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Lp-FOURIER ANALYSIS ASSOCIATED TO A FAMILY OF

DIFFERENTIAL-REFLECTION OPERATORS

SALEM BEN SAID, ASMA BOUSSEN & MOHAMED SIFI

Abstract. In [5] we introduced a family of differential-reflection operatorsΛA,ε acting on smooth

functions defined on R, where the spectral problem for the operators ΛA,ε has been discussed.

Here A is a Sturm-Liouville function with additional hypotheses and ε ∈ R.
Via the eigenfunctions of ΛA,ε, we introduce in this paper a generalized Fourier transform

FA,ε. An Lp-harmonic analysis for FA,ε is developed when 0 < p ≤ 2

1+
√

1−ε2
and −1 ≤ ε ≤ 1. In

particular, an Lp-Schwartz space isomorphism theorem for FA,ε is proved.

1. Introduction

In [5] we considered some aspects of harmonic analysis associated to the following family of

one-dimensional (A, ε)-operators

ΛA,ε f (x) = f ′(x) +
A′(x)

A(x)

(

f (x) − f (−x)

2

)

− ε̺ f (−x), (1.1)

where A is so-called a Chébli function on R (i.e. A is a continuous R+-valued function on R

satisfying certain regularity and convexity hypotheses), ̺ is the index of A, and ε ∈ R. We note

that ̺ ≥ 0. The function A and the real number ε are the deformation parameters giving back

three well known cases (as special examples) when:

(1) A(x) = Aα(x) = |x|2α+1 and ε arbitrary (Dunkl’s operators [13]),

(2) A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 0 (Heckman’s operators [18]),

(3) A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 1 (Cherednik’s operators [11]).

We would like to mention that a differential-reflection operator built in terms of a Chébli func-

tion has been the first time done in [20]. This is one of the major themes of research at the

“school of harmonic analysis” in Tunisia.

In [5] we proved that for λ ∈ C, the equation

ΛA,ε f (x) = iλ f (x), (1.2)

where f : R→ C, admits a unique solution ΨA,ε(λ, ·) satisfying ΨA,ε(λ, 0) = 1. Moreover, under

the assumption −1 ≤ ε ≤ 1, we established in [5, Theorems 3.4 and 3.5] suitable estimates for

the growth of the eigenfunction ΨA,ε(λ, x) and of its partial derivatives.

In this paper we are concerned with a development of an Lp-harmonic analysis for a general-

ized Fourier transform FA,ε when 0 < p ≤ 2

1+
√

1−ε2
and −1 ≤ ε ≤ 1. Here

FA,ε f (λ) =

∫

R

f (x)ΨA,ε(λ,−x)A(x)dx

for f ∈ L1(R, A(x)dx).
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Using the estimates for the growth of ΨA,ε(λ, x) we get holomorphic properties of FA,ε on

Lp(R, A(x)dx). A Riemann-Lebesgue lemma is also obtained for 1 ≤ p < 2

1+
√

1−ε2
.

We then turn our attention to an Lp-Schwartz space isomorphism theorem for FA,ε. In [17]

Harish-Chandra proved an L2-Schwartz space isomorphism for the spherical Fourier transform

on non-compact Riemannian symmetric spaces. This result was extended to Lp-Schwartz spaces

with 0 < p < 2 by Trombli and Varadarajan [23] (see also [12, 15, 16]). In the early nighties,

Anker gave a new and simple proof of their result, based on the Paley-Wiener theorem for the

spherical Fourier transform on Riemannian symmetric spaces [1]. Recently, Anker’s method

was used in [21] to prove an Lp-Schwartz space isomorphism theorem for the Heckman-Opdam

hypergeometric functions. Our approach is inspired by Anker’s paper [loc. cit.]. More precisely,

for −1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
, put

Cp,ε :=
{

λ ∈ C | | Im λ| ≤ ̺
(

(2/p) − 1 −
√

1 − ε2
)}

. (1.3)

Denote by Sp(R) the Lp-Schwartz space on R, and by S (Cp,ε) the Schwartz space on the tube

domain Cp,ε. We prove that FA,ε is a topological isomorphism between Sp(R) and S (Cp,ε) (see

Theorem 3.12).

We close this paper by establishing a result in connection with pointwise multipliers of

S (Cp,ε). More precisely, for arbitrary α ≥ 0, a function ψ defined on the tube domain Cα :=
{

λ ∈ C | | Im λ| ≤ α
}

is called a pointwise multiplier of S (Cα) if the mapping φ 7→ ψφ is

continuous from S (Cα) into itself. In [2] Betancor et al. characterized the set of pointwise

multipliers of the Schwartz spaces S (Cα).

Under the assumptions 0 < p ≤ 2

1+
√

1−ε2
whenever ̺ = 0, and 2

2+
√

1−ε2
≤ p ≤ 2

1+
√

1−ε2

whenever ̺ > 0, we prove that if T is in the dual space S ′
p(R) of Sp(R) such that ψ := FA,ε(T )

is a pointwise multiplier of S (Cp,ε), then for any s ∈ N there exist ℓ ∈ N and continuous

functions fm defined on R, m = 0, 1, . . . , ℓ, such that

T =

ℓ
∑

m=0

Λ
m
A,ε fm

and, for every such m,

sup
x∈R

(|x| + 1)s e( 2
p
−
√

1−ε2) ̺|x| | fm(x)| < ∞. (1.4)

The organization of this paper is as follows: In Section 2 we recapitulate some definitions

and basic notations, as well as some results from literature. Further, we recall from [5] some

results on ΨA,ε(λ, x). In Section 3 we develop an Lp-harmonic analysis for the Fourier transform

FA,ε, where we mainly prove an Lp-Schwartz space isomorphism theorem for FA,ε. Finally, in

Section 4 we characterize the distributions T ∈ S ′
p(R) so that FA,ε(T ) is a pointwise multiplier

of the Schwartz space S (Cp,ε).

2. Background

2.1. The Chébli transform. In this subsection we present results from [9, 10, 24, 25].

Throughout this paper we will denote by A a function on R satisfying the following hypothe-

ses:

(H1) A(x) = |x|2α+1B(x), where α > −1
2

and B is any even, positive and smooth function on R

with B(0) = 1.

(H2) A is increasing and unbounded on R+.
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(H3) A′/A is a decreasing and smooth function onR∗
+
, and hence the limit 2̺ := lim

x→+∞
A′(x)/A(x) ≥

0 exists.

Such a function A is called a Chébli function. From (H1) it follows that

A′(x)

A(x)
=

2α + 1

x
+C(x), x , 0, (2.1)

where C := B′/B is an odd and smooth function on R.

Let ∆A, or simply ∆, be the following second order differential operator

∆ =
d2

dx2
+

A′(x)

A(x)

d

dx
. (2.2)

For µ ∈ C, we consider the Cauchy problem

∆ f (x) = −(µ2
+ ̺2) f (x) with f (0) = 1 and f ′(0) = 0. (2.3)

In [10] the author proved that the system (2.3) admits a unique solution ϕµ. For every µ ∈ C, the

solution ϕµ is an even smooth function on R and the map µ 7→ ϕµ(x) is analytic. The following

Laplace type representation of ϕµ can be found in [10] (see also [24]).

Lemma 2.1. For every x ∈ R∗ there is a non-negative even continuous function K(|x|, ·) sup-

ported in [−|x|, |x|] such that for all µ ∈ C

ϕµ(x) =

∫ |x|

0

K(|x|, t) cos(µt)dt. (2.4)

The following estimates of the eigenfunctions ϕµ can be found in [9, 10, 25].

Lemma 2.2. Let µ ∈ C such that | Im µ| ≤ ̺. Then

1) ϕ±i̺(x) = 1, ϕ−µ(x) = ϕµ(x) and |ϕµ(x)| ≤ 1.

2) e−̺|x| ≤ ϕ0(x) ≤ c(|x| + 1)e−̺|x|.

3) |ϕµ(x)| ≤ ϕi Imµ(x) ≤ e| Im µ||x|ϕ0(x).

4) |ϕ′µ(x)| ≤ c (̺2
+ |µ|2)e| Im µ||x|ϕ0(x).

