,X2 = Y )

P (X1 = H,X2 = B) + P (X1 = H,X2 = Y ) ≤ 2
3P (X1 = H)

Finally, to insure that constraints Ce are satisfied, we need
the following bilinear constraint, by using Bayes’ rule:

P (Xi = x,X
π(X

j
i )

= x(Xj
i ))× P (X

π(X
j′
i′ )

= x(Xj′

i′ ))

= P (Xi′ = x,X
π(X

j′
i′ )

= x(Xj′

i′ ))× P (X
π(X

j
i )

= x(Xj
i ))

for each constraint pi,j,x = pi′,j′,x′ in Ce. In Example 1, for
constraint p2,1,R = p2,3,R, it writes: P (X1 = T ) × P (X1 =
H,X2 = R) = P (X1 = H)× P (X1 = T,X2 = R).

The characterization of PT thus requiresO(|N |+|D(X)|)
variables (representing the probabilities to reach each of the
nodes, and the atomic probabilities) and O(|N | + |C|) con-
straints (the constraints to link the atomic probabilities to the
probabilities to reach each of the nodes, and the constraints
to insure compatibility with C). Clearly, |D(X)| (and hence
n) appears to be a key parameter for the spatial (and time) ef-
ficiency of this formulation, and the numerical tests will con-
firm it. Now that PT is characterized, we are able to evaluate
a strategy by using an off-the-shelf optimization software.

4 Selecting a Strategy
Due to their combinatorial number, the enumeration of all
strategies is quickly cumbersome. Furthermore, when try-
ing to maximize min expected utility in a decision tree, it is



important to note that the optimality principle does not hold.
For illustration, let us perform the rolling back procedure on
the decision tree of Figure 1. In D1 and D2, the decision
maker prefers decision fR, since it provides a min expected
utility of (1 − ε)/3, while it is 0 for the other decision. The
strategy returned by rolling back the decision tree is therefore
s = (D1 = fR, D2 = fR). The min expected utility of s
is (1 − ε)/3, while strategy (D1 = fB , D2 = fY ) yields
1/3. Hence, to compute a strategy optimizing min expected
utility one cannot resort to standard dynamic programming in
the general case. Nevertheless, there exist cases authorizing
it. We describe one such case in the next paragraph.

Separable Decision Trees. For each chance node Xj
i , we

denote by Pji the set of conditional probability distributions
over Xi|past(Xj

i ) that satisfies constraints Cji . A decision
tree T is called separable (or separately specified [Kikuti et
al., 2011]) if PT =

∏
Xji∈NC

Pji . In such a tree, it is valid
to use a rolling back procedure for maximizing min expected
utility. In this procedure, comparing strategies s and s′ in a
subtree amounts to compare the induced (ambiguous) lotter-
ies Ls and Ls′ . The validity of the rolling back procedure is
related to the fulfillment of the following property:

EU(λLs + (1− λ)Ls′) = λEU(Ls) + (1− λ)EU(Ls′)

where λ ∈ [0, 1] and λLs + (1 − λ)Ls′ is the compound
lottery that yields lottery Ls (resp. Ls′ ) with probability λ
(resp. (1 − λ)). The fulfillment of this property directly fol-
lows from the separability assumption [Jeantet and Spanjaard,
2009]. The optimal min expected utility EU∗(N) at node N
is computed recursively by using the following formulas:
- At a decision node Di: EU∗(Di) = max

d∈D(Di)
EU∗(Di = d).

where D(Di) is the domain of decision variable Di.

- At a chance node Xj
i :

EU∗(Xj
i ) = min

P∈Pji

∑
x∈D(Xi)

P (Xi = x|past(Xj
i ))EU∗(Nx).

where Nx is the node reached if Xi = x.
The computation of EU∗(Xj

i ) according to the above formula
requires the resolution of a linear program whose set of con-
straints is Cji (note that the separability assumption implies
of course that Ce = ∅). The number of such (small size) lin-
ear programs solved during the running of the procedure is
clearly linear in the number of chance nodes.

