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we introduced a family of differential-reflection operators Λ A,ε acting on smooth functions defined on R, where the spectral problem for the operators Λ A,ε has been discussed.

Here A is a Sturm-Liouville function with additional hypotheses and ε ∈ R.

Via the eigenfunctions of Λ A,ε , we introduce in this paper a generalized Fourier transform

for f ∈ L 1 (R, A(x)dx).

Introduction

In [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF] we considered some aspects of harmonic analysis associated to the following family of one-dimensional (A, ε)-operators

Λ A,ε f (x) = f ′ (x) + A ′ (x) A(x) f (x) -f (-x) 2 -ε̺ f (-x), (1.1) 
where A is so-called a Chébli function on R (i.e. A is a continuous R + -valued function on R satisfying certain regularity and convexity hypotheses), ̺ is the index of A, and ε ∈ R. We note that ̺ ≥ 0. The function A and the real number ε are the deformation parameters giving back three well known cases (as special examples) when:

(1) A(x) = A α (x) = |x| 2α+1 and ε arbitrary (Dunkl's operators [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF]), (2) A(x) = A α,β (x) = | sinh x| 2α+1 (cosh x) 2β+1 and ε = 0 (Heckman's operators [START_REF] Heckman | An elementary approach to the hypergeometric shift operators of Opdam[END_REF]), (3) A(x) = A α,β (x) = | sinh x| 2α+1 (cosh x) 2β+1 and ε = 1 (Cherednik's operators [START_REF] Cherednik | A unification of Knizhnik-Zamolodchnikov equations and Dunkl operators via affine Hecke algebras[END_REF]). We would like to mention that a differential-reflection operator built in terms of a Chébli function has been the first time done in [START_REF] Mourou | Transmutation operator and Paley-Wiener theorem associated with a singular Differential-difference operator on the real line[END_REF]. This is one of the major themes of research at the "school of harmonic analysis" in Tunisia.

In [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF] we proved that for λ ∈ C, the equation

Λ A,ε f (x) = iλ f (x), (1.2) 
where f : R → C, admits a unique solution Ψ A,ε (λ, •) satisfying Ψ A,ε (λ, 0) = 1. Moreover, under the assumption -1 ≤ ε ≤ 1, we established in [5, Theorems 3.4 and 3.5] suitable estimates for the growth of the eigenfunction Ψ A,ε (λ, x) and of its partial derivatives.

In this paper we are concerned with a development of an L p -harmonic analysis for a generalized Fourier transform F A,ε when 0 < p ≤ Using the estimates for the growth of Ψ A,ε (λ, x) we get holomorphic properties of F A,ε on L p (R, A(x)dx). A Riemann-Lebesgue lemma is also obtained for 1 ≤ p < 2 1+ √ 1-ε 2 . We then turn our attention to an L p -Schwartz space isomorphism theorem for F A,ε . In [START_REF] Harish-Chandra | Spherical functions on a semisimple Lie group. I[END_REF] Harish-Chandra proved an L 2 -Schwartz space isomorphism for the spherical Fourier transform on non-compact Riemannian symmetric spaces. This result was extended to L p -Schwartz spaces with 0 < p < 2 by Trombli and Varadarajan [START_REF] Trombi | Spherical transforms of semisimple Lie groups[END_REF] (see also [START_REF] Clerc | Transformation de Fourier sphérique des espaces de Schwartz[END_REF][START_REF] Ehrenpreis | Some properties of the Fourier-transform on semisimple Lie Groups[END_REF][START_REF] Flensted-Jensen | Spherical functions of a real semisimple Lie group. A method of reduction to the complex case[END_REF]). In the early nighties, Anker gave a new and simple proof of their result, based on the Paley-Wiener theorem for the spherical Fourier transform on Riemannian symmetric spaces [START_REF] Anker ; Helgason | The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra[END_REF]. Recently, Anker's method was used in [START_REF] Narayanan | Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications[END_REF] to prove an L p -Schwartz space isomorphism theorem for the Heckman-Opdam hypergeometric functions. Our approach is inspired by Anker's paper [loc. cit.]. More precisely, for -1 ≤ ε ≤ 1 and 0 < p

≤ 2 1+ √ 1-ε 2 , put C p,ε := λ ∈ C | | Im λ| ≤ ̺ (2/p) -1 - √ 1 -ε 2 . (1.3)
Denote by S p (R) the L p -Schwartz space on R, and by S (C p,ε ) the Schwartz space on the tube domain C p,ε . We prove that F A,ε is a topological isomorphism between S p (R) and S (C p,ε ) (see Theorem 3.12). We close this paper by establishing a result in connection with pointwise multipliers of S (C p,ε ). More precisely, for arbitrary α ≥ 0, a function ψ defined on the tube domain C α := λ ∈ C | | Im λ| ≤ α is called a pointwise multiplier of S (C α ) if the mapping φ → ψφ is continuous from S (C α ) into itself. In [START_REF] Betancor | Convolution operators on Schwartz spaces for Chébli-Trimèche hypergroups[END_REF] Betancor et al. characterized the set of pointwise multipliers of the Schwartz spaces S (C α ).

Under the assumptions 0 < p ≤ 2 1+ √ 1-ε 2 whenever ̺ = 0, and

2 2+ √ 1-ε 2 ≤ p ≤ 2 1+ √ 1-ε 2
whenever ̺ > 0, we prove that if T is in the dual space S ′ p (R) of S p (R) such that ψ := F A,ε (T ) is a pointwise multiplier of S (C p,ε ), then for any s ∈ N there exist ℓ ∈ N and continuous functions f m defined on R, m = 0, 1, . . . , ℓ, such that

T = ℓ m=0 Λ m A,ε f m
and, for every such m,

sup x∈R (|x| + 1) s e ( 2 p - √ 1-ε 2 ) ̺|x| | f m (x)| < ∞. (1.4)
The organization of this paper is as follows: In Section 2 we recapitulate some definitions and basic notations, as well as some results from literature. Further, we recall from [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF] some results on Ψ A,ε (λ, x). In Section 3 we develop an L p -harmonic analysis for the Fourier transform F A,ε , where we mainly prove an L p -Schwartz space isomorphism theorem for F A,ε . Finally, in Section 4 we characterize the distributions T ∈ S ′ p (R) so that F A,ε (T ) is a pointwise multiplier of the Schwartz space S (C p,ε ).

