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For s ∈ R, denote by P s k the "projections" of a function f in D(R d ) into the eigenspaces of the Dunkl Laplacian ∆ k corresponding to the eigenvalue -s 2 . The parameter k comes from Dunkl's theory of differential-difference operators. Wa shall characterize the range of P s k on the space of functions f ∈ D(R d ) supported inside the closed ball B(O, R). As a first application of this Paley-Wiener type theorem, we provide a spectral version of de Jeu's Paley-Wiener theorem for the Dunkl transform. The second application concerns a support theorem for general types of Dunkl spherical means.

Introduction

Analysis of the Dunkl Laplacian operator ∆ k on R d commenced in the early 90's, inspired by numerous results in the Euclidean setting, as well as some extensions of this to flat symmetric spaces. Here the parameter k comes from Dunkl's theory of differential-difference operators [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF]. In recent years, there have been increasing interests in the study of problems involving the Dunkl Laplacian and have received a lot of attention, see [START_REF] Dai | Analysis on h-harmonics and Dunkl transforms[END_REF], [START_REF] Dai | Approximation theory and harmonic analysis on spheres and balls[END_REF], [START_REF] Xu | Uncertainty principle on weighted spheres, balls and simplexes[END_REF], [START_REF] Dunkl | Orthogonal polynomials of several variables[END_REF] and references therein. The purpose of this paper is to study a family of eigenfunctions for the Dunkl Laplacian derived through the use of the inversion formula for the Dunkl transform. Our main result may be interpreted as a contribution to the spectral theory of the Dunkl Laplacian. Here we understand the term "spectral theory" to mean any analysis related to eigenfunctions of a given Laplacian operator, and how they can bring to light other objects.

In order to state the main result, we need to introduced some notation. Writing the inversion formula for the Dunkl transform in polar coordinates, we obtain

f (x) = ∞ 0 f s k (x) ds, f ∈ D(R d ),
where f s k are "projections" of f into the eigenspaces of ∆ k corresponding to the eigenvalue -s 2 . We may also write the projection operators f → f s k as Dunkl-convolution with a normalized Bessel function of the first kind (see (3.7)). In this paper we discuss on D(R d ) how properties of f are related into properties of the eigenfunctions f s k . Essentially, we prove a Paley-Wiener type theorem characterizing f s k for f ∈ D(R d ) with supp( f ) ⊂ B(O, R), involving analytic continuation to s ∈ C and growth estimates of type

| f s k (x)| ≤ C k,N ( x ) (1 + |s|) -N e (R+ x ) |Im s| , x ∈ R d
for all N ∈ N, where C k,N is a positive continuous increasing function on R + (see Theorem 3.4). Several contributions have been dedicated to this subject, see for instance the papers [START_REF] Strichartz | Harmonic analysis as spectral theory of Laplacians[END_REF], [START_REF] Bray | A spectral Paley-Wiener theorem[END_REF] for the Euclidean Fourier transform, [START_REF] Bray | Generalized spectral projections on symmetric spaces of noncompact type: Paley-Wiener theorems[END_REF], [START_REF] Ionescu | On the Poisson transform on symmetric spaces of real rank one[END_REF], [START_REF] Jana | Image of the Schwartz space under spectral projection[END_REF] for the Laplace-Beltrami operator on Riemannian symmetric spaces of non-compact types and rank-one, [START_REF] Narayanan | A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on C n[END_REF] for the Heisenberg group, and [START_REF] Koizumi | An analogue of the spectral projection for homogeneous trees[END_REF] for homogeneous trees.

The main result of this paper has a number of applications. The first one concerns the "usual" Paley-Wiener theorem for the Dunkl transform proved in [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF] by de Jeu, which characterizes the image of the space D R (R d ) of compactly supported smooth functions with support in B(O, R) under the Dunkl transform. By means of our result, we prove a spectral version of de Jeu's Paley-Wiener theorem (see Theorem 3.5).

The second application concerns a support theorem for the operator f → M f k,m defined on D(R d ) by

M f k,m (x, r) = ∞ 0  λ k,m (rs) f s k (x)ds,
with 1 ≤ m ≤ d,  α is the normalized Bessel function of the first kind, and the index λ k,m is a parameter which depends on k and m. In the case m = d, the operator f → M f k,d reduces to the so-called Dunkl spherical mean operator introduced first in [START_REF] Mejjaoli | On a mean value property associated with the Dunkl Laplacian operator and applications[END_REF] and further studied in [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF]. When the integers d and m have the same parity, we show in Theorem 4.2 that M f k,m (x, r) can be written as the x-Dunkl-convolution product of f with a radial distribution H m r with support on the sphere of radius r centered at the origin. An expression for the distribution H m r is also given. This statement enlighten on the compactly supported probability measure σ k x,r in [23, Theorem 4.1] which represent the Dunkl spherical mean operator M f k,d in the form

M f k,d (x, r) = R d f dσ k x,r .
Moreover, always under the condition that d and m have the same parity, if

f ∈ D R (R d ) then M f k,m (x, r) = 0 whenever r > R + x .
As a second application of the main result of this paper, we establish in Theorem 4.4 a support theorem for M f k,m stating, under an additional condition on f, that if M f k,m (x, r) = 0 for r > R + x then f = 0 outside the closed ball of radius R.

Background

For x, y ∈ R d we let x, y denote the usual Euclidean inner product of R d and x := √

x, x the Euclidean norm. Let S d-1 be the unit sphere in R d . We denote by dσ the Lebesgue surface measure on S d-1 .

For a nonzero vector α ∈ R d define the reflection r α by

r α (x) := x -2( α, x / α 2 ) α, x ∈ R d . A root system is a finite set R of nonzero vectors in R d such that α, β ∈ R implies r α (β) ∈ R.
If, in addition, α, β ∈ R and α = cβ for some scalar c implies c = ±1, then R is called reduced. Henceforth we will assume that R is a reduced root system. Fix a set of positive roots R + , so that R = R + ∪ (-R + ).

The finite reflection group G generated by the root system R is the subgroup of the orthogonal group O(d) generated by the reflections {r α : α ∈ R + }.