The Chébli transform of f ∈ L1(R+, A(x)dx) is given by

F∆( f )(µ) :=

∫

R+

f (x)ϕµ(x)A(x)dx. (2.5)

The following Plancherel and inversion formulas for F∆ are proved in [10].

Theorem 2.3. There exists a unique positive measure π with support R+ such that F∆ in-

duces an isometric isomorphism from L2(R+, A(x)dx) onto L2(R+, π(dµ)), and for any f ∈
L1(R+, A(x)dx) ∩ L2(R+, A(x)dx) we have

∫

R+

| f (x)|2A(x)dx =

∫

R+

|F∆( f )(µ)|2 π(dµ).

The inverse transform is given by

F
−1
∆

g(x) =

∫

R+

g(µ)ϕµ(x) π(dµ). (2.6)

To have a nice behavior for the Plancherel measure π we must add a further (growth) re-

striction on the function A. Following [24], we will assume that A′/A satisfies the following

additional hypothesis:
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(H4) There exists a constant δ > 0 such that for all x ∈ [x0,∞) (for some x0 > 0),

A′(x)

A(x)
=























2̺ + e−δxD(x) if ̺ > 0,

2α + 1

x
+ e−δxD(x) if ̺ = 0,

(2.7)

with D being a smooth function bounded together with its derivatives.

In these circumstances the Plancherel measure π is absolutely continuous with respect to the

Lebesgue measure and has density |c(µ)|−2 where c is a continuous function on R+ and zero free

on R∗
+

(see [3]). Moreover, by [25, Proposition 6.1.12 and Corollary 6.1.5] (see also [6]), for

µ ∈ C we have

(i) If ̺ ≥ 0 and α > −1/2, then |c(µ)|−2 ∼ |µ|2α+1 whenever |µ| >> 1.

(ii) If ̺ > 0 and α > −1/2, then |c(µ)|−2 ∼ |µ|2 whenever |µ| << 1.

(iii) If ̺ = 0 and α > 0, then |c(µ)|−2 ∼ |µ|2α+1 whenever |µ| << 1.

In the literature, the function c is called Harish-Chandra’s function of the operator ∆. We refer

to [7] for more details on the c-function.

Henceforth we will assume that Chébli’s function A satisfies the additional hypothesis (H4).

It follows that for |x| is large enough:

(i) A(x) = O(e2̺|x|) for ̺ > 0.

(ii) A(x) = O(|x|2α+1) for ̺ = 0.

We close this section by giving some basic results of (the analogue of) the Abel transform

associated to the second order differential operator ∆.

Denote by De(R) the space of even and compactly supported functions in C∞(R). In [24] the

author has proved that the Abel transform defined on De(R) by

A f (y) =
1

2

∫

|x|>|y|
K(|x|, y) f (x)A(x)dx (2.8)

is an automorphism of De(R) satisfying

F∆ = Feuc ◦A , (2.9)

where Feuc is the Euclidean Fourier transform.

2.2. A family of differential-reflection operators. Recall from (1.1) the diffential-reflection

operator ΛA,ε. In view of (2.1) and the hypothesis (H4) on A′/A, the space D(R) (of smooth

functions with compact support on R) and the space S (R) (of Schwartz functions on R) are

invariant under the action of ΛA,ε.

Let S denote the symmetry (S f )(x) := f (−x). For f ∈ C∞(R) such that supx∈R(1+|x|)res|x|| f (t)(x)| <
∞ for every r, t ∈ N and for some 2̺ ≤ s < ∞, and for g ∈ C∞(R) such that g and all its deriva-

tives are at most of polynomial growth. Then
∫

R

ΛA,ε f (x)g(x)A(x)dx = −
∫

R

f (x)(ΛA,ε + 2ε̺S )g(x)A(x)dx. (2.10)

Let λ ∈ C and consider the initial data problem

ΛA,ε f (x) = iλ f (x), f (0) = 1, (2.11)

where f : R→ C.
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Theorem 2.4 (see [5, Theorem 3.2]). Let λ ∈ C. There exists a unique solution ΨA,ε(λ, ·) to the

problem (2.11). Further, for every x ∈ R, the function λ 7→ ΨA,ε(λ, x) is analytic on C. More

explicitly:

(i) For iλ , ε̺,

ΨA,ε(λ, x) = ϕµε(x) +
1

iλ − ε̺
ϕ′µε(x), where µ2

ε := λ2
+ (ε2 − 1)̺2. (2.12)

(ii) For iλ = ε̺,

ΨA,ε(λ, x) = 1 + 2ε̺
sg(x)

A(x)

∫ |x|

0

A(t)dt. (2.13)

The following theorem contains important estimates for the growth of the eigenfunctionΨA,ε.

Theorem 2.5 (see [5, Theorem 3.4]). Suppose that −1 ≤ ε ≤ 1 and x ∈ R. Then:

1) For λ ∈ R we have |ΨA,ε(λ, x)| ≤
√

2.

2) For λ = a + ib ∈ C we have |ΨA,ε(λ, x)| ≤ ΨA,ε(0, x) e|b| |x|.

3) For λ = 0 we distinguish the following two cases:

a) For ε = 0, we have ΨA,0(0, x) = 1.

b) For ε , 0, there is a constant cε > 0 such that ΨA,ε(0, x) ≤ cε(|x| + 1)e−̺(1−
√

1−ε2)|x|.

We remind the reader that ϕi̺(x) = 1 and ϕ
i
√

1−ε2̺
(x) ≤ c(|x|+1)e−̺(1−

√
1−ε2)|x|; see Lemma 2.2.

Theorem 2.6 (see [5, Theorem 3.5]). 1) Assume that λ ∈ C and |x| ≥ x0 with x0 > 0. Given

N ∈ N, there is a positive constant c such that
∣

∣

∣

∣

∂N

∂xN
ΨA,ε(λ, x)

∣

∣

∣

∣

≤ c(|λ| + 1)Ne| Im λ| |x|ϕ
i
√

1−ε2̺
(x). (2.14)

2) Assume that λ ∈ C and x ∈ R. Given M ∈ N, there is a positive constant c such that
∣

∣

∣

∣

∂M

∂λM
ΨA,ε(λ, x)

∣

∣

∣

∣

≤ c|x|Me| Imλ| |x|ϕ
i
√

1−ε2̺
(x). (2.15)

2.3. Intertwining operators. First, let us recall the following Laplace type representation of

ΨA,ε(λ, ·) which can be found in [5, Corollary 4.4].

Theorem 2.7. For every x ∈ R∗, there is a non-negative continuous function Kε(x, ·) supported

in [−|x|, |x|] such that for all λ ∈ C,

ΨA,ε(λ, x) =

∫

|y|<|x|
Kε(x, y)eiλydy. (2.16)

For f ∈ C∞(R) we define VA,ε f by

VA,ε f (x) =

∫

|y|<|x|
Kε(x, y) f (y)dy for x , 0, and VA,ε f (0) = f (0). (2.17)

Observe that

ΨA,ε(λ, x) = VA,ε(e
iλ · )(x). (2.18)

Theorem 2.8 (see [5, Theorem 5.3]). The operator VA,ε is the unique automorphism of C∞(R)

such that

ΛA,ε ◦ VA,ε = VA,ε ◦
d

dx
, (2.19)

where ΛA,ε is the differential-reflection operator (1.1).
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Below we will deal with the dual operator tVA,ε of VA,ε in the sense that

∫

R

VA,ε f (x)g(x)A(x)dx =

∫

R

f (y) tVA,εg(y)dy. (2.20)

This can be written

tVA,εg(y) =

∫

|x|>|y|
Kε(x, y)g(x)A(x)dx. (2.21)

Denote by C∞e (R) the space of even functions in C∞(R). For f ∈ C∞e (R) we set

Eε f (x) := f (x) − ̺ε|x|
2

∫

|y|<|x|
f (y)

J1(̺ε
√

x2 − y2)
√

x2 − y2
dy, (2.22)

where J1 is the Bessel function of the first kind, and ̺ε :=
√

1 − ε2 ̺. If ε = ±1, then ̺±1 = 0,

and therefore E±1 = id . By [22, Proposition 2.1] (see also [19, Theorem 5.1]) the integral

transform Eε is an automorphism of C∞e (R), and its inverse transform is given by

E
−1
ε f (x) = f (x) +

̺ε|x|
2

∫

|y|<|x|
f (y)

I1(̺ε
√

x2 − y2)
√

x2 − y2
dy, (2.23)

where I1 is the modified Bessel function of the first kind.