Background

2.1. The Chébli transform. In this subsection we present results from [START_REF] Chébli | Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur (0, ∞)[END_REF][START_REF] Chébli | Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞)[END_REF][START_REF] Trimèche | Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)[END_REF][START_REF] Trimèche | Generalized wavelets and hypergroups[END_REF].

Throughout this paper we will denote by A a function on R satisfying the following hypotheses:

(H1) A(x) = |x| 2α+1 B(x), where α > -1 2 and B is any even, positive and smooth function on R with B(0) = 1. (H2) A is increasing and unbounded on R + .

(H3) A ′ /A is a decreasing and smooth function on R * + , and hence the limit 2̺ := lim

x→+∞ A ′ (x)/A(x) ≥ 0 exists. Such a function A is called a Chébli function. From (H1) it follows that A ′ (x) A(x) = 2α + 1 x + C(x), x 0, (2.1) 
where C := B ′ /B is an odd and smooth function on R.

Let ∆ A , or simply ∆, be the following second order differential operator

∆ = d 2 dx 2 + A ′ (x) A(x) d dx . (2.2)
For µ ∈ C, we consider the Cauchy problem

∆ f (x) = -(µ 2 + ̺ 2 ) f (x) with f (0) = 1 and f ′ (0) = 0. (2.3)
In [START_REF] Chébli | Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞)[END_REF] the author proved that the system (2.3) admits a unique solution ϕ µ . For every µ ∈ C, the solution ϕ µ is an even smooth function on R and the map µ → ϕ µ (x) is analytic. The following Laplace type representation of ϕ µ can be found in [START_REF] Chébli | Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞)[END_REF] (see also [START_REF] Trimèche | Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)[END_REF]).

Lemma 2.1. For every x ∈ R * there is a non-negative even continuous function K(|x|,

•) sup- ported in [-|x|, |x|] such that for all µ ∈ C ϕ µ (x) = |x| 0 K(|x|, t) cos(µt)dt. (2.4) 
The following estimates of the eigenfunctions ϕ µ can be found in [START_REF] Chébli | Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur (0, ∞)[END_REF][START_REF] Chébli | Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞)[END_REF][START_REF] Trimèche | Generalized wavelets and hypergroups[END_REF].

Lemma 2.2. Let µ ∈ C such that | Im µ| ≤ ̺. Then 1) ϕ ±i̺ (x) = 1, ϕ -µ (x) = ϕ µ (x) and |ϕ µ (x)| ≤ 1.
2) e -̺|x| ≤ ϕ 0 (x) ≤ c(|x| + 1)e -̺|x| .

3)

|ϕ µ (x)| ≤ ϕ i Im µ (x) ≤ e | Im µ||x| ϕ 0 (x). 4) |ϕ ′ µ (x)| ≤ c (̺ 2 + |µ| 2 )e | Im µ||x| ϕ 0 (x). The Chébli transform of f ∈ L 1 (R + , A(x)dx) is given by F ∆ ( f )(µ) := R + f (x)ϕ µ (x)A(x)dx.
(2.5)

The following Plancherel and inversion formulas for F ∆ are proved in [START_REF] Chébli | Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞)[END_REF].

Theorem 2.3. There exists a unique positive measure π with support R + such that F ∆ induces an isometric isomorphism from L 2 (R + , A(x)dx) onto L 2 (R + , π(dµ)), and for any f

∈ L 1 (R + , A(x)dx) ∩ L 2 (R + , A(x)dx) we have R + | f (x)| 2 A(x)dx = R + |F ∆ ( f )(µ)| 2 π(dµ).
The inverse transform is given by

F -1 ∆ g(x) = R + g(µ)ϕ µ (x) π(dµ). (2.6)
To have a nice behavior for the Plancherel measure π we must add a further (growth) restriction on the function A. Following [START_REF] Trimèche | Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)[END_REF], we will assume that A ′ /A satisfies the following additional hypothesis: (H4) There exists a constant δ > 0 such that for all x ∈ [x 0 , ∞) (for some x 0 > 0),

A ′ (x) A(x) =            2̺ + e -δx D(x) if ̺ > 0, 2α + 1 x + e -δx D(x) if ̺ = 0, (2.7) 
with D being a smooth function bounded together with its derivatives. In these circumstances the Plancherel measure π is absolutely continuous with respect to the Lebesgue measure and has density |c(µ)| -2 where c is a continuous function on R + and zero free on R * + (see [START_REF] Bloom | The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups, Applications of hypergroups and related measure algebras[END_REF]). Moreover, by [25, Proposition 6.1.12 and Corollary 6.1.5] (see also [START_REF] Bracco | Propriétés de la mesure spectrale pour une classe d'opérateurs différentiels singuliers sur (0, ∞)[END_REF]), for

µ ∈ C we have (i) If ̺ ≥ 0 and α > -1/2, then |c(µ)| -2 ∼ |µ| 2α+1 whenever |µ| > > 1. (ii) If ̺ > 0 and α > -1/2, then |c(µ)| -2 ∼ |µ| 2 whenever |µ| < < 1.
(iii) If ̺ = 0 and α > 0, then |c(µ)| -2 ∼ |µ| 2α+1 whenever |µ| < < 1. In the literature, the function c is called Harish-Chandra's function of the operator ∆. We refer to [START_REF] Bracco | Fonction maximale associée à des opérateurs de Sturm-Liouville singuliers[END_REF] for more details on the c-function.

Henceforth we will assume that Chébli's function A satisfies the additional hypothesis (H4). It follows that for |x| is large enough:

(i) A(x) = O(e 2̺|x| ) for ̺ > 0. (ii) A(x) = O(|x| 2α+1 ) for ̺ = 0.
We close this section by giving some basic results of (the analogue of) the Abel transform associated to the second order differential operator ∆.