For a given root system R, a multiplicity function k : R → R + ; α → k α is a nonnegative G-invariant function defined on R.

Given a reduced root system R on R d and a multiplicity function k = (k α ) α∈R , we define the weight function ϑ k by

ϑ k (x) := α∈R + | α, x | 2k α , x ∈ R d .
Then ϑ k is a positively homogeneous G-invariant function of degree 2 k , where

k := α∈R + k α .
(2.1)

The main ingredient of the Dunkl theory is a family of commuting first-order differentialdifference operators, T ξ (k) (called the Dunkl operators [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF]), defined by

T ξ (k) f (x) := ∂ ξ f (x) + α∈R + k α f (x) -f (r α x) α, x α, ξ , ξ ∈ R d ,
where ∂ ξ is the ordinary partial derivative with respect to ξ. The Dunkl operators are akin to the partial derivatives and they can be used to define the Dunkl Laplacian ∆ k , which plays the role similar to that of the ordinary Laplacian,

∆ k f (x) := d i=1 T ξ i (k) 2 f (x) = ∆ f (x) + 2 α∈R + k α ∇ f (x), α α, x - α∈R + k α f (x) -f (r α x) α, x 2 α 2 ,
where {ξ 1 , . . . , ξ d } is an orthonormal basis of (R d , •, • ). The above explicit expression of ∆ k has been proved in [START_REF] Dunkl | Reflection groups and orthogonal polynomials on the sphere[END_REF].

For arbitrary finite reflection group G, and for any nonnegative multiplicity function k, there is a unique linear operator V k on the space of algebraic polynomials on R d that intertwines between the Dunkl operators and the partial derivatives,

T ξ (k)V k = V k ∂ ξ , ∀ξ ∈ R d , V k 1 = 1.
It has been proved in [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF]Theorem 1.2] that V k has a Laplace type representation which allows to extend V k to larger function spaces. In fact, V k induces a homeomorphism of C(R d ) and also that of C ∞ (R d ); see [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF]Theorem 5.1] or [START_REF] Trimèche | Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators[END_REF].

For

x, y ∈ R d , define E k (x, y) := V k (e •,y )(x). (2.2)
For fixed y, the function E k (•, y) is the unique real-analytic solution of T ξ (k) f (x) = y, ξ f (x) with f (0) = 1 (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF][START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF]). Further, the (Dunkl) kernel E k has a unique holomorphic extension to C d × C d and satisfies the following properties: Fact 2.1 (see, for instance, [START_REF] De Jeu | The Dunkl transform[END_REF]). 1) For all z, w ∈ C d and λ ∈ C, we have E k (z, w) = E k (w, z) and E k (λz, w) = E k (z, λw).

2) For all ν ∈ N d , we have

|∂ ν z E k (x, z)| ≤ x |ν| e x Re z . In particular, |E k (x, iy)| ≤ 1 for all x, y ∈ R d .
For f ∈ L 1 (R d , ϑ k (x)dx), the Dunkl transform is defined by

F k f (ξ) := c -1 k R d f (x)E k (x, -iξ)ϑ k (x)dx, ξ ∈ R d , (2.3) 
where c k is the constant

c k := R d e -x 2 /2 ϑ k (x)dx. (2.4)
The closed form of c k is known for every reflection group G; see [START_REF] Etingof | A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups[END_REF]. The Dunkl transform was introduced in [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF] where the L 2 -isometry (or the Plancherel theorem) was proved, while the main results of the L 1 -theory were established in [START_REF] De Jeu | The Dunkl transform[END_REF]. In particular, it has been proved that if f and

F k f are in L 1 (R d , ϑ k (x)dx), then for almost every x ∈ R d , f (x) = c -1 k R d F k f (ξ)E k (ξ, ix)ϑ k (ξ)dξ, ξ ∈ R d . (2.5)
It is worth mentioning that the Dunkl transform is a homeomorphism of the Schwartz space S(R d ). Further, according to [START_REF] Dunkl | Orthogonal polynomials of several variables[END_REF]Proposition 5.7.8], for f ∈ L 1 (R d , ϑ k (x)dx) such that f (x) = f 0 ( x ) with f 0 : R + → C, we have

F k f (ξ) = H λ k f 0 ( ξ ), (2.6) 
where

λ k := k + d -2 2 , (2.7) 
and H α is the Hankel transform of index α on L 1 (R + , r 2α+1 dr), given by

H α g(s) = 1 2 α Γ(α + 1) ∞ 0 g(r)  α (rs)r 2α+1 dr.
(2.8)

Here  α is the normalized Bessel function defined by

 α (z) := Γ(α + 1) z 2 -α J α (z), where J α (z) = z 2 α ∞ n=0 (-1) n (z/2) 2n n!Γ(α + n + 1) . (2.9)
We refer the reader to (for instance) the book [START_REF] Andrews | Special functions, Encyclopedia of Mathematics and its Applications[END_REF] for more details on Bessel functions and their properties. The next integral formula is needed for later use.

Fact 2.2 (see [1, (11.59)]). For α > -1 2 and r, s > 0, we have

∞ 0 J α (rt)J α (st) t dt = 1 r δ(r -s).
Let y ∈ R d be given. For f ∈ S(R d ), the generalized translation operator is defined by

τ y f (x) := c -1 k R d F k f (ξ)E k (ix, ξ)E k (iy, ξ)ϑ k (ξ)dξ, x ∈ R d .
We collect some properties of the translation operator, which are important for our purpose:

Fact 2.3 (see [START_REF] Trimèche | Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators[END_REF]). The translation operator has the following properties:

1) For all x, y ∈ R d , τ y f (x) = τ x f (y). 2) For fixed y ∈ R d , τ y is a continuous linear mapping from C ∞ (R d ) into itself. 3) If f is supported in {x ∈ R d : x ≤ R}, then τ y f is supported in {x ∈ R d : x ≤ R + y }. 4) If f, g ∈ S(R d ) and y ∈ R d , then R d τ y f (x)g(x)ϑ k (x)dx = R d f (x)τ -y g(x)ϑ k (x)dx.
The generalized translation operator is used to define a convolution structure: For f, g ∈ S(R d ),

f * k g(x) := c -1 k R d f (y)τ x ǧ(y)ϑ k (y)dy,
where ǧ(x) := g(-x). We can also write the convolution * k as

f * k g(x) = c -1 k R d F k f (ξ)F k g(ξ)E k (ix, ξ)ϑ k (ξ)dξ. (2.10)
We refer the reader to [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF] for more details on the convolution product * k .