Let De(R) be the space of even functions in D(R). For g ∈ De(R) put

t
Eεg(y) := g(y) −

̺ε

2

∫

|x|>|y|
|x| g(x)

J1(̺ε
√

x2 − y2)
√

x2 − y2
dx. (2.24)

Theorem 2.9 (see [5, Theorem 4.2]). The transform integral tEε is an automorphism of De(R),

and its inverse transform is given by

t
E
−1
ε g(y) = g(y) +

̺ε

2

∫

|x|>|y|
|x| g(x)

I1(̺ε
√

x2 − y2)
√

x2 − y2
dx. (2.25)

Recall from (2.21) the dual operator tVA,ε of VA,ε. The operator tVA,ε satisfies the following

properties.

Theorem 2.10 (see [5, Lemma 5.4, Theorem 5.5]). 1) The operator tVA,ε can be expressed as

tVA,εg(y) = t
E
−1
ε ◦A (ge)(y) −

(

ε̺ − d

dy

)

t
E
−1
ε ◦A (Jgo)(y), (2.26)

where Jh(x) :=
∫ x

−∞ h(t)dt and A is the Abel transform (2.8).

2) The operator tVA,ε is the unique automorphism of D(R) satisfying the intertwining property

d

dy
◦ tVA,ε =

tVA,ε ◦
(

ΛA,ε + 2ε̺S
)

,

where S denotes the symmetry (S f )(x) := f (−x).

6



3. Fourier transform of Lp-Schwartz spaces

Assume that −1 ≤ ε ≤ 1. For f ∈ L1(R, A(x)dx) put

FA,ε f (λ) =

∫

R

f (x)ΨA,ε(λ,−x)A(x)dx. (3.1)

To state its alleged inverse transform, let us introduce the following Plancherel measure

πε(dλ) =
|λ|

√

λ2 − (1 − ε2)̺2
∣

∣

∣c
(

√

λ2 − (1 − ε2)̺2
)

∣

∣

∣

2
1
R \ ]−

√
1−ε2̺,

√
1−ε2̺[

(λ)dλ, (3.2)

where c is the Harish-Chandra’s function associated to the second order differential operator ∆

(see Section 2 for more details on the c-function). Below f̌ (x) := f (−x).

Theorem 3.1. Let f be a smooth function with compact support on R. Then

1) (Inversion formula)

f (x) =
1

4

∫

R

FA,ε( f )(λ)ΨA,ε(λ, x)
(

1 −
ε̺

iλ

)

πε(dλ). (3.3)

2) (Plancherel formula)
∫

R

| f (x)|2A(x)dx =
1

4

∫

R

FA,ε( f )(λ)FA,ε( f̌ )(−λ)
(

1 −
ε̺

iλ

)

πε(dλ). (3.4)

We may rewrite (3.4) for two smooth and compactly supported functions f and g as
∫

R

f (x)g(−x)A(x)dx =
1

4

∫

R

FA,ε( f )(λ)FA,ε(g)(λ)
(

1 −
ε̺

iλ

)

πε(dλ). (3.5)

Proof. For the sake of completeness, we provide a detailed proof.

1) Below Jh(x) :=
∫ x

−∞ h(t)dt. Using the superposition (2.12) of the eigenfunction Ψε(λ, x), we

obtain

FA,ε f (λ) = 2F∆( fe)(µε) + 2(iλ + ε̺)F∆(J fo)(µε),

where F∆ is the Chébli transform (2.5). By the inversion formula (2.6) for F∆ we deduce that

f (x) =

∫

R+

{

F∆( fe)(µε)ϕµε(x) +F∆(J fo)(µε)ϕ
′
µε

(x)
}

π(dµε). (3.6)

Now, let us express ϕµε and ϕ′µε in terms of ΨA,ε as follows

ϕµε(x) =
1

2

(

ΨA,ε(−λ,−x) + ΨA,ε(−λ, x)
)

, ϕ′µε(x) =
iλ + ε̺

2

(

ΨA,ε(−λ,−x) −ΨA,ε(−λ, x)
)

.

Consequently, formula (3.6) becomes

f (x) =
1

2

∫

R+

ΨA,ε(−λ,−x)
{

F∆( fe)(µε) + (iλ + ε̺)F∆(J fo)(µε)
}

π(dµε)

+
1

2

∫

R+

ΨA,ε(−λ, x)
{

F∆( fe)(µε) − (iλ + ε̺)F∆(J fo)(µε)
}

π(dµε)

=
1

4

∫

R+

{

ΨA,ε(−λ,−x)FA,ε( f )(λ) + ΨA,ε(−λ, x)FA,ε( f̌ )(λ)
}

π(dµε). (3.7)

Further, it is easy to check that

ΨA,ε(λ, x) =
(

1 +
ε̺

iλ

)

ΨA,ε(−λ,−x) − ε̺
iλ
ΨA,ε(λ,−x), (3.8)

7



and therefore

FA,ε( f̌ )(λ) =
(

1 +
ε̺

iλ

)

FA,ε( f )(−λ) −
ε̺

iλ
FA,ε( f )(λ). (3.9)

In view of (3.8) and (3.9) we obtain
∫

R+

FA,ε( f )(λ)ΨA,ε(−λ,−x) π(dµε) =

∫

R+

ΨA,ε(λ, x)FA,ε( f )(λ)
(

1 − ε̺
iλ

)

π(dµε)

+

∫

R+

ΨA,ε(−λ, x)FA,ε( f )(λ)
(ε̺

iλ

)

π(dµε), (3.10)

and
∫

R+

FA,ε( f̌ )(λ)ΨA,ε(−λ, x) π(dµε) =

∫

R+

ΨA,ε(−λ, x)FA,ε( f )(−λ)
(

1 +
ε̺

iλ

)

π(dµε)

+

∫

R+

ΨA,ε(−λ, x)FA,ε( f )(λ)
(

− ε̺
iλ

)

π(dµε). (3.11)

By substituting (3.10) and (3.11) into (3.7), we get the inversion formula (3.3).

2) On the one hand, using the fact that ΨA,ε(λ, x) = ΨA,ε(−λ, x) for λ ∈ R, we have

FA,ε(ǧ)(λ) =

∫

R

g(x)Ψε(−λ, x)A(x)dx.

Applying the identity (3.7) for f implies
∫

R

f (x)g(x)A(x)dx =
1

4

∫

R+

{

FA,ε( f )(λ)FA,ε(g)(λ) +FA,ε( f̌ )(λ)FA,ε(ǧ)(λ)
}

πε(dλ). (3.12)

On the other hand, from (3.8) it follows that

FA,ε( f̌ )(−λ) =
(

1 +
ε̺

iλ

)

FA,ε( f )(λ) − ε̺
iλ

FA,ε( f )(−λ). (3.13)

Therefore
(

1 −
ε̺

iλ

)

FA,ε( f )(λ)FA,ε( f̌ )(−λ)

=

(

1 +
ε2̺2

λ2

)

|FA,ε( f )(λ)|2 −
ε̺

iλ

(

1 −
ε̺

iλ

)

FA,ε( f )(λ)FA,ε( f )(−λ). (3.14)

Now let us rewrite (3.13) as

FA,ε( f )(−λ) =
iλ

iλ − ε̺
FA,ε( f̌ )(λ) +

ε̺

−iλ + ε̺
FA,ε( f )(λ).