Denote by D e (R) the space of even and compactly supported functions in C ∞ (R). In [START_REF] Trimèche | Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)[END_REF] the author has proved that the Abel transform defined on D e (R) by

A f (y) = 1 2 |x|>|y| K(|x|, y) f (x)A(x)dx (2.8)
is an automorphism of D e (R) satisfying

F ∆ = F euc • A , (2.9) 
where F euc is the Euclidean Fourier transform.

2.2.

A family of differential-reflection operators. Recall from (1.1) the diffential-reflection operator Λ A,ε . In view of (2.1) and the hypothesis (H4) on A ′ /A, the space D(R) (of smooth functions with compact support on R) and the space S (R) (of Schwartz functions on R) are invariant under the action of Λ A,ε .

Let S denote the symmetry (S f

)(x) := f (-x). For f ∈ C ∞ (R) such that sup x∈R (1+|x|) r e s|x| | f (t) (x)
| < ∞ for every r, t ∈ N and for some 2̺ ≤ s < ∞, and for g ∈ C ∞ (R) such that g and all its derivatives are at most of polynomial growth. Then

R Λ A,ε f (x)g(x)A(x)dx = - R f (x)(Λ A,ε + 2ε̺S )g(x)A(x)dx.
(2.10)

Let λ ∈ C and consider the initial data problem

Λ A,ε f (x) = iλ f (x), f (0) = 1, (2.11) 
where f : R → C.

Theorem 2.4 (see [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF]Theorem 3.2]). Let λ ∈ C. There exists a unique solution Ψ A,ε (λ, •) to the problem (2.11). Further, for every x ∈ R, the function λ → Ψ A,ε (λ, x) is analytic on C. More explicitly:

(i) For iλ ε̺,

Ψ A,ε (λ, x) = ϕ µ ε (x) + 1 iλ -ε̺ ϕ ′ µ ε (x), where µ 2 ε := λ 2 + (ε 2 -1)̺ 2 .
(2.12)

(ii) For iλ = ε̺,

Ψ A,ε (λ, x) = 1 + 2ε̺ sg(x) A(x) |x| 0 A(t)dt.
(2.13)

The following theorem contains important estimates for the growth of the eigenfunction Ψ A,ε .

Theorem 2.5 (see [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF]Theorem 3.4]). Suppose that -1 ≤ ε ≤ 1 and x ∈ R. Then:

1) For λ ∈ R we have |Ψ A,ε (λ, x)| ≤ √ 2. 2) For λ = a + ib ∈ C we have |Ψ A,ε (λ, x)| ≤ Ψ A,ε (0, x) e |b| |x| .
3) For λ = 0 we distinguish the following two cases: a) For ε = 0, we have

Ψ A,0 (0, x) = 1. b) For ε 0, there is a constant c ε > 0 such that Ψ A,ε (0, x) ≤ c ε (|x| + 1)e -̺(1- √ 1-ε 2 )|x| .
We remind the reader that ϕ i̺ (x) = 1 and

ϕ i √ 1-ε 2 ̺ (x) ≤ c(|x| + 1)e -̺(1- √ 1-ε 2 )|x| ; see Lemma 2.2.
Theorem 2.6 (see [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF]Theorem 3.5]). 1) Assume that λ ∈ C and |x| ≥ x 0 with x 0 > 0. Given N ∈ N, there is a positive constant c such that

∂ N ∂x N Ψ A,ε (λ, x) ≤ c(|λ| + 1) N e | Im λ| |x| ϕ i √ 1-ε 2 ̺ (x). (2.14) 
2) Assume that λ ∈ C and x ∈ R. Given M ∈ N, there is a positive constant c such that Theorem 2.7. For every x ∈ R * , there is a non-negative continuous function

∂ M ∂λ M Ψ A,ε (λ, x) ≤ c|x| M e | Im λ| |x| ϕ i √ 1-ε 2 ̺ (x). ( 2 
K ε (x, •) supported in [-|x|, |x|] such that for all λ ∈ C, Ψ A,ε (λ, x) = |y|<|x| K ε (x, y)e iλy dy. (2.16) For f ∈ C ∞ (R) we define V A,ε f by V A,ε f (x) = |y|<|x| K ε (x, y) f (y)dy for x 0, and V A,ε f (0) = f (0). (2.17) Observe that Ψ A,ε (λ, x) = V A,ε (e iλ • )(x). (2.18) Theorem 2.8 (see [5, Theorem 5.3]). The operator V A,ε is the unique automorphism of C ∞ (R) such that Λ A,ε • V A,ε = V A,ε • d dx , ( 2 

.19)

where Λ A,ε is the differential-reflection operator (1.1).

Below we will deal with the dual operator

t V A,ε of V A,ε in the sense that R V A,ε f (x)g(x)A(x)dx = R f (y) t V A,ε g(y)dy. (2.20)
This can be written

t V A,ε g(y) = |x|>|y| K ε (x, y)g(x)A(x)dx. (2.21) Denote by C ∞ e (R) the space of even functions in C ∞ (R). For f ∈ C ∞ e (R) we set E ε f (x) := f (x) - ̺ ε |x| 2 |y|<|x| f (y) J 1 (̺ ε x 2 -y 2 ) x 2 -y 2 dy, (2.22)
where J 1 is the Bessel function of the first kind, and

̺ ε := √ 1 -ε 2 ̺. If ε = ±1, then ̺ ±1 = 0, and therefore E ±1 = id . By [22, Proposition 2.1] (see also [19, Theorem 5.1]) the integral transform E ε is an automorphism of C ∞ e (R)
, and its inverse transform is given by

E -1 ε f (x) = f (x) + ̺ ε |x| 2 |y|<|x| f (y) I 1 (̺ ε x 2 -y 2 ) x 2 -y 2 dy, ( 2.23) 
where I 1 is the modified Bessel function of the first kind.

Let D e (R) be the space of even functions in D(R).

For g ∈ D e (R) put t E ε g(y) := g(y) - ̺ ε 2 |x|>|y| |x| g(x) J 1 (̺ ε x 2 -y 2 )
x 2y 2 dx.