Non-separable Decision Trees. In the general (non-
separable) case, the rolling back method does not work when
directly operating with min expected utility. However, one
can use the following simple property: if a strategy s is dom-
inated by another strategy s′, i.e. EU(P, s) ≤ EU(P, s′)
for all P ∈ PT , then EU(s) ≤ EU(s′). The main idea is
therefore to compute the set of all non-dominated strategies
(w.r.t. the asymetric part of the previous relation) in a first
phase, and then, in a second phase, to recover the optimal
one in this set according to min expected utility. The evalua-
tion procedure of Section 3 can be used to determine the best
strategies in the second phase. It has been proved that the set

h \ d 2 3 4
# nodes time # nodes time # nodes time

8 511 < 1 2073 < 1 5851 < 1
10 2047 < 1 12441 < 1 46811 < 1
12 8191 < 1 74639 1.2 374491 5.7
14 32767 < 1 447897 7.8 2995931 65.5
16 131071 2.6 2687385 57.3 X
18 524287 10.8 X X
20 2097151 43.2 X X

Table 1: Separable case: average execution time (in sec.) ac-
cording to height h and outdegree d of chance nodes.

of non-dominated strategies can be computed by rolling back
the decision tree [Huntley and Troffaes, 2008]. We provide
here an operational approach to perform this procedure in our
setting. The set S∗(N) of non-dominated strategies at node
N is computed recursively:
- At a decision nodeN : S∗(N) = ND(

⋃k
i=1 S

∗(Ni)) where
N1, . . . , Nk are the children of N and ND(S) returns the set
of non-dominated strategies in S.
- At a chance node N :
S∗(N) = ND({s1 ⊕ . . . ⊕ sk : si ∈ S∗(Ni) ∀i}) where
N1, . . . , Nk are the children of N and ⊕ is the combination
operation of substrategies.
The key primitive in this procedure is function ND(·). To
compute the non-dominated elements of a set S, one performs
pairwise comparisons of strategies in S. Such comparisons
are called dominance test hereafter. A strategy s dominates a
strategy s′ if there does not exist P ∈ PT (i.e., satisfying the
constraints presented in Section 3) such that:∑
N∈Us

P (Xπ(N)=x(N))×u(N) <
∑
N∈Us′

P (Xπ(N)=x(N))×u(N)

where Us is the subset of utility nodes that s reaches. The test
thus amounts to solve a set of linear constraints.

5 Numerical Tests
The proposed algorithms have been implemented in C++, and
the CPLEX solver has been used to solve the mathematical
programs. The numerical tests have been performed on a Pen-
tium IV 2.13GHz CPU computer with 3GB of RAM.

For the separable case, one considers decision trees of
(even) depth h, where all chance (resp. decision) nodes have
outdegree d (resp. 2). The utilities are real numbers ran-
domly drawn in [0, 100]. To define the imprecise probability,
or equivalently the constraints Cji , one generates d − 1 con-
straints of arity d − 1 (two constraints of arity 1 if d = 2).
For each constraint c, one sets p+

c − p−c = 0.1. The average
execution times on 20 such random instances are reported in
Table 1. Timeout was set to 100 sec., and symbol X appears
as soon as the running time exceeded the timeout for at least
one instance. Notice that our procedure was able to solve
decision trees with up to 2m nodes and that, unsurprizingly,
ambiguity degree d has a great impact on the resolution times.