Hence

FA,ε( f )(λ)FA,ε( f )(−λ) =
iλ

iλ − ε̺
FA,ε( f )(λ)FA,ε( f̌ )(λ) +

ε̺

−iλ + ε̺
|FA,ε( f )(λ)|2,

which implies

(

− ε̺
iλ

)( iλ − ε̺
iλ

)

FA,ε( f )(λ)FA,ε( f )(−λ)

= −
(ε̺

iλ

)

FA,ε( f )(λ)FA,ε( f̌ )(λ) −
(ε2̺2

λ2

)

|FA,ε( f )(λ)|2. (3.15)

Thus, (3.14) becomes
(

1 − ε̺
iλ

)

FA,ε( f )(λ)FA,ε( f̌ )(−λ) = |FA,ε( f )(λ)|2 − ε̺
iλ

FA,ε( f )(λ)FA,ε( f̌ )(λ). (3.16)
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This is the key identity towards the Plancherel formula (3.4). Moreover, from (3.16) we also

have
(

1 −
ε̺

iλ

)

FA,ε( f̌ )(−λ)FA,ε( f )(λ) = |FA,ε( f̌ )(−λ)|2 −
ε̺

iλ
FA,ε( f̌ )(−λ)FA,ε( f )(−λ). (3.17)

Indeed, we obtain (3.17) in three steps:

1. replace f by f̌ in (3.16).

2. substitute λ by −λ in the resulting identity from step 1.

3. take the complex conjugates in the resulting identity from step 2.

By putting the pieces together we arrive at
∫

R

FA,ε( f )(λ)FA,ε( f̌ )(−λ)
(

1 − ε̺
iλ

)

πε(dλ)

=

∫

R+

|FA,ε( f )(λ)|2πε(dλ) −
∫

R+

FA,ε( f )(λ)FA,ε( f̌ )(λ)
(ε̺

iλ

)

πε(dλ)

+

∫

R−
|FA,ε( f̌ )(−λ)|2πε(dλ) −

∫

R−
FA,ε( f )(−λ)FA,ε( f̌ )(−λ)

(ε̺

iλ

)

πε(dλ)

=

∫

R+

{

|FA,ε( f )(λ)|2 + |FA,ε( f̌ )(λ)|2
}

πε(dλ),

which compares very well with 4‖ f ‖L2(R,A(x)dx) (see (3.12)). �

Remarks 3.2. 1) For ε = 1, the Plancherel formula (3.4) corrects Theorem 5.13 in [8] (stated

without a proof).

2) For ε = 0 we can prove the following stronger versions of the inversion and the Plancherel

formulas:

(i) If f ∈ L1(R, A(x)dx) and FA,0( f ) ∈ L1(R, π0(dλ)) then

f (x) =
1

4

∫

R

FA,0( f )(λ)ΨA,0(λ, x) π0(dλ) almost everywhere.

(ii) If f ∈ L1 ∩ L2(R, A(x)dx), then FA,0 f ∈ L2(R, π0(dλ)) and ‖FA,0 f ‖L2
λ
= 2‖ f ‖L2

x
.

(iii) There exists a unique isometry on L2(R, A(x)dx) that coincides with (1/2)FA,0 on L1 ∩
L2(R, A(x)dx).

The following lemma will be needed in the proof of a Paley-Wiener theorem for FA,ε.

Lemma 3.3. For R > 0, denote by DR(R) the space of smooth functions with support inside

[−R,R]. Then, f ∈ DR(R) if and only if tVA,ε f ∈ DR(R).

Proof. The direct statement follows from (2.21). The converse direction is more involved. On

the one hand, one can prove that

tV−1
A,ε g(y) = A

−1 ◦ t
Eε(ge)(y) +

(

ε̺ +
d

dy

)

A
−1 ◦ t

Eε(Jgo)(y), (3.18)

where Jh(x) :=
∫ x

−∞ h(t)dt.On the other hand, from (2.24) and [4, Lemma 4.10] it follows that if

ge ∈ DR(R) then A −1 ◦ tEε(ge) ∈ DR(R). Further, one may check that go ∈ DR(R) if and only if

Jgo ∈ DR(R).As Jgo is an even function, it follows from above that A −1◦ tEε(Jgo) ∈ DR(R). �

Let PWR(C) be the space of entire functions h on C which are of exponential type and rapidly

decreasing, i.e.

∃ R > 0, ∀t ∈ N, sup
λ∈C

(|λ| + 1)te−R| Imλ| |h(λ)| < ∞. (3.19)
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Theorem 3.4. Assume that −1 ≤ ε ≤ 1. The Fourier transform FA,ε is a linear isomorphism

between DR(R) and the space of all entire functions h on C satisfying (3.19).

Proof. The proof is standard. We shall only indicate how to proceed towards the statement. On

the one hand, the Fourier transform FA,ε can be written as FA,ε( f ) = Feuc ◦ tVA,ε( f̌ ), where

Feuc is the Euclidean Fourier transform and tVA,ε is the intertwining operator (2.21). This is a

direct consequence of Theorem 2.7. Now, in view of Lemma 3.3, appealing to the Paley-Wiener

theorem for the Euclidean Fourier transform Feuc we get the desired statement. �

For−1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
, set ϑp,ε := 2

p
−1−

√
1 − ε2.Observe that 1 ≤ 2

1+
√

1−ε2
≤ 2.

We introduce the tube domain

Cp,ε := {λ ∈ C | | Im λ| ≤ ̺ ϑp,ε}.
For ϑp,ε = 0 or ̺ = 0, the domain Cp,ε reduces to R.

Proposition 3.5. For all λ ∈ C1,ε, the function λ 7→ ΨA,ε(λ, x) is bounded for all x ∈ R.

Proof. Let R > 0 be arbitrary but fixed and let R1,ε := {ν ∈ R | |ν| ≤ ̺ (1 −
√

1 − ε2)}. Applying

the maximum modulus principle together with the fact that |ΨA,ε(λ, x)| ≤ ΨA,ε(i Im λ, x) in the

domain [−R,R] + iR1,ε implies that the maximum of |ΨA,ε(λ, x)| is obtained when λ belongs to

the boundary of iR1,ε, that is λ = iη with |η| = ̺ (1 −
√

1 − ε2). Now, recall that ΨA,ε(iη, x) +

ΨA,ε(iη,−x) = 2ϕµε(x) when ε , 0,±1, and ΨA,ε(iη, x) + ΨA,ε(iη,−x) = 2 when ε = 0,±1. The

parameter µε satisfies µ2
ε = λ

2− (1−ε2)̺2
= −̺2

(

1−2
√

1 − ε2{1−
√

1 − ε2}
)

≤ 0, and therefore

µε ∈ iR with |µε| ≤ ̺. Using the fact that ΨA,ε(iη, x) > 0 for all x ∈ R, together with the fact

that ϕµε(x) ≤ 1 for µε as above (see Lemma 2.2), it follows that ΨA,ε(iη, x) ≤ 2 for all x ∈ R and

−1 ≤ ε ≤ 1. �

Corollary 3.6. Let f ∈ L1(R, A(x)dx). Then the following properties hold.

1) The Fourier transform FA,ε( f )(λ) is well defined for all λ ∈ C1,ε. Moreover,

|FA,ε( f )(λ)| ≤ 2‖ f ‖1, λ ∈ C1,ε.

2) The function FA,ε( f ) is holomorphic on C̊1,ε, the interior of C1,ε.

3) (Riemann-Lebesgue lemma)

lim
λ∈C1,ε ,|λ|→∞

|FA,ε( f )(λ)| = 0. (3.20)

Proof. The first two statements are direct consequences of Proposition 3.5, the fact thatΨA,ε(λ, ·)
is holomorphic in λ, and Morera’s theorem. For the Riemann-Lebesgue lemma, a classical proof

for the Euclidean Fourier transform carries over. More precisely, assume that f ∈ D(R) (the

space of smooth functions with compact support on R). Now, use the Paley-Wiener Theorem

3.4 to conclude that the limit (3.20) holds for test functions; the general case then follows from

the fact that D(R) is dense in L1(R, A(x)dx). �

Next we discuss some properties of the Fourier transform FA,ε on Lp(R, A(x)dx) with p > 1.

Lemma 3.7. Let f ∈ Lp(R, A(x)dx) with 1 < p ≤ 2

1+
√

1−ε2
. Then the following properties hold.

1) The Fourier transform FA,ε( f )(λ) is well defined for all λ in C̊p,ε. Moreover,

|FA,ε( f )(λ)| ≤ c‖ f ‖p, λ ∈ C̊p,ε.