For n ∈ N, let H n k be the space of k-harmonic polynomials of degree n on R d ,

H n k = Ker ∆ k ∩ P n (R d )
, where ∆ k is the Dunkl Laplacian and P n (R d ) denotes the space of homogeneous polynomials of degree n on R d . The restriction of elements in H n k on the unit sphere

S d-1 in R d are the so-called spherical k-harmonics. We shall not distinguish between Y n k ∈ H n k and its restriction to S d-1 . The space H n k has a reproducing kernel P n k (•, •) in the sense that f (x) = d -1 k S d-1 f (y)P n k (x, y)ϑ k (y)dσ(y), ∀ f ∈ H n k , x ≤ 1.
Here d k is the constant

d k := S d-1 ϑ k (x)dσ(x) = c k 2 λ k Γ(λ k + 1) , (2.11) 
where c k and λ k are as defined in (2.4) and (2.7), respectively. According to [30, Theorem 3.2], for x, y 0, the kernel P n k can be written as

P n k (x, y) = ( x y ) n n + λ k λ k V k C λ k n • , y y x x , (2.12) 
where V k is the Dunkl intertwining operator, and

C α n is the Gegenbauer polynomial of degree n, C α n (x) = (2α) n n! 2 F 1 -n, n + 2α, α + 1/2; 1 -x 2 for α > 0, with 2 F 1 is the hypergeometric function.
The following analogue of the Funk-Hecke formula for k-spherical harmonics will be used later on; for the proof, the reader is referred to [START_REF] Xu | Funk-Hecke formula for orthogonal polynomials on spheres and on balls[END_REF]Theorem 2

.1]. Let h be a continuous function on [-1, 1]. Then for any Y n k ∈ H n k , 1 d k S d-1 V k [h ( x, • )](y)Y n k (y)ϑ k (y)dσ(y) = Λ n (h)Y n k (x), x ∈ S d , (2.13) 
where Λ n (h) is a constant defined by

Λ n (h) := Γ(λ k + 1) √ πΓ(λ k + 1/2) n! (2λ k ) n 1 -1 h(t)C λ k n (t)(1 -t 2 ) λ k -1/2 dt.
We summarize some basic properties of Gegenbauer polynomials in a way that we shall use later.

Fact 2.4 (see [6, (1.2.10)], [32, (3.32.3)]). For λ ∈ C such that Re λ > 0, the following two integral formulas hold:

1) 1 -1 (1 -t 2 ) λ-1 2 C λ m (t)C λ n (t)dt = λ n + λ √ π Γ(λ + 1 2 ) Γ(2λ + n) n! Γ(λ + 1) Γ(2λ) δ m,n .
2)

1 -1 e izt (1 -t 2 ) λ-1 2 C λ n (t)dt = √ π i n Γ(λ + 1 2 ) Γ(2λ + n) n! Γ(2λ)Γ(λ + n + 1) z 2 n  λ+n (z).
Let D R (R) e denote the space of even compactly supported smooth functions with support in [-R, R], where R > 0. The Paley-Wiener theorem for the Hankel transform H α (see (2.8)) states that H α maps D R (R) e bijectively onto the space H R (C) e of even entire functions g satisfying, for all N ∈ N,

|g(z)| ≤ C N (1 + |z|) -N e R |Im z| , ∀z ∈ C,
for some positive constant C N ; see for instance [START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF]Theorem 3.1].

This result has been generalized by de Jeu [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF] to the Dunkl transform. To state the Paley-Wiener theorem for F k we introduce the following notation: For R > 0 let H R (C d ) be the space of entire functions F on C d with the property that for all N ∈ N there exists a constant

C N > 0 such that |F(z)| ≤ C N (1 + z ) -N e R Im z , ∀z ∈ C d . We let D R (R d
) denote the space of smooth compactly supported functions with support contained in the closed ball B(O, R) ⊂ R d with radius R > 0 and the origin as center.

Fact 2.5 (see [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF]Theorem 4.10]). The Dunkl transform

F k is a linear isomorphism between D R (R d ) and H R (C d ), for all R > 0.
An immediate consequence of the above Paley-Wiener theorems can be stated as:

Lemma 2.6. Let F 0 ∈ C ∞ (R) e . Then F 0 ( ξ ) = F k f (ξ) for some radial function f in D R (R d )
if and only if F 0 extends to an entire function on C satisfying the estimate

|F 0 (z)| ≤ C N (1 + |z|) -N e R |Im z| , ∀z ∈ C for all N ∈ N.
Proof. The statement follows from the fact that 

F k f (ξ) = H λ k f 0 ( ξ ) whenever f is a radial function with f (x) = f 0 ( x ) (see (2.
F k f (ξ) = c -1 k R d f (x)E k (x, -iξ)ϑ k (x)dx. (3.1)
Using polar coordinates, the Dunkl inversion formula (2.5) becomes

f (x) = c -1 k ∞ 0 s 2λ k +1 S d-1 F k f (sη)E k (ix, sη)ϑ k (η)dσ(η)ds = ∞ 0 P s k f (x)ds, (3.2) 
where

P s k f (x) := c -1 k s 2λ k +1 S d-1 F k f (sη)E k (ix, sη)ϑ k (η)dσ(η). (3.3) Notice that ∆ x k P s k f (x) = -s 2 P s k f (x)
, and we have obtained f as a superposition of such eigenfunctions of the Dunkl Laplacian. The decomposition (3.2) is reminiscent of the spectral theorem applied to ∆ k although P s k f is not a projection operator. From (3.3) we may derive a second formula for P s k f. Indeed, substituting (3.1) into (3.3) we obtain