For the non-separable case, one considers binary and com-
plete decision trees of even depth h, with real utilities in
[0, 100]. The binary assumption allows to consider a larger
range of depths for the decision trees. To generate the con-
straints Cji on the imprecise probabilities, we first generate
a crisp probability distribution P over n random variables.
Then, for each chance node, a random variable is randomly



h 4 6 8 10
n \ w 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 37.2 1.0 1.4 3.5 X
6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 107.6 6.4 9.3 11.7 X
7 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 X 19.1 22.0 23.0 X
8 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1.1 1.4 2.0 X 35.2 51.6 58.0 X
9 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1.9 2.2 2.4 X 87.8 114.9 142.3 X

10 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 4.1 4.3 4.6 X 199.2 253.6 328.1 X
11 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 6.5 7.4 7.7 X 409.0 590.7 X X
12 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1.6 12.1 14.3 17.8 X X X X X
13 < 1 < 1 < 1 < 1 < 1 < 1 < 1 6.3 20.2 28.1 33.5 X X X X X
14 - - - - 1.1 1.3 1.4 11.9 57.7 59.6 66.4 X X X X X
15 - - - - 3.4 3.8 4.2 20.7 104.2 121.3 137.5 X X X X X
16 - - - - 6.7 7.0 7.2 41.0 231.4 259.0 286.2 X X X X X
17 - - - - 13.9 15.5 16.0 98.2 493.1 533.8 581.9 X X X X X
18 - - - - 30.1 34.9 38.3 180.9 X X X X X X X X
19 - - - - 65.5 68.0 73.9 352.1 X X X X X X X X
20 - - - - 143.4 155.3 164.8 702.8 X X X X X X X X
21 - - - - 307.3 312.1 322.4 X X X X X X X X X

ND 1 2 2 4 2 3 4 27 2 5 8 159 3 29 32 > 300

Table 2: Non-separable case: average exec. time (in sec.) according to height h, number n of random variables, and w=p+-p−.

n 14 15 16 17 18 19 20 21
< 0.01 0.02 0.07 0.49 0.96 1.99 7.92 15.97

Table 3: Average execution time (in sec.) of a positive domi-
nance test according to number n of random variables.

assigned. At each chance node, following Bayes’ rule, we
compute the crisp conditional probabilities according to P .
Finally, each conditional probability p on a branch is replaced
by an interval [p−, p+] including p. The imprecision degree
w = p+ − p− ranges in {0.01, 0.05, 0.1, 0.5} (one value
for the whole tree). Furthermore, and importantly, one sets
Ce = ∅ in all instances. This assumption prevents from the
insertion of bilinear constraints, and the CPLEX solver can
therefore safely be used for evaluating strategies and testing
dominance. The average execution times over 20 random in-
stances are reported in Table 2 (symbol “-” means that n is
greater than the number of chance nodes). Line ND gives
the average number of non-dominated strategies at the root.
Timeout was set to 1000 seconds. The size of the tackled in-
stances are of course smaller than in the separable case, since
the procedure handles sets of non-dominated elements, which
is computationally more demanding than simply rolling back
single values. As the dominance test is an important primitive
in the procedure, Table 3 gives the average execution times of
such tests according to the number n of random variables. We
report here only the cases when a dominance relation is ac-
tually detected (average over 50 positive cases), since it takes
longer than when it does not exist. Consistently with our ex-
pectation, the times strongly increase with n, that appears to
be a key parameter for the efficiency of the procedure.

6 Conclusion
The optimization of min expected utility in sequential deci-
sion problems with multiple priors is known to be difficult
from the algorithmic point of view, since the usual principles
of dynamic programming do not apply. We have shown in
this paper that the problem is indeed intractable. Evaluating a
given strategy is NP-hard, even in a simple variant where the
distinct random variables are mutually independent. Facing
this difficulty, we distinguished two cases: separable and non-
separable decision trees. For each case, we have proposed

a dedicated procedure to tackle the problem. Our first ex-
periments are promising, although classic improvements still
have to be explored, e.g. column generation [Kikuti et al.,
2011], use of bounds to prune the search, etc.

The model proposed here is nevertheless quite simple from
the viewpoint of expressivity. In a more general setting, one
should provide the user with a richer way of expressing her
knowledge about the random variables, e.g. by a credal net-
work. Clearly, the more expressive the setting, the higher the
risk of an increase in complexity. The challenge is to balance
expressivity of the model and algorithmic efficiency.
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