2) The function FA,ε( f ) is holomorphic on C̊p,ε.
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3) (Riemann-Lebesgue lemma)

lim
λ∈C̊p,ε,|λ|→∞

|FA,ε( f )(λ)| = 0. (3.21)

Proof. The first two statements follow easily from the estimate

ΨA,ε(λ, x) ≤














c(|x| + 1)e| Im λ| |x|e−̺|x|(1−
√

1−ε2) for ̺ > 0

ce| Im λ| |x|, for ̺ = 0

the fact that A(x) ≤ c|x|β e2̺|x| (a consequence of the hypothesis (H4) on Chébli’s function A), the

fact thatΨA,ε(λ, ·) is holomorphic in λ, and Morera’s theorem. The Riemann-Lebesgue lemma is

established exactly as for (3.20) by approximating any function in Lp(R, A(x)dx) by compactly

supported smooth functions for all 1 < p ≤ 2

1+
√

1−ε2
. �

Theorem 3.8. The Fourier transform FA,ε is injective on Lp(R, A(x)dx) for 1 ≤ p ≤ 2

1+
√

1−ε2
.

Proof. Take q such that p+q = pq. For f ∈ Lp(R, A(x)dx) et g ∈ D(R) we have the inequalities

∣

∣

∣( f , g)A

∣

∣

∣ :=
∣

∣

∣

∫

R

f (x)g(−x)A(x)dx
∣

∣

∣ ≤ ‖ f ‖Lp
x
‖g‖Lq

x

and
∣

∣

∣(FA,ε( f ),FA,ε(g))πε
∣

∣

∣ :=
∣

∣

∣

∫

R

FA,ε( f )(λ)FA,ε(g)(λ)
(

1 − ε̺
iλ

)

πε(dλ)
∣

∣

∣

≤ ‖FA,ε( f )‖L∞
λ
‖FA,ε(g)‖L1

λ
≤ c‖ f ‖Lp

x
‖FA,ε(g)‖L1

λ
. (3.22)

Above we have used Corollary 3.6 and Lemma 3.7 to get (3.22). Therefore the mapping

f 7→ ( f , g)A and f 7→ (FA,ε( f ),FA,ε(g))πε are continuous functionals on Lp(R, A(x)dx). Now

( f , g)A = (FA,ε( f ),FA,ε(g))πε for all f ∈ D(R) and by continuity for all f ∈ Lp(R, A(x)dx).

Assume that f ∈ Lp(R, A(x)dx) and that FA,ε( f ) = 0, then for all g ∈ D(R) we have ( f , g)A =

(FA,ε( f ),FA,ε(g))πε = 0 and therefore f = 0. �

For −1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
, let Sp(R) be the space consisting of all functions

f ∈ C∞(R) such that

sup
x∈R

(|x| + 1)s ϕ0(x)−2/p | f (k)(x)| < ∞, (3.23)

for any s ∈ N and any k ∈ N. The topology of Sp(R) is defined by the seminorms

σ
(p)

s,k
( f ) = sup

x∈R
(|x| + 1)s ϕ0(x)−2/p | f (k)(x)|.

We pin down that Sp(R) is a dense subspace of Lq(R, A(x)dx) for p ≤ q < ∞, while it is not

contained in Lq(R, A(x)dx) for 0 < q < p.

The following facts are standard; see for instance [14, Appendix A].

Lemma 3.9. 1) Sp(R) is a Fréchet space with respect to the seminorms σ
(p)

s,k
.

2) D(R) is a dense subspace of Sp(R).

Recall from above the tube domain

Cp,ε := {λ ∈ C | | Im λ| ≤ ̺ ϑp,ε},

where ϑp,ε =
2
p
− 1 −

√
1 − ε2.
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The Schwartz space S (Cp,ε) consists of all complex valued functions h that are analytic in

the interior of Cp,ε, and such that h together with all its derivatives extend continuously to Cp,ε

and satisfy

sup
λ∈Cp,ε

(|λ| + 1)t |h(ℓ)(λ)| < ∞, (3.24)

for any t ∈ N and any ℓ ∈ N. The topology of S (Cp,ε) is defined by the seminorms

τ
(ϑp,ε)

t,ℓ
(h) := sup

λ∈Cp,ε

(|λ| + 1)t |h(ℓ)(λ)|. (3.25)

For ϑp,ε = 0 or ̺ = 0, S (Cp,ε) is the classical Schwartz space on R. By [4, Lemma 4.17] the

Paley-Wiener space PW(C) is dense in the Schwartz space S (Cp,ε).

Lemma 3.10. The Fourier transform FA,ε maps Sp(R) continuously into S (Cp,ε) and is injec-

tive.

Proof. Let f ∈ Sp(R). For λ ∈ Cp,ε we have

∣

∣

∣FA,ε( f )(λ)
∣

∣

∣ ≤
∫

R

| f (x)| |ΨA,ε(λ,−x)| A(x)dx

≤
∫

R

| f (x)| ϕ0(x)−2/p ϕ0(x)2/p
ΨA,ε(0,−x)e| Im λ||x|A(x)dx

≤ c1

∫

R

| f (x)| ϕ0(x)−2/p (|x| + 1)2/p+1e−2̺|x|A(x)dx.

Under the hypothesis (H4) on Chébli’s function A, there exists a β > 0 such that A(x) ≤
c|x|βe2̺|x|. Hence,

∣

∣

∣FA,ε( f )(λ)
∣

∣

∣ ≤ c2

∫

R

| f (x)| ϕ0(x)−2/p (|x| + 1)2/p+1|x|βdx < ∞.

This proves that FA,ε( f ) is well defined for all f ∈ Sp(R) when −1 ≤ ε ≤ 1 and 0 < p ≤
2

1+
√

1−ε2
. Moreover, since the map λ 7→ ΨA,ε(λ, x) is holomorphic on C, it follows that for all

f ∈ Sp(R), the function FA,ε( f ) is analytic in the interior of Cp,ε, and continuous on Cp,ε.

Furthermore, by Theorem 2.6.2, we have

∣

∣

∣FA,ε( f )(λ)(k)
∣

∣

∣ ≤ c3

∫

R

| f (x)| ϕ0(x)−2/p (|x| + 1)2/p+k+1 |x|βdx < ∞.

Thus, all derivatives of FA,ε( f ) extend continuously to Cp,ε. Next, we will prove that given a

continuous seminorm τ on S (Cp,ε), there exists a continuous seminorm σ on Sp(R) such that

τ(FA,ε( f )) ≤ c4σ( f ), ∀ f ∈ Sp(R).

Note that the space S (Cp,ε) and its topology are also determined by the seminorms

h 7→ τ̃
(ϑp,ε)

t,ℓ
(h) := sup

λ∈Cp,ε

∣

∣

∣

∣

∣

{

(λ + 1)th(λ)
}(ℓ)

∣

∣

∣

∣

∣

, (3.26)
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where t and ℓ are two arbitrary positive integers. By invoking the identity (2.10) we have for

r ∈ N,

(iλ)r
FA,ε( f )(λ) = (iλ)r

∫

R

f̌ (x)ΨA,ε(λ, x)A(x)dx

=

∫

R

f̌ (x) Λr
A,εΨA,ε(λ, x)A(x)dx

= (−1)r

∫

R

(ΛA,ε + 2ε̺S )r f̌ (x)ΨA,ε(λ, x)A(x)dx

=

∫

R

Λ
r
A,ε f (−x)ΨA,ε(λ, x)A(x)dx

= FA,ε(Λ
r
A,ε f )(λ),

where S denotes the symmetry S f (x) = f (−x). Above we have used (ΛA,ε + 2ε̺S )r ◦ S =

(−1)r S ◦ Λr
A,ε
. Thus

{

(iλ)r
FA,ε( f )(λ)

}(ℓ)
=

∫

R

Λ
r
A,ε f (x) ∂ℓλΨA,ε(λ,−x)A(x)dx.