P s k f (x) = c -2 k s 2λ k +1 S d-1 R d f (y)E k (-isη, y)ϑ k (y)dy E k (ix, sη)ϑ k (η)dσ(η) = c -2 k s 2λ k +1 R d f (y) S d-1 E k (η, -isy)E k (isx, η)ϑ k (η)dσ(η) :=I k (x,y;s)
ϑ k (y)dy. (3.4) According to [23, page 2424], the inner integral is equal to

I k (x, y; s) = d k ∞ n=0 Γ(λ k + 1) 2 n Γ(λ k + n + 1) 2  n+λ k (s x ) j n+λ k (s y )P n k (isx, -isy), (3.5) 
where d k is the constant (2.11), P n k (•, •) is the reproducing kernel (2.12), and  α is the normalized Bessel function (2.9). By the addition formula for Bessel functions ([2, p. 215]), the series expansion in (3.5) reduces to

I k (x, y; s) = d k V k  λ k s x 2 + y 2 -2 x, • (y),
where V k is the Dunkl intertwining operator. If we let •  s,λ k (y) :=  λ k (s y ), then, by [23, p. 2429], we have

V k  λ k s x 2 + y 2 -2 x, • (y) = τ y •  s,λ k (-x) = τ -x •  s,λ k (y).
Consequently, the eigenfunction P s k f can be rewritten as

P s k f (x) = d k c -2 k s 2λ k +1 R d τ x f (y)  λ k (s y )ϑ k (y)dy (3.6) = 2 -λ k Γ(λ k + 1) -1 s 2λ k +1 ( f * k •  s,λ k )(y). (3.7) 
Above we have used some of the properties of the generalized translation operator listed in Fact 2.3. Henceforth we will assume that 2λ k + 1 ∈ N, where (1)

λ k = k + d-2 2 (see (2.7)). Proposition 3.1. Assume that f ∈ D R (R d
P s k f (x) is a smooth function on R × R d . (2) ∆ x k P s k f (x) = -s 2 P s k f (x)
, where the upper index x indicates the relevant variable. (3) For x ∈ R d be given, P s k f (x) extends to an entire function of s ∈ C with the same parity as 2λ k + 1. (4) For every N ∈ N there exists a constant C k,N > 0 such that

|P s k f (x)| ≤ C k,N (1 + |s|) -N e (R+ x ) |Im s| , ∀s ∈ C. (3.8) 
(5) For any k-spherical harmonic Y ℓ k of degree ℓ and for every r > 0, the map

s → s -(2λ k +2ℓ+1) S d-1 P s k f (rω)Y ℓ k (ω)ϑ k (ω)dσ(ω)
is entire on C.

Proof. 1) In view of properties of the translation operator τ x and the normalized Bessel function  α , the first statement follows from the representation (3.6) of P s k f (x).

2) The second property is immediate from (3.3), since

∆ x k E k (x, isη) = -s 2 E k (x, isη).
3) Recall that 2λ k + 1 ∈ N and that  α is even. Now, by (3.6), the map s → P s k f is certainly extends to en entire function on C with the same parity as 2λ k + 1. 4) Since f ∈ D R (R d ), it follows from the Paley-Wiener theorem for the Dunkl transform that F k f extends to an entire function on C d satisfying the estimate

|F k f (ξ)| ≤ C k,M (1 + ξ ) -M e R Im ξ
for all M ∈ N; see Fact 2.5. Consequently, by (3.3) we obtain

|P s k f (x)| ≤ C ′ k,M (1 + |s|) -M |s| 2λ k +1 e (R+ x )
|Im s| for all M ∈ N, where we used the estimate |E k (x, z)| ≤ e x Re z for all x ∈ R d and z ∈ C d . This finishes the proof of the estimate (3.8). 5) Let Y ℓ k be a k-spherical harmonic of degree ℓ. By the Fubini theorem and (3.4) we have

S d-1 P s k f (rω)Y ℓ k (ω)ϑ k (ω)dσ(ω) = c -2 k s 2λ k +1 R d f (y) S d-1 I k (rω, y; s)Y ℓ k (ω)ϑ k (ω)dσ(ω) ϑ k (y)dy,
where I k (rω, y; s) is as in (3.5),

I k (rω, y; s) = d k ∞ n=0 n + λ k λ k Γ(λ k + 1) 2 n Γ(λ k + n + 1) 2 (rs 2 y ) n  n+λ k (rs)  n+λ k (s y )V k C λ k n • , y y (ω).
We now apply the Funk-Hecke formula (2.13) to deduce that

S d-1 V k C λ k n • , y y (ω)Y ℓ k (ω)ϑ k (ω)dσ(ω) = d k Λ ℓ (C λ k n )Y ℓ k y y ,
where, by Fact 2.4.1, we have

Λ ℓ (C λ k n ) = Γ(λ k + 1) √ πΓ(λ k + 1/2) ℓ! (2λ k ) ℓ 1 -1 C λ k n (t)C λ k ℓ (t)(1 -t 2 ) λ k -1/2 dt = λ k λ k + ℓ δ ℓ,n .
Using the above identities, it follows that

S d-1 P s k f (rω)Y ℓ k (ω)ϑ k (ω)dσ(ω) = 1 2 2λ k +2ℓ Γ(λ k + ℓ + 1) 2 s 2λ k +1 R d f (y)(rs 2 y ) ℓ  ℓ+λ k (rs)  ℓ+λ k (s y )Y ℓ k y y ϑ k (y)dy = s 2λ k +1 ϕ ℓ+λ k (rs) ∞ 0 ϕ ℓ+λ k (st) f ℓ (t)t 2λ k +1 dt,
where ϕ ℓ+λ k (z) := 1 2 λ k +ℓ Γ(λ k +ℓ+1) z ℓ  ℓ+λ k (z) and

f ℓ (t) := S d-1 f (tη)Y ℓ k (η)ϑ k (η)dσ(η).
Above we have used the fact that d k = c k /{2 λ k Γ(λ k + 1)}; see (2.11). In conclusion,

s -(2ℓ+2λ k +1) S d-1 P s k f (rω)Y ℓ k (ω)ϑ k (ω)dσ(ω) = s -ℓ ϕ ℓ+λ k (rs) ∞ 0 s -ℓ ϕ ℓ+λ k (st) f ℓ (t)t 2λ k +1 dt.
The desired result now follows from the fact that s -ℓ ϕ ℓ+λ k (sz) is an entire function of s ∈ C.