(2.24)

Theorem 2.9 (see [START_REF] Ben Said | Intertwining operators associated to a family of differential-reflection operators[END_REF]Theorem 4.2]). The transform integral t E ε is an automorphism of D e (R), and its inverse transform is given by

t E -1 ε g(y) = g(y) + ̺ ε 2 |x|>|y| |x| g(x) I 1 (̺ ε x 2 -y 2 )
x 2y 2 dx.

(2.25)

Recall from (2.21) the dual operator t V A,ε of V A,ε . The operator t V A,ε satisfies the following properties.

Theorem 2.10 (see [5, Lemma 5.4, Theorem 5.5]). 1) The operator t V A,ε can be expressed as

t V A,ε g(y) = t E -1 ε • A (g e )(y) -ε̺ - d dy t E -1 ε • A (Jg o )(y), (2.26)
where Jh(x) :=

x -∞ h(t)dt and A is the Abel transform (2.8).

2) The operator t V A,ε is the unique automorphism of D(R) satisfying the intertwining property

d dy • t V A,ε = t V A,ε • Λ A,ε + 2ε̺S ,
where S denotes the symmetry (S f )(x) := f (-x).

Fourier transform of

L p -Schwartz spaces Assume that -1 ≤ ε ≤ 1. For f ∈ L 1 (R, A(x)dx) put F A,ε f (λ) = R f (x)Ψ A,ε (λ, -x)A(x)dx. (3.1)
To state its alleged inverse transform, let us introduce the following Plancherel measure

π ε (dλ) = |λ| λ 2 -(1 -ε 2 )̺ 2 c λ 2 -(1 -ε 2 )̺ 2 2 1 R \ ]- √ 1-ε 2 ̺, √ 1-ε 2 ̺[ (λ)dλ, (3.2) 
where c is the Harish-Chandra's function associated to the second order differential operator ∆ (see Section 2 for more details on the c-function). Below f (x) := f (-x).

Theorem 3.1. Let f be a smooth function with compact support on R. Then 1) (Inversion formula)

f (x) = 1 4 R F A,ε ( f )(λ)Ψ A,ε (λ, x) 1 - ε̺ iλ π ε (dλ). (3.3) 2) (Plancherel formula) R | f (x)| 2 A(x)dx = 1 4 R F A,ε ( f )(λ)F A,ε ( f )(-λ) 1 - ε̺ iλ π ε (dλ). (3.4)
We may rewrite (3.4) for two smooth and compactly supported functions f and g as

R f (x)g(-x)A(x)dx = 1 4 R F A,ε ( f )(λ)F A,ε (g)(λ) 1 - ε̺ iλ π ε (dλ). (3.5) 
Proof. For the sake of completeness, we provide a detailed proof. 1) Below Jh(x) :=

x -∞ h(t)dt. Using the superposition (2.12) of the eigenfunction Ψ ε (λ, x), we obtain

F A,ε f (λ) = 2F ∆ ( f e )(µ ε ) + 2(iλ + ε̺)F ∆ (J f o )(µ ε ),
where F ∆ is the Chébli transform (2.5). By the inversion formula (2.6) for F ∆ we deduce that

f (x) = R + F ∆ ( f e )(µ ε )ϕ µ ε (x) + F ∆ (J f o )(µ ε )ϕ ′ µ ε (x) π(dµ ε ). (3.6)
Now, let us express ϕ µ ε and ϕ ′ µ ε in terms of Ψ A,ε as follows

ϕ µ ε (x) = 1 2 Ψ A,ε (-λ, -x) + Ψ A,ε (-λ, x) , ϕ ′ µ ε (x) = iλ + ε̺ 2 Ψ A,ε (-λ, -x) -Ψ A,ε (-λ, x) .
Consequently, formula (3.6) becomes

f (x) = 1 2 R + Ψ A,ε (-λ, -x) F ∆ ( f e )(µ ε ) + (iλ + ε̺)F ∆ (J f o )(µ ε ) π(dµ ε ) + 1 2 R + Ψ A,ε (-λ, x) F ∆ ( f e )(µ ε ) -(iλ + ε̺)F ∆ (J f o )(µ ε ) π(dµ ε ) = 1 4 R + Ψ A,ε (-λ, -x)F A,ε ( f )(λ) + Ψ A,ε (-λ, x)F A,ε ( f )(λ) π(dµ ε ). (3.7)
Further, it is easy to check that

Ψ A,ε (λ, x) = 1 + ε̺ iλ Ψ A,ε (-λ, -x) - ε̺ iλ Ψ A,ε (λ, -x), (3.8) 
and therefore

F A,ε ( f )(λ) = 1 + ε̺ iλ F A,ε ( f )(-λ) - ε̺ iλ F A,ε ( f )(λ). (3.9)
In view of (3.8) and (3.9) we obtain

R + F A,ε ( f )(λ)Ψ A,ε (-λ, -x) π(dµ ε ) = R + Ψ A,ε (λ, x)F A,ε ( f )(λ) 1 - ε̺ iλ π(dµ ε ) + R + Ψ A,ε (-λ, x)F A,ε ( f )(λ) ε̺ iλ π(dµ ε ), (3.10) 
and

R + F A,ε ( f )(λ)Ψ A,ε (-λ, x) π(dµ ε ) = R + Ψ A,ε (-λ, x)F A,ε ( f )(-λ) 1 + ε̺ iλ π(dµ ε ) + R + Ψ A,ε (-λ, x)F A,ε ( f )(λ) - ε̺ iλ π(dµ ε ). (3.11)
By substituting (3.10) and (3.11) into (3.7), we get the inversion formula (3.3).