On the one hand, using Theorem 2.6.2 we obtain
∣

∣

∣

∣

∣

{

(iλ)r
FA,ε( f )(λ)

}(ℓ)
∣

∣

∣

∣

∣

≤ c5

∫

R

|Λr
A,ε f (x)| (|x| + 1)ℓ ϕ

i
√

1−ε2̺
(x) e| Im λ||x|A(x)dx

= c5

∫

|x|≤a

|Λr
A,ε f (x)| (|x| + 1)ℓ ϕ

i
√

1−ε2̺
(x) e| Im λ||x|A(x)dx

+c5

∫

|x|>a

|Λr
A,ε f (x)| (|x| + 1)ℓ ϕ

i
√

1−ε2̺
(x) e| Im λ||x|A(x)dx

≤ c6

∫

|x|≤a

|Λr
A,ε f (x)| ϕ0(x)−2/p (|x| + 1)2/p+ℓ+1 e−2̺|x|A(x)dx

+c6

∫

|x|>a

|Λr
A,ε f (x)| ϕ0(x)−2/p (|x| + 1)2/p+ℓ+1 e−2̺|x|A(x)dx.

On the other hand, by mimicking the proof of [4, Lemma 4.18] we have:

(i) For |x| ≤ a,

|Λr
A,ε f (x)| ≤ c7

(

r
∑

i=0

| f (i)(x)| +
r−1
∑

i=0

| f (i)(−x)| +
r

∑

i=0

nr
∑

m=0

| f (i)(ξm)|
)

,

where ξm = ξm(x, r) ∈] − |x|, |x|[.
(ii) For |x| > a,

|Λr
A,ε f (x)| ≤ c′7

(

r
∑

i=0

| f (i)(x)| +
r−1
∑

i=0

| f (i)(−x)|
)

.

The estimate

τ(FA,ε( f )) ≤ c8

∑

finite

σ( f ), ∀ f ∈ Sp(R)

is now a matter of putting the pieces together.
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The injectivity of the transform FA,ε on Sp(R) is clear, by the fact that FA,ε is injective on

Lq(R, A(x)dx) for 1 ≤ q ≤ 2

1+
√

1−ε2
(see Theorem 3.8) and the fact that Sp(R) is a dense subspace

of Lq(R, A(x)dx) for all q < ∞ so that p ≤ q.

This concludes the proof of Lemma 3.10. �

Lemma 3.11. Let −1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
. The inverse Fourier transform F −1

A,ε :

PW(C) −→ D(R) given by

F
−1
A,εh(x) =

1

4

∫

R

h(λ)ΨA,ε(λ, x)
(

1 −
ε̺

iλ

)

πε(dλ)

is continuous for the topologies induced by S (Cp,ε) and Sp(R).

Proof. Let f ∈ D(R) and let h ∈ PW(C) so that f = F −1
A,ε(h). Given a seminorm σ on Sp(R)

we should find a continuous seminorm τ on S (Cp,ε) such that σ( f ) ≤ c τ(h).

Denote by g the image of h by the inverse Euclidean Fourier transform F −1
euc. Making use of

the Paley-Wiener Theorem 3.4 for FA,ε and the classical Paley-Wiener theorem for Feuc, we

have the following support conservation property: supp( f ) ⊂ IR := [−R,R]⇔ supp(g) ⊂ IR.

For j ∈ N≥1, let ω j ∈ C∞(R) with ω j = 0 on I j−1 and ω j = 1 outside of I j. Assume that ω j and

all its derivatives are bounded, uniformly in j.We will write g j = ω jg, and define h j :=Feuc(g j)

and f j := F −1
A,ε(h j). Note that g j = g outside I j. Hence, by the above support property, f j = f

outside I j. We shall estimate the function

x 7→ (|x| + 1)s ϕ0(x)−2/p | f (k)

j
(x)|

on I j+1 \ I j with j ∈ N≥1. Recall that f j = f on I j+1 \ I j. In view of Theorem 2.6.1 we have

| f (k)

j
(x)| ≤

∫

R

|h j(λ)| |∂k
xΨA,ε(λ, x)|

∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ)

≤ ϕ
i
√

1−ε2̺
(x)

∫

R

|h j(λ)| (|λ| + 1)k

∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ),

where

∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ) =

√

λ2 + ε2̺2

√

λ2 − (1 − ε2)̺2

1
∣

∣

∣c
(

√

λ2 − (1 − ε2)̺2
)

∣

∣

∣

2
1
R \

]

−
√

1−ε2̺,
√

1−ε2̺
[(λ)dλ.

By knowing about the asymptotic behavior of the c-function (see Section 2), one comes to

| f (k)
j

(x)| ≤ c1ϕi
√

1−ε2̺
(x) τ

(0)

t1 ,0
(h j),

for some integer t1 > 0. It follows that

sup
x∈I j+1\I j

(|x| + 1)s ϕ0(x)−2/p | f (k)

j
(x)| ≤ c2 js+1 e̺ j( 2

p
−1+
√

1−ε2) τ
(0)

t1 ,0
(h j).

Recall that the two seminorms τ
(ϑp,ε)

t,ℓ
(see (3.25)) and τ̃

(ϑp,ε)

t,ℓ
(see (3.26)) are equivalent on

S (Cp,ε). Since h j = Feuc(g j), it follows that

(1 + λ)t1h j(λ) =

t1
∑

ℓ=0

(

t1

ℓ

)

λℓFeuc(g j)(λ).
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Thus

τ̃
(0)

t1 ,0
(h j) ≤

t1
∑

ℓ=0

(

t1

ℓ

) ∫

R

|g(ℓ)
j

(y)| dy

≤ c3

t1
∑

ℓ=0

sup
y∈R

(|y| + 1)2 |g(ℓ)
j

(y)|

= c3

t1
∑

ℓ=0

sup
w∈{±1}

sup
y∈R+

(y + 1)2 |g(ℓ)
j

(wy)|.

Now one uses the Leibniz rule to compute the derivatives of g j = ω jg. Since ω j = 0 on I j−1 and

is bounded, together with all its derivatives uniformly in j, then we have

τ̃
(0)

t1,0
(h j) ≤ c4

t1
∑

ℓ=0

sup
w∈{±1}

sup
y∈R+\I j−1

(y + 1)2 |g(ℓ)(wy)|.

Hence

js+1 e̺ j( 2
p
−1+
√

1−ε2) τ̃
(0)

t1 ,0
(h j) ≤ c5

t1
∑

ℓ=0

sup
w∈{±1}

sup
y∈R+\I j−1

(y + 1)s+3 e̺y( 2
p
−1+
√

1−ε2) |g(ℓ)(wy)|.

Recall that g(x) = F −1
euc(h)(x), where Feuc is the Euclidean Fourier transform and h ∈ PW(C).

By Cauchy’s integral theorem, it is known that

p(u) eαu g(ℓ)(u) = c

∫

R

p(i∂λ)
{

(iλ − α)ℓh(λ + iα)
}

eiλudλ,

for any polynomial p ∈ R[u]. Hence,

t1
∑

ℓ=0

sup
w∈{±1}

sup
y∈R+\I j−1

(y + 1)s+3 e̺y( 2
p
−1+
√

1−ε2) |g(ℓ)(wy)| ≤ c6

s+3
∑

r=0

sup
| Im λ|≤̺ ϑp,ε

(|λ| + 1)t2 |h(r)(λ)|

= c6

s+3
∑

r=0

τ
(ϑp,ε)

t2,r
(h),

for some integer t2 > 0.

It remains for us to estimate the function

x 7→ (|x| + 1)s ϕ0(x)−2/p | f (k)(x)|
on I1 = [−1, 1]. First, it is not hard to prove that for |x| ≤ 1, there is a positive constant c and an

integer mk ≥ 1 such that
∣

∣

∣

∣

∂k

∂xk
ΨA,ε(λ, x)

∣

∣

∣

∣

≤ c
(|λ| + 1)mk

|iλ − ε̺|
ϕ0(x) (3.27)

for λ ∈ R such that |λ| ≥
√

1 − ε2̺. Now, arguing as above, we have

| f (k)(x)| ≤ c1ϕ0(x)

∫

R

|h(λ)| (|λ| + 1)mk

|iλ − ε̺|

∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ).

Since I1 is compact, it follows that

sup
x∈I1

(|x| + 1)s ϕ0(x)−2/p | f (k)(x)| ≤ c2

∫

R

|h(λ)| (|λ| + 1)mk

|iλ − ε̺|

∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ)

≤ c3τ
(0)

t,0
(h),
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for some integer t > 0.

This finishes the proof of Lemma 3.11. �

In summary, we have proved:

Theorem 3.12. Let −1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
. Then the Fourier transform FA,ε is a

topological isomorphism between Sp(R) and S (Cp,ε).