For the converse of the above proposition we need the following lemma. We could not find this statement in the literature, and so we give its proof here.

Lemma 3.2. Consider the linear differential equation

z 2 u ′′ (z) + bzu ′ (z) + (cz 2 -d 2 + (1 -b)d)u(z) = 0, (3.9)
where b, c, d ∈ C. The function

u p (z) = ∞ n=0 (-c) n n!Γ n + d + b+1 2 z 2 2n+d , z ∈ C,
is a particular solution for (3.9).

Proof. By using the Frobenius method we can seek the solution of equation (3.9) in the following form u(z) = z d n≥0 a n z n . From the differential equation we obtain a recurrence relation for the coefficients:

n(n + 2d + b -1)a n = -ca n-2 , n ≥ 2.
Accordingly, a particular solution of (3.9) for all z ∈ C is of the form

u(z) = a 0 (d) n≥0 (-c/4) n z 2n+d n! n m=1 m + d + b-1 2 = a 0 (d) n≥0 (-c/4) n n! Γ d + b+1 2 Γ n + p + b+1 2 z 2n+d , where a 0 (d) 0. If a 0 (d) = 2 -d Γ d + b+1 2 -1
, we obtain

u(z) = n≥0 (-c) n n!Γ n + d + b+1 2 z 2 2n+d , z ∈ C.
The radius of convergence of the series u(z) is infinity, an thus u(z) converges for all b, c, d, z ∈ C.

In the converse of Proposition 3.1 some of the conditions are more tolerant.

Proposition 3.3. For s ∈ R and x ∈ R d , let f s (x) be a function satisfying the following conditions:

(1)

f s (x) is continuous on R × R d .
(2) f s (x) is an eigenfunction of the Dunkl Laplacian with eigenvalue -s 2 .

(3) The mapping s → f s (x) extends to an entire function on C with the same parity as 2λ k + 1. (4) For every N ∈ N there exists a positive continuous increasing function

C k,N on R + such that | f s (x)| ≤ C k,N ( x )(1 + |s|) -N e (R+ x ) |Im s| , ∀s ∈ C.
(3.10) (5) For every r > 0 and every k-spherical harmonic Y ℓ k of degree ℓ, the mapping

s → s -(2λ k +2ℓ+1) S d-1 f s (rω)Y ℓ k (ω)ϑ k (ω)dσ(ω) is entire on C. Then there exists f ∈ D R (R d ) such that f s (x) = P s k f (x). Proof. For m ∈ N, define the following function F m (x) := (-1) m ∞ 0 f s (x)s 2m ds (3.11)
and set F 0 = f. The estimate (3.10) shows that the integrals converge absolutely, and therefore, by the assumption (1), F m is continuous on R d for all m ∈ N. Further, one may check that ∆ m k f, ψ = F m , ψ for all ψ ∈ D(R d ). Hence, the hypoelliplicity of ∆ k (see [START_REF] Mejjaoli | On a mean value property associated with the Dunkl Laplacian operator and applications[END_REF]) yields that f ∈ C ∞ (R d ).

We now turn to the proof of f (x) = 0 for all x > R. Let Y ℓ, j : 1 ≤ j ≤ dim(H ℓ k ) be an orthonormal basis of H ℓ k . By (3.11) with m = 0, we have

f ℓ, j (r) = ∞ 0 f s,ℓ, j (r)ds, r > 0, (3.12)
where f ℓ, j (r) := f (r • ), Y ℓ, j k and f s,ℓ, j (r) := f s (r • ), Y ℓ, j k are the spherical k-harmonic coefficients of f and f s , respectively. Here •, • k stands for the inner product in L 2 (S d-1 , ϑ k (η)dσ(η)).

To show that f (x) = 0 for all x > R, it is enough to prove that f ℓ, j (r) = 0 for all r > R. The fact that f s,ℓ, j (r)Y ℓ, j (η) are eigenfunctions of ∆ k with eigenvalue -s 2 implies

d 2 dr 2 + 2λ k + 1 r d dr + s 2 - ℓ(ℓ + 2λ k ) r 2 f s,ℓ, j (r) = 0. (3.13)
Above we have used the fact that in polar coordinates, the Dunkl Laplacian can be expressed as

∆ k = d 2 dr 2 + 2λ k + 1 r d dr + 1 r 2 ∆ k,S d-1
, where ∆ k,S d-1 is the analogue of the Laplace-Beltrami operator on the sphere S d-1 , which, in particular, has k-spherical harmonics as eigenfunctions,

∆ k,S d-1 Y ℓ k (η) = -ℓ(ℓ + 2λ k )Y ℓ k (η)
. We refer the reader to [START_REF] Xu | Uncertainty principle on weighted spheres, balls and simplexes[END_REF] for more details on ∆ k,S d-1 and its properties.

By Lemma 3.2, the solution f s,ℓ, j (r) of equation (3.13) is in the following form f s,ℓ, j (r) = c ℓ, j (s) r ℓ  ℓ+λ k (rs) = cℓ, j (s) r ℓ s 2ℓ+2λ k +1  ℓ+λ k (rs), (3.14) where c ℓ, j is a function which depends only on s, and cℓ, j (s) := s -(2ℓ+2λ k +1) c ℓ, j (s). Because of the condition (5) on f s (x), the mapping s → cℓ, j (s) extends to an entire function of s ∈ C.