2) On the one hand, using the fact that

Ψ A,ε (λ, x) = Ψ A,ε (-λ, x) for λ ∈ R, we have F A,ε (ǧ)(λ) = R g(x)Ψ ε (-λ, x)A(x)dx.
Applying the identity (3.7) for f implies

R f (x)g(x)A(x)dx = 1 4 R + F A,ε ( f )(λ)F A,ε (g)(λ) + F A,ε ( f )(λ)F A,ε (ǧ)(λ) π ε (dλ). (3.12)
On the other hand, from (3.8) it follows that

F A,ε ( f )(-λ) = 1 + ε̺ iλ F A,ε ( f )(λ) - ε̺ iλ F A,ε ( f )(-λ). (3.13) Therefore 1 - ε̺ iλ F A,ε ( f )(λ)F A,ε ( f )(-λ) = 1 + ε 2 ̺ 2 λ 2 |F A,ε ( f )(λ)| 2 - ε̺ iλ 1 - ε̺ iλ F A,ε ( f )(λ)F A,ε ( f )(-λ). (3.14)
Now let us rewrite (3.13) as

F A,ε ( f )(-λ) = iλ iλ -ε̺ F A,ε ( f )(λ) + ε̺ -iλ + ε̺ F A,ε ( f )(λ).
Hence

F A,ε ( f )(λ)F A,ε ( f )(-λ) = iλ iλ -ε̺ F A,ε ( f )(λ)F A,ε ( f )(λ) + ε̺ -iλ + ε̺ |F A,ε ( f )(λ)| 2 , which implies - ε̺ iλ iλ -ε̺ iλ F A,ε ( f )(λ)F A,ε ( f )(-λ) = - ε̺ iλ F A,ε ( f )(λ)F A,ε ( f )(λ) - ε 2 ̺ 2 λ 2 |F A,ε ( f )(λ)| 2 . (3.15) Thus, (3.14) becomes 1 - ε̺ iλ F A,ε ( f )(λ)F A,ε ( f )(-λ) = |F A,ε ( f )(λ)| 2 - ε̺ iλ F A,ε ( f )(λ)F A,ε ( f )(λ). (3.16)
This is the key identity towards the Plancherel formula (3.4). Moreover, from (3.16) we also have

1 - ε̺ iλ F A,ε ( f )(-λ)F A,ε ( f )(λ) = |F A,ε ( f )(-λ)| 2 - ε̺ iλ F A,ε ( f )(-λ)F A,ε ( f )(-λ). (3.17)
Indeed, we obtain (3.17) in three steps: 1. replace f by f in (3.16).

2. substitute λ by -λ in the resulting identity from step 1.

3. take the complex conjugates in the resulting identity from step 2. By putting the pieces together we arrive at

R F A,ε ( f )(λ)F A,ε ( f )(-λ) 1 - ε̺ iλ π ε (dλ) = R + |F A,ε ( f )(λ)| 2 π ε (dλ) - R + F A,ε ( f )(λ)F A,ε ( f )(λ) ε̺ iλ π ε (dλ) + R - |F A,ε ( f )(-λ)| 2 π ε (dλ) - R - F A,ε ( f )(-λ)F A,ε ( f )(-λ) ε̺ iλ π ε (dλ) = R + |F A,ε ( f )(λ)| 2 + |F A,ε ( f )(λ)| 2 π ε (dλ),
which compares very well with 4 f L 2 (R,A(x)dx) (see (3.12)).

Remarks 3.2. 1) For ε = 1, the Plancherel formula (3.4) corrects Theorem 5.13 in [START_REF] Bouzeffour | On harmonic analysis related with the generalized Dunkl operator[END_REF] (stated without a proof). 2) For ε = 0 we can prove the following stronger versions of the inversion and the Plancherel formulas:

(i) If f ∈ L 1 (R, A(x)dx) and F A,0 ( f ) ∈ L 1 (R, π 0 (dλ)) then f (x) = 1 4 R F A,0 ( f )(λ) Ψ A,0 (λ, x) π 0 (dλ) almost everywhere. (ii) If f ∈ L 1 ∩ L 2 (R, A(x)dx), then F A,0 f ∈ L 2 (R, π 0 (dλ)) and F A,0 f L 2 λ = 2 f L 2
x . (iii) There exists a unique isometry on L 2 (R, A(x)dx) that coincides with

(1/2)F A,0 on L 1 ∩ L 2 (R, A(x)dx).
The following lemma will be needed in the proof of a Paley-Wiener theorem for F A,ε .

Lemma 3.3. For R > 0, denote by D R (R) the space of smooth functions with support inside

[-R, R]. Then, f ∈ D R (R) if and only if t V A,ε f ∈ D R (R).
Proof. The direct statement follows from (2.21). The converse direction is more involved. On the one hand, one can prove that

t V -1 A,ε g(y) = A -1 • t E ε (g e )(y) + ε̺ + d dy A -1 • t E ε (Jg o )(y), (3.18) 
where Jh(x) :=

x -∞ h(t)dt. On the other hand, from (2.24) and [4, Lemma 4.10] it follows that if

g e ∈ D R (R) then A -1 • t E ε (g e ) ∈ D R (R). Further, one may check that g o ∈ D R (R) if and only if Jg o ∈ D R (R). As Jg o is an even function, it follows from above that A -1 • t E ε (Jg o ) ∈ D R (R).
Let PW R (C) be the space of entire functions h on C which are of exponential type and rapidly decreasing, i.e.

∃ R > 0, ∀t ∈ N, sup

λ∈C (|λ| + 1) t e -R| Im λ| |h(λ)| < ∞. (3.19) Theorem 3.4. Assume that -1 ≤ ε ≤ 1. The Fourier transform F A,ε is a linear isomorphism between D R (R)
and the space of all entire functions h on C satisfying (3.19).

Proof. The proof is standard. We shall only indicate how to proceed towards the statement. On the one hand, the Fourier transform F A,ε can be written as

F A,ε ( f ) = F euc • t V A,ε ( f )
, where F euc is the Euclidean Fourier transform and t V A,ε is the intertwining operator (2.21). This is a direct consequence of Theorem 2.7. Now, in view of Lemma 3.3, appealing to the Paley-Wiener theorem for the Euclidean Fourier transform F euc we get the desired statement.

For -1 ≤ ε ≤ 1 and 0 < p

≤ 2 1+ √ 1-ε 2 , set ϑ p,ε := 2 p -1- √ 1 -ε 2 . Observe that 1 ≤ 2 1+ √ 1-ε 2 ≤ 2.
We introduce the tube domain

C p,ε := {λ ∈ C | | Im λ| ≤ ̺ ϑ p,ε }.
For ϑ p,ε = 0 or ̺ = 0, the domain C p,ε reduces to R.