4. Pointwise multipliers

For −1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
, denote by S ′

p(R) and by S ′(Cp,ε) the topological dual

spaces of Sp(R) and S (Cp,ε), respectively.

Let f be a Lebesgue measurable function on R such that
∫

R

| f (x)|ϕ0(x)2/p(|x| + 1)−ℓA(x)dx < ∞

for some ℓ ∈ N. Then the functional T f defined on Sp(R) by

〈T f , φ〉 =
∫

R

f (x)φ(−x)A(x)dx, φ ∈ Sp(R)

is in S ′
p(R). Indeed,

|〈T f , φ〉| ≤ σ(p)

ℓ,0
(φ)

∫

R

| f (x)|ϕ0(x)2/p(|x| + 1)−ℓA(x)dx < ∞.

Further, since p ≤ 2

1+
√

1−ε2
≤ 2, the Schwartz space Sp(R) can be seen as a subspace of S ′

p(R)

by identifying f ∈ Sp(R) with T f ∈ S ′
p(R).

Now let h be a measurable function on R such that
∫

R

|h(λ)|(|λ| + 1)−ℓ
∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ) < ∞

for some ℓ ∈ N. Here πε(dλ) denotes the Plancherel measure (3.2),

πε(dλ) =
|λ|

√

λ2 − (1 − ε2)̺2
∣

∣

∣c
(

√

λ2 − (1 − ε2)̺2
)

∣

∣

∣

2
1
R \

]

−
√

1−ε2̺,
√

1−ε2̺
[(λ)dλ,

where c is the Harish-Chandra’s function associated to the operator ∆ (see Section 2). Then the

functional Th defined on S (Cp,ε) by

〈Th, ψ〉 =
∫

R

h(λ)ψ(λ)
(

1 −
ε̺

iλ

)

πε(dλ), ψ ∈ S (Cp,ε)

is in the dual space S ′(Cp,ε). In fact,

|〈Th, ψ〉| ≤ c τ
(0)

0,ℓ
(ψ)

∫

R

|h(λ)|(|λ| + 1)−ℓ
∣

∣

∣

∣

∣

1 −
ε̺

iλ

∣

∣

∣

∣

∣

πε(dλ) < ∞.

Moreover, since |c(µ)|−2 ∼ |µ|2α+1 for |µ| large (with α > −1/2) and

|c(µ)|−2 ∼














|µ|2 for |µ| << 1 and ̺ > 0,

|µ|2α+1 for |µ| << 1 and ̺ = 0,

it follows that the Schwartz space S (Cp,ε) can be identified with a subspace of S ′(Cp,ε).
16



For T in S ′
p(R), we define the distributional Fourier transform FA,ε(T ) of T on S (Cp,ε) =

FA,ε(Sp(R)) by

〈FA,ε(T ),FA,ε(φ)〉 = 〈T, φ〉, φ ∈ Sp(R). (4.1)

This can be written,

〈FA,ε(T ), ψ〉 = 〈T,F −1
A,ε(ψ)〉, ψ ∈ S (Cp,ε).

This definition is an extension of the Fourier transform on Sp(R). Indeed, let f ∈ Sp(R) with

0 < p ≤ 2

1+
√

1−ε2
≤ 2. Applying Fubini’s theorem, then, for every φ ∈ Sp(R), we have

〈TFA,ε( f ),FA,ε(φ)〉 =
∫

R

FA,ε( f )(λ)FA,ε(φ)(λ)
(

1 −
ε̺

iλ

)

πε(dλ)

=

∫

R

f (x)
{

∫

R

FA,ε(φ)(λ)ΨA,ε(λ,−x)
(

1 −
ε̺

iλ

)

πε(dλ)
}

A(x)dx

=

∫

R

f (x)φ(−x)A(x)dx

= 〈T f , φ〉.
Hence FA,ε(T f ) = TFA,ε ( f ).

A function ψ defined on Cp,ε is called a pointwise multiplier of S (Cp,ε) if the mapping φ 7→
ψφ is continuous from S (Cp,ε) into itself. The following statement comes from [2, Proposition

3.2], with changes appropriate to our setting.

Lemma 4.1. Let ψ be a function defined on Cp,ε. Then, ψ is a pointwise multiplier of S (Cp,ε)

if and only if ψ satisfies the following three conditions:

(i) ψ is holomorphic in the interior of Cp,ε.

(ii) For every t ∈ N, the derivatives ψ(t) extend continuously to Cp,ε.

(iii) For every t ∈ N, there exists nt ∈ N, such that

sup
λ∈Cp,ε

(|λ| + 1)−nt |ψ(t)(λ)| < ∞. (4.2)

Theorem 4.2. Suppose that 0 < p ≤ 2

1+
√

1−ε2
whenever ̺ = 0, and 2

2+
√

1−ε2
≤ p ≤ 2

1+
√

1−ε2

whenever ̺ > 0. If T ∈ S ′
p(R) such that ψ := FA,ε(T ) is a pointwise multiplier of S (Cp,ε), then

for any s ∈ N there exist ℓ ∈ N and continuous functions fm defined on R, m = 0, 1, . . . , ℓ, such

that

T =

ℓ
∑

m=0

Λ
m
A,ε fm

and, for every such m,

sup
x∈R

(|x| + 1)s ϕ0(x)−
2
p
+

√
1−ε2 | fm(x)| < ∞. (4.3)

Here ΛA,ε is the differential-reflection operator (1.1).

Proof. It is assumed that ψ = FA,ε(T ) is a pointwise multiplier of S (Cp,ε). Then by Lemma

4.1, for all t ∈ N there is an integer nt ∈ N such that

sup
λ∈Cp,ε

(|λ| + 1)−nt |ψ(t)(λ)| < ∞. (4.4)

Fix s ∈ N and consider an integer ℓ that will be later specified. Define the function κ on Cp,ε by

κ(λ) = (iλ + ̺ + 1)−ℓψ(λ).
17



In view of our assumption on p, the function κ satisfies the first and the second conditions in

the definition of the space S (Cp,ε). Further, since |ΨA,ε(λ, x)| ≤
√

2 for all λ ∈ R, we have

|F −1
A,ε(κ)(x)| :=

∣

∣

∣

∣

c

∫

R

κ(λ)ΨA,ε(λ, x)
(

1 −
ε̺

iλ

)

πε(dλ)
∣

∣

∣

∣

≤ c1

∫

R

|κ(λ)|
∣

∣

∣

∣

∣

1 −
ε̺

iλ

∣

∣

∣

∣

∣

πε(dλ),

where
∣

∣

∣

∣

∣

1 − ε̺
iλ

∣

∣

∣

∣

∣

πε(dλ) =

√

λ2 + ε2̺2

√

λ2 − (1 − ε2)̺2

1
∣

∣

∣c
(

√

λ2 − (1 − ε2)̺2
)

∣

∣

∣

2
1
R \ ]−

√
1−ε2̺,

√
1−ε2̺[

(λ)dλ.

Thus, in view of the estimate (4.4) and the behavior of |c(µ)|−2 for small and large |µ|, it follows

that F −1
A,ε(κ)(x) exists for all x ∈ R provided that ℓ > n0 + 2α + 2. Moreover, for all φ ∈ Sp(R),

Fubini’s theorem leads to
∫

R

φ(−x)F −1
A,ε(κ)(x)A(x)dx = c1

∫

R

φ(−x)
(

∫

R

κ(λ)ΨA,ε(λ, x)
(

1 −
ε̺

iλ

)

πε(dλ)
)

A(x)dx

= c1

∫

R

κ(λ)
(

∫

R

φ(−x)ΨA,ε(λ, x) A(x)dx
)(

1 −
ε̺

iλ

)

πε(dλ)

= c1

∫

R

κ(λ)FA,ε(φ)(λ)
(

1 − ε̺
iλ

)

πε(dλ).

It follows that the inverse Fourier transform F −1
A,ε

(κ) of κ as an element of S ′(Cp,ε) concurs

with the classical Fourier transform of κ. Further

T = F
−1
A,ε((iλ + ̺ + 1)ℓκ) =

ℓ
∑

m=0

(

ℓ

m

)

(̺ + 1)ℓ−m
Λ

m
A,εF

−1
A,ε(κ) :=

ℓ
∑

m=0

Λ
m
A,ε fm.