On the other hand, it is known that the normalized Bessel function  α (z) has infinitely many positive zeros 0 < ̺ (1) α < ̺ (2) α < • • • . Let 0 < r 0 < ̺ (1) ℓ+λ k and define ı(r 0 ) := inf

z∈C, |z|=r 0 |  ℓ+λ k (z)|.
For s ∈ C such that |s| > 0, the identity (3.14) and the assumption (4) on f s (x) imply, for

r = r 0 /|s|, |c ℓ, j (s)| ≤ C k,N r 0 |s| ı(r 0 ) -1 r ℓ 0 |s| -ℓ (1 + |s|) -N e (R+ r 0 |s| ) |Im s| (3.15)
for all N ∈ N. In particular, if |s| ≥ 1 we have

|c ℓ, j (s)| ≤ C k,M,r 0 (1 + |s|) -M e (R+r 0 ) |Im s| (3.16)
for all M ∈ N (recall that C k,N is an increasing function). For the compact domain 0 ≤ |s| ≤ 1, the estimate (3.16) holds true with a different constant. Moreover, by (3.14) and the condition (3) on f s (x), the map s → cℓ, j (s) is even. Applying Lemma 2.6, there exists a radial function

ψ ∈ D R+r 0 (R d+2ℓ ) such that cℓ, j (s) = H k + d+2ℓ-2 2
ψ 0 ( ξ ) with ξ = s, where ψ(x) = ψ 0 ( x ), and H α is the Hankel transform. Here we have used the fact that the Dunkl transform of radial functions at ξ is a Hankel transform at ξ (see (2.6)). Now letting

r 0 → 0 shows supp(ψ) ⊂ B(O, R) ⊂ R d+2ℓ .
Using again (3.14) and the fact that cℓ, j (s) = H k + d+2ℓ-2 2 ψ 0 (s), the integral (3.12) becomes

f ℓ, j (r) = r ℓ ∞ 0 cℓ, j (s)  ℓ+λ k (rs)s 2ℓ+2λ k +1 ds = r ℓ ∞ 0 H k + d+2ℓ-2 2 ψ 0 (s)  ℓ+λ k (rs)s 2ℓ+2λ k +1 ds = r ℓ ∞ 0 H λ k +ℓ ψ 0 (s)  ℓ+λ k (rs)s 2ℓ+2λ k +1 ds = 2 λ k +ℓ Γ(λ k + ℓ)r ℓ ψ 0 (r). That is ψ(x) = 2 -(λ k +ℓ) Γ(λ k + ℓ) -1 x -ℓ f ℓ, j ( x ), x ∈ R d+2ℓ , which implies that f ℓ, j ( x ) = 0 for x > R as desired. It will follow that f s (x) = P s k f (x) with f (x) = F 0 (x) = ∞ 0 f s (x)
ds provided we prove that if h s (x) satisfies the assumptions (1)-( 5) of Proposition 3.3 such that ∞ 0 h s (x)ds = 0 then h s (x) = 0 for all x ∈ R d and s ∈ R. To do so, it suffices to show that ∞ 0 h s,ℓ, j (x)ds = 0 implies h s,ℓ, j (x) = 0 for all x ∈ R d and s ∈ R. However, this follows by mimicking the proof given above and the injectivity of the Hankel transform on R + .

We can now state the main result of this paper by putting the above propositions together. The above theorem has several applications. The following statement illustrates one of these, which we may think of it as a spectral-reformulation of the Paley-Wiener theorem for the Dunkl transform (see Fact 2.5).

Theorem 3.5. Let ϕ be a smooth function on R × S d-1 . Then ϕ(s, η) = F k f (sη) for some f ∈ D R (R d ) if

and only if the following two conditions hold:

(1) For each η ∈ S d-1 , the map s → ϕ(s, η) has entire extension with the property that for all N ∈ N there exists a constant C k,N > 0 such that

|ϕ(s, η)| ≤ C k,N (1 + |s|) -N e R |Im s| .
(2) For an arbitrary k-spherical harmonic Y ℓ k of degree ℓ, the map

s → s -ℓ S d-1 ϕ(s, η)Y ℓ k (η)ϑ k (η)dσ(η)
has even entire extension.

Proof. Recall from (2.2) the Dunkl kernel E k (x, y) = V k (e •,y )(x). Following [START_REF] Trimèche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform[END_REF], let t V k be the transpose of the Dunkl intertwining operator V k which satisfies on D(R d )

R d f (x) V k h(x)ϑ k (x)dx = R d t V k f (x) h(x)dx. By [27, Theorem 4.1], supp( f ) ⊂ B(O, R) if and only if supp( t V k f ) ⊂ B(O, R).
We now proceed towards the proof of the direct part. Assume that ϕ(s, η)

= F k f (sη) for some f ∈ D R (R d ). Then ϕ(s, η) = R d f (x)V k e -is η,• (x)ϑ k (x)dx = R g η (p)e -isp d p,
where g η (p) := η,y =p t V k f (y)dy. Since supp( f ) ⊂ B(O, R), it follows that g η ∈ D R (R). This together with the Paley-Wiener theorem for the Euclidean Fourier transform on R completes the proof of the property [START_REF] Arfken | Mathematical methods for physicists[END_REF].

Next we turn our attention to the property (2). For r > 0 and s ∈ C, we have

S d-1 P s k f (rη)Y ℓ k (η)ϑ k (η)dσ(η) = c -1 k s 2λ k +1 S d-1 Y ℓ k (η) S d-1 F k f (sω)E k (ω, irsη)ϑ k (ω)dσ(ω) ϑ k (η)dσ(η) = c -1 k s 2λ k +1 S d-1 F k f (sω) S d-1 E k (irsω, η)Y ℓ k (η)ϑ k (η)dσ(η) ϑ k (ω)dσ(ω).
Using the Funk-Hecke formula (2.13) to deduce that

S d-1 E k (irsω, η)Y ℓ k (η)ϑ k (η)dσ(η) = d k Λ ℓ (e irs • )Y ℓ k (ω), (3.17) 
where, by Fact 2.4.2,

Λ n (e irs • ) = Γ(λ k + 1) √ πΓ(λ k + 1/2) ℓ! (2λ k ) ℓ 1 -1 e irst C λ k ℓ (t)(1 -t 2 ) λ k -1/2 dt = Γ(λ k + 1) 2 ℓ Γ(λ k + ℓ + 1) (irs) ℓ  ℓ+λ k (rs).
This shows that

S d-1 P s k f (rη)Y ℓ k (η)ϑ k (η)dσ(η) = 1 2 λ k +ℓ Γ(λ k + ℓ + 1) (irs) ℓ  ℓ+λ k (rs)s 2λ k +1 S d-1 F k f (sω)Y ℓ k (ω)ϑ k (ω)dσ(ω).
That is

s -(2ℓ+2λ k +1) S d-1 P s k f (rη)Y ℓ k (η)ϑ k (η)dσ(η) = 1 2 λ k +ℓ Γ(λ k + ℓ + 1) (ir) ℓ  ℓ+λ k (rs)s -ℓ S d-1 ϕ(s, ω)Y ℓ k (ω)ϑ k (ω)dσ(ω).
Since the mapping s → P s k f has the same parity as 2λ k + 1, it follows that the map s → s -ℓ S d-1 ϕ(s, ω)Y ℓ k (ω)ϑ k (ω)dσ(ω) is even. The analycity of the latter map is immediate from Theorem 3.4.