Proposition 3.5. For all λ ∈ C 1,ε , the function λ → Ψ A,ε (λ, x) is bounded for all x ∈ R. Proof. Let R > 0 be arbitrary but fixed and let R 1,ε := {ν ∈ R | |ν| ≤ ̺ (1 - √ 1 -ε 2 )}.
Applying the maximum modulus principle together with the fact that

|Ψ A,ε (λ, x)| ≤ Ψ A,ε (i Im λ, x) in the domain [-R, R] + iR 1,ε implies that the maximum of |Ψ A,ε (λ, x)| is obtained when λ belongs to the boundary of iR 1,ε , that is λ = iη with |η| = ̺ (1 - √ 1 -ε 2 ). Now, recall that Ψ A,ε (iη, x) + Ψ A,ε (iη, -x) = 2ϕ µ ε (x) when ε 0, ±1, and Ψ A,ε (iη, x) + Ψ A,ε (iη, -x) = 2 when ε = 0, ±1. The parameter µ ε satisfies µ 2 ε = λ 2 -(1 -ε 2 )̺ 2 = -̺ 2 1 -2 √ 1 -ε 2 {1 - √ 1 -ε 2 } ≤ 0, and therefore µ ε ∈ iR with |µ ε | ≤ ̺.
Using the fact that Ψ A,ε (iη, x) > 0 for all x ∈ R, together with the fact that ϕ µ ε (x) ≤ 1 for µ ε as above (see Lemma 2.2), it follows that Ψ A,ε (iη, x) ≤ 2 for all x ∈ R and -1 ≤ ε ≤ 1.

Corollary 3.6. Let f ∈ L 1 (R, A(x)dx). Then the following properties hold.

1) The Fourier transform

F A,ε ( f )(λ) is well defined for all λ ∈ C 1,ε . Moreover, |F A,ε ( f )(λ)| ≤ 2 f 1 , λ ∈ C 1,ε . 
2) The function

F A,ε ( f ) is holomorphic on C1,ε , the interior of C 1,ε . 3) (Riemann-Lebesgue lemma) lim λ∈C 1,ε ,|λ|→∞ |F A,ε ( f )(λ)| = 0. (3.20)
Proof. The first two statements are direct consequences of Proposition 3.5, the fact that Ψ A,ε (λ, •) is holomorphic in λ, and Morera's theorem. For the Riemann-Lebesgue lemma, a classical proof for the Euclidean Fourier transform carries over. More precisely, assume that f ∈ D(R) (the space of smooth functions with compact support on R). Now, use the Paley-Wiener Theorem 3.4 to conclude that the limit (3.20) holds for test functions; the general case then follows from the fact that D(R) is dense in L 1 (R, A(x)dx).

Next we discuss some properties of the Fourier transform F A,ε on L p (R, A(x)dx) with p > 1.

Lemma 3.7. Let f ∈ L p (R, A(x)dx) with 1 < p ≤ 2 1+ √ 1-ε 2 .
Then the following properties hold. 1) The Fourier transform F A,ε ( f )(λ) is well defined for all λ in Cp,ε . Moreover,

|F A,ε ( f )(λ)| ≤ c f p , λ ∈ Cp,ε . 
2) The function

F A,ε ( f ) is holomorphic on Cp,ε . 
3) (Riemann-Lebesgue lemma)

lim λ∈ Cp,ε ,|λ|→∞ |F A,ε ( f )(λ)| = 0. (3.21)
Proof. The first two statements follow easily from the estimate

Ψ A,ε (λ, x) ≤        c(|x| + 1)e | Im λ| |x| e -̺|x|(1- √ 1-ε 2 )
for ̺ > 0 ce | Im λ| |x| , for ̺ = 0 the fact that A(x) ≤ c|x| β e 2̺|x| (a consequence of the hypothesis (H4) on Chébli's function A), the fact that Ψ A,ε (λ, •) is holomorphic in λ, and Morera's theorem. The Riemann-Lebesgue lemma is established exactly as for (3.20) by approximating any function in L p (R, A(x)dx) by compactly supported smooth functions for all 1 < p ≤

2 1+ √ 1-ε 2 . Theorem 3.8. The Fourier transform F A,ε is injective on L p (R, A(x)dx) for 1 ≤ p ≤ 2 1+ √ 1-ε 2 . Proof. Take q such that p + q = pq. For f ∈ L p (R, A(x)dx) et g ∈ D(R) we have the inequalities ( f, g) A := R f (x)g(-x)A(x)dx ≤ f L p x g L q x and (F A,ε ( f ), F A,ε (g)) π ε := R F A,ε ( f )(λ)F A,ε (g)(λ) 1 - ε̺ iλ π ε (dλ) ≤ F A,ε ( f ) L ∞ λ F A,ε (g) L 1 λ ≤ c f L p x F A,ε (g) L 1 λ . (3.22) 
Above we have used Corollary 3.6 and Lemma 3.7 to get (3.22). Therefore the mapping

f → ( f, g) A and f → (F A,ε ( f ), F A,ε (g)) π ε are continuous functionals on L p (R, A(x)dx). Now ( f, g) A = (F A,ε ( f ), F A,ε (g)) π ε for all f ∈ D(R)
and by continuity for all f ∈ L p (R, A(x)dx).

Assume that f ∈ L p (R, A(x)dx) and that F A,ε ( f ) = 0, then for all g ∈ D(R) we have ( f, g) A = (F A,ε ( f ), F A,ε (g)) π ε = 0 and therefore f = 0.

For -1 ≤ ε ≤ 1 and 0 < p

≤ 2 1+ √ 1-ε 2 , let S p (R) be the space consisting of all functions f ∈ C ∞ (R) such that sup x∈R (|x| + 1) s ϕ 0 (x) -2/p | f (k) (x)| < ∞, (3.23) 
for any s ∈ N and any k ∈ N. The topology of S p (R) is defined by the seminorms

σ (p) s,k ( f ) = sup x∈R (|x| + 1) s ϕ 0 (x) -2/p | f (k) (x)|.
We pin down that S p (R) is a dense subspace of L q (R, A(x)dx) for p ≤ q < ∞, while it is not contained in L q (R, A(x)dx) for 0 < q < p.