It remains for us to show that, given s ∈ N, the functions fm satisfy (4.3), provided that ℓ is large

enough. To do so, we will use a similar approach to that in the proof of Lemma 3.11.

Denote by ξ := F −1
A,ε(κ) and by g := F −1

euc(κ), where Feuc denotes the Euclidean Fourier

transform. Observe that if ℓ is large enough, then g is well defined. For j ∈ N≥1, let ω j ∈ C∞(R)

such that ω j = 0 on I j−1 := [−( j − 1), j − 1] and ω j = 1 outside of I j. We shall assume that ω j

together with all its derivatives are bounded, uniformly in j.

We set g j := ω jg, and define κ j := Feuc(g j) and ξ j = F −1
A,ε

(κ j). Since ω j = 1 outside of I j, it

follows that g j − g = 0 outside of I j, that is supp(g j − g) ⊂ I j. Using the support conservation

property from the proof of Lemma 3.11, we deduce that ξ may differ from ξ j only inside I j.

Now, we will estimate the function

x 7→ (|x| + 1)s ϕ0(x)−
2
p
+

√
1−ε2

ξ(x), (4.5)

first on I1 and next on I j+1 \ I j for j ∈ N≥1.

We claim that |ΨA,ε(λ, x)| ≤ c2(|λ| + 1)ϕ0(x) for λ ∈ R such that |λ| ≥
√

1 − ε2̺. Indeed,

as λ ∈ R is such that |λ| ≥
√

1 − ε2̺, it follows that µε ∈ R. Thus, the claim follows from the

superposition (2.12) ofΨA,ε(λ, x) and the facts that |ϕµε(x)| ≤ ϕ0(x) and |ϕ′µε(x)| ≤ c (µ2
ε+̺

2)ϕ0(x)

(see Lemma 2.2).

From the claim above we have

|ξ(x)| ≤ c3

∫

R

|κ(λ)| |ΨA,ε(λ, x)|
∣

∣

∣

∣

∣

1 −
ε̺

iλ

∣

∣

∣

∣

∣

πε(dλ)

≤ c4 ϕ0(x)

∫

R

|κ(λ)| (|λ| + 1)

∣

∣

∣

∣

∣

1 −
ε̺

iλ

∣

∣

∣

∣

∣

πε(dλ).
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Since I1 is compact, we deduce that for every s ∈ N

sup
x∈I1

(|x| + 1)s ϕ0(x)−
2
p
+

√
1−ε2 |ξ(x)| < ∞

whenever ℓ > n0 + 2α + 3. Here the parameter n0 comes from (4.4). Now we consider the

estimate of the function (4.5) on I j+1 \ I j for j ∈ N≥1. Recall that ξ = ξ j outside of I j.

Arguing as above, we obtain

|ξ j(x)| ≤ c5 ϕ0(x) sup
λ∈R\]−

√
1−ε2̺,

√
1−ε2̺[

|(λ + 1)t1κ j(λ)|

for some integer t1 > 2α + 3. It follows that

sup
x∈I j+1\I j

(|x| + 1)s ϕ0(x)−
2
p
+

√
1−ε2 |ξ j(x)| ≤ c6 jse

(

2
p
−1−
√

1−ε2
)

̺ j sup
λ∈R\]−

√
1−ε2̺,

√
1−ε2̺[

|(λ + 1)t1κ j(λ)|.

Since κ j = Feuc(g j) with g j = ω jg, we claim that

|(λ + 1)t1κ j(λ)| ≤ c7

t1
∑

q=0

sup
w∈{±1}

sup
x∈R+\I j−1

(x + 1)2|g(q)(wx)|. (4.6)

Indeed, on the one hand

(λ + 1)t1κ j(λ) =

t1
∑

r=0

cr

∫

R

g j(x) ∂r
xe

iλx dx

=

t1
∑

r=0

cr

∫

R

ω j(x)g(x) ∂r
xe

iλx dx. (4.7)

On the other hand, we have

(ω jg)(r)(x) =

r
∑

q=0

cqg(q)(x)ω
(r−q)

j
(x)→ 0 as |x| → +∞. (4.8)

In fact, starting from g = F −1
euc(κ), we obtain

g(q)(x) = c

∫

R

κ(λ)(iλ)qeiλxdλ. (4.9)

Thus, if ℓ > n0 + t1 + 1 then by Riemann-Lebesgue lemma for the Euclidean Fourier transform,

g(q)(x)→ 0 as |x| → ∞. Thus (4.8) holds true. Now, in view of (4.8) we may rewrite (4.7) as

(λ + 1)t1κ j(λ) =

t1
∑

r=0

r
∑

q=0

cq,r

∫

R

g(q)(x)ω
(r−q)

j
(x)eiλxdx.

Recall that the function ω j vanishes on I j−1 and is bounded, together with all its derivatives,

uniformly in j. Therefore,

|(λ + 1)t1κ j(λ)| ≤ c

t1
∑

q=0

∫

R\I j−1

|g(q)(x)|dx

≤ c

t1
∑

q=0

sup
x∈R\I j−1

(|x| + 1)2|g(q)(x)|.

This finishes the proof of our claim (4.6).
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It follows that

jse

(

2
p
−1−
√

1−ε2
)

̺ j sup
λ∈R\]−

√
1−ε2̺,

√
1−ε2̺[

|(λ + 1)t1κ j(λ)|

≤ c7

t1
∑

q=0

sup
w∈{±1}

sup
x∈R+\I j−1

(x + 1)s+2e

(

2
p
−1−
√

1−ε2
)

̺x|g(q)(wx)|.

Next we shall prove that the right hand is finite. Assume first that ̺ = 0. By (4.9) we have

(x + 1)s+2g(q)(wx) =

s+2
∑

r=0

cq,r

∫

R

κ(λ)λq ∂r
λe

iλwx dλ. (4.10)

We claim that

(κ(λ)λq)(r) → 0 as |λ| → +∞ (4.11)

provided that ℓ is large enough. Indeed, this claim follows immediately from the fact that

(κ(λ)λq)(r)
=

r
∑

a=0

caλ
q−r+aκ(a)(λ) (with r − a ≤ q)

=

r
∑

a=0

a
∑

b=0

ca,bλ
q−r+a(iλ + 1)−ℓ−a+bψ(b)(λ), (4.12)

together with the fact that ψ satisfies (4.4). Thus, by (4.11) we may rewrite (4.10) as

(x + 1)s+2g(q)(wx) =

s+2
∑

r=0

c′q,r

∫

R

(κ(λ)λq)(r) eiλwxdλ. (4.13)

Using again the fact that ψ satisfies (4.4) together with the double sum (4.12), it follows from

(4.13) that for ̺ = 0

sup
w∈{±1}

sup
x∈R+\I j−1

(x + 1)s+2|g(q)(wx)| < ∞

provided that ℓ is large enough.

Now assume that ̺ > 0. Since g = F −1
euc(κ) and κ is holomorphic in the interior of Cp,ε,

Cauchy’s integral theorem gives

p(u) eαu g(q)(u) = cst

∫

R

p(i∂λ)
{

(iλ − α)qκ(λ + iα)
}

eiλudλ,

with p(x) = (x + 1)s+2 and α =
( 2

p
− 1 −

√
1 − ε2

)

̺. The same argument as above implies that

sup
w∈{±1}

sup
x∈R+\I j−1

(x + 1)s+2e

(

2
p−1−

√
1−ε2

)

̺x|g(q)(wx)| < ∞

provided that ℓ is large enough.

Putting the pieces together we conclude that

sup
x∈I j+1\I j

(|x| + 1)s ϕ0(x)−
2
p
+

√
1−ε2 |ξ j(x)| < ∞

for ℓ large enough. �
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Math. 125 (1998), no. 2, 89–109.

[5] S. Ben Said, A. Boussen, and M. Sifi, Intertwining operators associated to a family of differential-reflection

operators, preprint.

[6] O. Bracco, Propriétés de la mesure spectrale pour une classe d’opérateurs différentiels singuliers sur (0,∞),
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