For the converse part, define

f s (x) := c -1 k s 2λ k +1 S d-1 ϕ(s, η)E k (ix, sη)ϑ k (η)dσ(η), s ∈ R, x ∈ R d .
By the assumptions ( 1) and ( 2) on ϕ(s, η), the function f s satisfies the hypothesis of Theorem 3.4. Thus there exists

f ∈ D R (R d ) such that f s (x) = P s k f (x). That is c -1 k s 2λ k +1 S d-1 ϕ(s, η) -F k f (sη) E k (ix, sη)ϑ k (η)dσ(η) = 0, which implies c -1 k ∞ 0 S d-1 ϕ(s, η) -F k f (sη) E k (ix, sη)ϑ k (η)dσ(η)s 2λ k +1 ds = 0.
This finishes the proof of the converse part. 

M f k,m (x, r) := ∞ 0  λ k,m (rs)P s k f (x)ds, x ∈ R d , r > 0, where λ k,m := k + m -2 2 ,
and  λ k,m is the normalized Bessel function (2.9) of order λ k,m . Notice that

λ k,d = k + d-2 2
which is nothing but λ k defined in (2.7). The Dunkl spherical mean operator was first introduced in [START_REF] Mejjaoli | On a mean value property associated with the Dunkl Laplacian operator and applications[END_REF] and further studied in [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF].

Proof. By the definition of M f k,m together with formula (3.6) of P s k f (x) and Fact 2.2, we have

M f k,d (x, r) = d k c -2 k ∞ 0  λ k (rs) s 2λ k +1 R d τ x f (y)  λ k (s y )ϑ k (y)dy ds = d k c -2 k R d τ x f (y) ∞ 0  λ k (rs)  λ k (s y )s 2λ k +1 ds ϑ k (y)dy = d k c -2 k Γ(λ k + 1) 2 r 2 -λ k R d τ x f (y) y 2 -λ k ∞ 0 J λ k (rs)J λ k (s y )sds ϑ k (y)dy = d k c -2 k Γ(λ k + 1) 2 r 2 -λ k R d τ x f (y) y 2 -λ k δ(r -y ) r ϑ k (y)dy = d k c -2 k 2 2λ k Γ(λ k + 1) 2 S d-1 τ x f (rη)ϑ k (η)dσ(η) = d k c -2 k 2 2λ k Γ(λ k + 1) 2 S d-1 τ rη f (x)ϑ k (η)dσ(η).
Now, the fact that d k = c k /{2 λ k Γ(λ k + 1)} finishes the proof.

For fixed r > 0, the map s →  λ k,m (rs) is an even entire function satisfying the estimate |  λ k,m (rs)| ≤ ce r |Im s| . Therefore, by Lemma 2.7,  λ k,m (r • ) is the Dunkl transform of a radial distribution H m r supported inside the closed ball in R d with radius r and the origin as center. We have then 

M f k,m (x, r) = ∞ 0  λ k,m (rs)P s k f (x)ds = c -1 k ∞ 0  λ k,m (rs) S d-1 F k f (sη)E k (sη, ix)ϑ k (η)dσ(η) s 2λ k +1 ds = c -1 k R d F k f (ξ)F k (H r m )(ξ)E k (ξ, ix)ϑ k (ξ)dξ = ( f * k H m r )(x); ( 4 
H m r = 2 λ k,m Γ(λ k,m + 1)r -(2 k +m-2) 1 r ∂ ∂r ℓ δ r r .
In particular, the distribution H m r is supported on the sphere of radius r centered at the origin. Proof. According to (3.17) (with ℓ = 0), the Dunkl transform of δ r (x) is

F k (δ r )(ξ) = 2 -λ k Γ(λ k + 1) -1  λ k (r ξ )r 2λ k +1 , where λ k = k + d-2
2 . Here we have used the fact that

d k = c k /{2 λ k Γ(λ k + 1)}. Recall that F k (H m r )(ξ) =  λ k,m (r ξ ), where λ k,m = k + m-2 2 and m = d -2ℓ. We will denote F k (δ r )(ξ) and F k (H m r )(ξ) by F k (δ r )(s) and F k (H m r )(s)
, where ξ = s. Using the well known formula

1 z d dz n (z α J α (z)) = z α-n J α-n (z), we get F k (H m r )(s) = Γ(λ k,m + 1) rs 2 -λ k,m J λ k,m (rs) = 2 λ k,m Γ(λ k,m + 1)(rs) -(2 k +d-2ℓ-2) (rs) ( k + d 2 -ℓ-1) J k + d 2 -ℓ-1 (rs) = 2 λ k,m Γ(λ k,m + 1)(rs) -(2 k +d-2ℓ-2) s -2ℓ 1 r ∂ ∂r ℓ (rs) k + d 2 -1 J k + d 2 -1 (rs) = 2 λ k,m Γ(λ k,m + 1) 2 λ k Γ(λ k + 1) r -(2 k +d-2ℓ-2) 1 r ∂ ∂r ℓ r 2 k +d-2  k + d 2 -1 (rs) = 2 λ k,m Γ(λ k,m + 1)r -(2 k +d-2ℓ-2) 1 r ∂ ∂r ℓ F k (δ r )(s) r .
The theorem follows from the injectivity of the Dunkl transform. In view of the hypothesis (4.3) we can now apply Theorem 3.4 to deduce that f ∈ D R (R d ) as desired.