The following facts are standard; see for instance [14, Appendix A].

Lemma 3.9. 1) S p (R) is a Fréchet space with respect to the seminorms σ (p) s,k .

2) D(R) is a dense subspace of S p (R).

Recall from above the tube domain

C p,ε := {λ ∈ C | | Im λ| ≤ ̺ ϑ p,ε }, where ϑ p,ε = 2 p -1 - √ 1 -ε 2 .
The Schwartz space S (C p,ε ) consists of all complex valued functions h that are analytic in the interior of C p,ε , and such that h together with all its derivatives extend continuously to C p,ε and satisfy Proof. Let f ∈ S p (R). For λ ∈ C p,ε we have

sup λ∈C p,ε (|λ| + 1) t |h (ℓ) (λ)| < ∞, ( 3 
F A,ε ( f )(λ) ≤ R | f (x)| |Ψ A,ε (λ, -x)| A(x)dx ≤ R | f (x)| ϕ 0 (x) -2/p ϕ 0 (x) 2/p Ψ A,ε (0, -x)e | Im λ||x| A(x)dx ≤ c 1 R | f (x)| ϕ 0 (x) -2/p (|x| + 1) 2/p+1 e -2̺|x| A(x)dx.
Under the hypothesis (H4) on Chébli's function A, there exists a β > 0 such that A(x) ≤ c|x| β e 2̺|x| . Hence,

F A,ε ( f )(λ) ≤ c 2 R | f (x)| ϕ 0 (x) -2/p (|x| + 1) 2/p+1 |x| β dx < ∞. This proves that F A,ε ( f ) is well defined for all f ∈ S p (R) when -1 ≤ ε ≤ 1 and 0 < p ≤ 2 1+ √ 1-ε 2 .
Moreover, since the map λ → Ψ A,ε (λ, x) is holomorphic on C, it follows that for all f ∈ S p (R), the function F A,ε ( f ) is analytic in the interior of C p,ε , and continuous on C p,ε . Furthermore, by Theorem 2.6.2, we have

F A,ε ( f )(λ) (k) ≤ c 3 R | f (x)| ϕ 0 (x) -2/p (|x| + 1) 2/p+k+1 |x| β dx < ∞.
Thus, all derivatives of F A,ε ( f ) extend continuously to C p,ε . Next, we will prove that given a continuous seminorm τ on S (C p,ε ), there exists a continuous seminorm σ on S p (R) such that

τ(F A,ε ( f )) ≤ c 4 σ( f ), ∀ f ∈ S p (R).
Note that the space S (C p,ε ) and its topology are also determined by the seminorms

h → τ(ϑ p,ε ) t,ℓ (h) := sup λ∈C p,ε (λ + 1) t h(λ) (ℓ) , (3.26) 
where t and ℓ are two arbitrary positive integers. By invoking the identity (2.10) we have for r ∈ N,

(iλ) r F A,ε ( f )(λ) = (iλ) r R f (x)Ψ A,ε (λ, x)A(x)dx = R f (x) Λ r A,ε Ψ A,ε (λ, x)A(x)dx = (-1) r R (Λ A,ε + 2ε̺S ) r f (x)Ψ A,ε (λ, x)A(x)dx = R Λ r A,ε f (-x)Ψ A,ε (λ, x)A(x)dx = F A,ε (Λ r A,ε f )(λ), where S denotes the symmetry S f (x) = f (-x). Above we have used (Λ A,ε + 2ε̺S ) r • S = (-1) r S • Λ r A,ε . Thus (iλ) r F A,ε ( f )(λ) (ℓ) = R Λ r A,ε f (x) ∂ ℓ λ Ψ A,ε (λ, -x)A(x)dx.
On the one hand, using Theorem 2.6.2 we obtain

(iλ) r F A,ε ( f )(λ) (ℓ) ≤ c 5 R |Λ r A,ε f (x)| (|x| + 1) ℓ ϕ i √ 1-ε 2 ̺ (x) e | Im λ||x| A(x)dx = c 5 |x|≤a |Λ r A,ε f (x)| (|x| + 1) ℓ ϕ i √ 1-ε 2 ̺ (x) e | Im λ||x| A(x)dx +c 5 |x|>a |Λ r A,ε f (x)| (|x| + 1) ℓ ϕ i √ 1-ε 2 ̺ (x) e | Im λ||x| A(x)dx ≤ c 6 |x|≤a |Λ r A,ε f (x)| ϕ 0 (x) -2/p (|x| + 1) 2/p+ℓ+1 e -2̺|x| A(x)dx +c 6 |x|>a |Λ r A,ε f (x)| ϕ 0 (x) -2/p (|x| + 1) 2/p+ℓ+1 e -2̺|x| A(x)dx.
On the other hand, by mimicking the proof of [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF]Lemma 4.18] we have:

(i) For |x| ≤ a, |Λ r A,ε f (x)| ≤ c 7 r i=0 | f (i) (x)| + r-1 i=0 | f (i) (-x)| + r i=0 n r m=0 | f (i) (ξ m )| ,
where

ξ m = ξ m (x, r) ∈] -|x|, |x|[. (ii) For |x| > a, |Λ r A,ε f (x)| ≤ c ′ 7 r i=0 | f (i) (x)| + r-1 i=0 | f (i) (-x)| . The estimate τ(F A,ε ( f )) ≤ c 8 finite σ( f ), ∀ f ∈ S p (R)
is now a matter of putting the pieces together.

The injectivity of the transform F A,ε on S p (R) is clear, by the fact that F A,ε is injective on

L q (R, A(x)dx) for 1 ≤ q ≤ 2 1+ √
1-ε 2 (see Theorem 3.8) and the fact that S p (R) is a dense subspace of L q (R, A(x)dx) for all q < ∞ so that p ≤ q.

This concludes the proof of Lemma 3.10.