  6)), together with the Paley-Wiener theorems stated above for the Hankel and the Dunkl transforms. A compactly supported distribution T ∈ E ′ (R d ) is called radial if for all orthogonal transformations A ∈ O(d) (that is, for all rotations on R d ) we have T, ϕ = T, ϕ • A for all ϕ ∈ E(R d ). Using the distributional forms of the Paley-Wiener theorems for the Hankel and the Dunkl transforms (see [28, Theorem 5.VII.1] and [27, Theorem 5.2], respectively) enable one to state the following version of Lemma 2.6 on E ′ (R d ).

Lemma 2 . 7 .

 27 Let F 0 ∈ C ∞ (R) e . Then F 0 is the Dunkl transform of a radial distribution T ∈ E ′ (R d ) with supp(T ) ⊂ B(O, R) if and only if F 0 extends to an entire function on C satisfying the estimate |F 0 (z)| ≤ C N (1 + |z|) N e R |Im z| , ∀z ∈ C for some N ∈ N.

  3. A Paley-Wiener theorem about the spectral parameter Recall from (2.3) that the Dunkl transform of f ∈ D(R d ) is defined by

  ) and let P s k f (x) defined either by (3.3) or (3.6), with s ∈ R and x ∈ R d . Then the following hold:

Theorem 3 . 4 .

 34 Let x ∈ R d and s ∈ R. There exists a smooth compactly supported function f with support contained in B(O, R) such that P s k f (x) = f s (x) if and only if f s (x) satisfies the conditions listed in Proposition 3.3.

4 .

 4 A support theorem for general types of Dunkl spherical means For an integer 1 ≤ m ≤ d, we define the operator f → M f k,m on D(R d ) by

Lemma 4 . 1 .

 41 In case m = d, the operator f → M f k,d reduces to the so-called Dunkl spherical mean operator, M f k,d (x, r) = 1 d k S d-1 τ rη f (x)ϑ k (η)dσ(η). (4.1)

Remark 4 . 3 .Theorem 4 . 4 .= c - 1 k- 1 k 1 k 1 k 0 J k + m 2 - 1 = 2

 434411110212 Recall from (4.1) the Dunkl spherical mean operator M f k,d . In[START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF] Theorem 4.1] it has been proved that there exists a unique compactly supported probability measure σ k x,r such that M f k,d (x, r) = R d f (y)dσ k x,r (y). By the convolution product (4.2), the above theorem, with m = d, enlighten on the measure σ k x,r .Since f ∈ D(R d ), then M f k,m (x, r) is a smooth function in x and r. One may also check that forf ∈ D(R d ) we have lim r→0 M f k,m (x, r) = f (x), since  λ k,m (0) = 1. Moreover, in view of Fact 2.3.3 and that M f k,m (x, r) = (H m r * k f )(x), it follows that if f ∈ D R (R d ) then M f k,m (x, r) = 0 whenever r > R + xand m and d have the same parity. This fact does not hold if d and m have different parity. For the converse direction we have: Let 1 ≤ m ≤ d be an integer such that m and d have the same parity. Letf ∈ C(R d ) ∩ L 1 (R d , ϑ k (x)dx) such that, for every k-spherical harmonic Y ℓk of degree ℓ and for every r > 0, the functions → s -(2λ k +2ℓ+1) S d-1 P s k f (rη)Y ℓ k (η)ϑ k (η)dσ(η) (4.3) is entire on C. Then M f k,m (x, r) = 0 for r > R + x implies supp( f ) ⊂ B(O, R). Proof. Let x ∈ R d , y ∈ R m ,and put s := y . On R m , we will consider multiplicity functions k (m) so that k (m) = k , and we will denote the corresponding Dunkl transform on R m by F k(m) . Observe that λ k(m) = k (m) + m-2 2 = λ k,m .The analogues of the constants defined by (2.4) and(2.11) satisfy d k (m) = c k (m) /{2 λ k (m) Γ(λ k (m) + 1)} = c k (m) /{2 λ k,m Γ(λ k,m + 1)}.For simplicity, we shall write M f,x k,m (y) for M f k,m (x, y ) in the proof below. By (3.17) and Fact 2.2, we haveF k (m) M f,x k,m (ξ) (m) R m M f k,m (x, y )E k (m) (-iξ, y)ϑ k (m) (y)dy = c (x, s)E k (m) (-iξ, sη)ϑ k (m) (η)dσ(η)s 2λ k,m +1 ds (λ k (m) = λ k,m ) = d k (m) c -(x, s)  λ k,m (s ξ )s 2λ k,m +1 ds = d k (m) c -k,m (rs)  λ k,m (s ξ )P r k f (x)s 2λ k,m +1 dsdr = 2 λ k,m Γ(λ k,m + 1) ξ -k -(s ξ )J k + m 2 -1 (rs)sds r -k -m 2 +1 dr = 2 λ k,m Γ(λ k,m + 1) ξ -k -λ k,m Γ(λ k,m + 1) ξ -2 k -m+1 P ξ k f (x).Since d and m have the same parity, we are permitted to write the above conclusion asF k (m) M f,x k,m (µ) = 2 λ k,m Γ(λ k,m + 1)µ -(2 k +m-1) P µ k f (x).Since the function y → M f k,m (x, y ) is compactly supported in B(O, R + x ) for every fixed x ∈ R d , it follows that its Dunkl transform F k (m) M f,x k,m (µ) is an entire function on C with the property that for all M ∈ N there exists a positive C k,M such that|F k (m) M f,x k,m (µ)| ≤ C k,M (R + x ) 2 k +m-1 (1 + |µ|) -M e (R+ x ) |Im µ| , µ ∈ C. Making use of the fact that F k (m) M f,x k,m (µ) = 2 -λ k,m Γ(λ k,m + 1) -1 µ -(2 k +m-1) P µ k f (x), we deduce that the mapping µ → P µ k f (x) is an entire function on C satisfying the estimate |P µ k f (x)| ≤ C k,N (R + x ) 2 k +m-1 (1 + |µ|) -N e (R+ x ) |Im µ| , µ ∈ C for all N ∈ N.