Lemma 3.11. Let -1 ≤ ε ≤ 1 and 0 < p ≤ 2 1+ √ 1-ε 2 . The inverse Fourier transform F -1 A,ε : PW(C) -→ D(R) given by F -1 A,ε h(x) = 1 4 R h(λ)Ψ A,ε (λ, x) 1 - ε̺ iλ π ε (dλ)
is continuous for the topologies induced by S (C p,ε ) and S p (R).

Proof. Let f ∈ D(R) and let h ∈ PW(C) so that f = F -1 A,ε (h). Given a seminorm σ on S p (R) we should find a continuous seminorm τ on S (C p,ε ) such that σ( f ) ≤ c τ(h).
Denote by g the image of h by the inverse Euclidean Fourier transform F -1 euc . Making use of the Paley-Wiener Theorem 3.4 for F A,ε and the classical Paley-Wiener theorem for F euc , we have the following support conservation property: supp( f

) ⊂ I R := [-R, R] ⇔ supp(g) ⊂ I R .
For j ∈ N ≥1 , let ω j ∈ C ∞ (R) with ω j = 0 on I j-1 and ω j = 1 outside of I j . Assume that ω j and all its derivatives are bounded, uniformly in j. We will write g j = ω j g, and define h j := F euc (g j ) and f j := F -1 A,ε (h j ). Note that g j = g outside I j . Hence, by the above support property, f j = f outside I j . We shall estimate the function

x → (|x| + 1) s ϕ 0 (x) -2/p | f (k) j (x)| on I j+1 \ I j with j ∈ N ≥1 . Recall that f j = f on I j+1 \ I j . In view of Theorem 2.6.1 we have | f (k) j (x)| ≤ R |h j (λ)| |∂ k x Ψ A,ε (λ, x)| 1 - ε̺ iλ π ε (dλ) ≤ ϕ i √ 1-ε 2 ̺ (x) R |h j (λ)| (|λ| + 1) k 1 - ε̺ iλ π ε (dλ), where 1 - ε̺ iλ π ε (dλ) = λ 2 + ε 2 ̺ 2 λ 2 -(1 -ε 2 )̺ 2 1 c λ 2 -(1 -ε 2 )̺ 2 2 1 R \ - √ 1-ε 2 ̺, √ 1-ε 2 ̺ (λ)dλ.
By knowing about the asymptotic behavior of the c-function (see Section 2), one comes to

| f (k) j (x)| ≤ c 1 ϕ i √ 1-ε 2 ̺ (x) τ (0) t 1 ,0 (h j ), for some integer t 1 > 0. It follows that sup x∈I j+1 \I j (|x| + 1) s ϕ 0 (x) -2/p | f (k) j (x)| ≤ c 2 j s+1 e ̺ j( 2 p -1+ √ 1-ε 2 ) τ (0) t 1 ,0 (h j ).
Recall that the two seminorms τ

(ϑ p,ε ) t,ℓ
(see (3.25)) and τ(ϑ p,ε ) t,ℓ (see (3.26)) are equivalent on S (C p,ε ). Since h j = F euc (g j ), it follows that

(1 + λ) t 1 h j (λ) = t 1 ℓ=0 t 1 ℓ λ ℓ F euc (g j )(λ). Thus τ(0) t 1 ,0 (h j ) ≤ t 1 ℓ=0 t 1 ℓ R |g (ℓ) j (y)| dy ≤ c 3 t 1 ℓ=0 sup y∈R (|y| + 1) 2 |g (ℓ) j (y)| = c 3 t 1 ℓ=0 sup w∈{±1} sup y∈R + (y + 1) 2 |g (ℓ) j (wy)|.
Now one uses the Leibniz rule to compute the derivatives of g j = ω j g. Since ω j = 0 on I j-1 and is bounded, together with all its derivatives uniformly in j, then we have

τ(0) t 1 ,0 (h j ) ≤ c 4 t 1 ℓ=0 sup w∈{±1} sup y∈R + \I j-1 (y + 1) 2 |g (ℓ) (wy)|.
Hence

j s+1 e ̺ j( 2 p -1+ √ 1-ε 2 ) τ(0) t 1 ,0 (h j ) ≤ c 5 t 1 ℓ=0 sup w∈{±1} sup y∈R + \I j-1 (y + 1) s+3 e ̺y( 2 p -1+ √ 1-ε 2 ) |g (ℓ) (wy)|. Recall that g(x) = F -1 euc (h)(x)
, where F euc is the Euclidean Fourier transform and h ∈ PW(C). By Cauchy's integral theorem, it is known that

p(u) e αu g (ℓ) (u) = c R p(i∂ λ ) (iλ -α) ℓ h(λ + iα) e iλu dλ, for any polynomial p ∈ R[u]. Hence, t 1 ℓ=0 sup w∈{±1} sup y∈R + \I j-1 (y + 1) s+3 e ̺y( 2 p -1+ √ 1-ε 2 ) |g (ℓ) (wy)| ≤ c 6 s+3 r=0 sup | Im λ|≤̺ ϑ p,ε (|λ| + 1) t 2 |h (r) (λ)| = c 6 s+3 r=0 τ (ϑ p,ε ) t 2 ,r (h),
for some integer t 2 > 0.

It remains for us to estimate the function

x → (|x| + 1) s ϕ 0 (x) -2/p | f (k) (x)| on I 1 = [-1, 1]
. First, it is not hard to prove that for |x| ≤ 1, there is a positive constant c and an integer m k ≥ 1 such that

∂ k ∂x k Ψ A,ε (λ, x) ≤ c (|λ| + 1) m k |iλ -ε̺| ϕ 0 (x) (3.27) for λ ∈ R such that |λ| ≥ √ 1 -ε 2 ̺
. Now, arguing as above, we have

| f (k) (x)| ≤ c 1 ϕ 0 (x) R |h(λ)| (|λ| + 1) m k |iλ -ε̺| 1 - ε̺ iλ π ε (dλ).
Since I 1 is compact, it follows that sup

x∈I 1 (|x| + 1) s ϕ 0 (x) -2/p | f (k) (x)| ≤ c 2 R |h(λ)| (|λ| + 1) m k |iλ -ε̺| 1 - ε̺ iλ π ε (dλ) ≤ c 3 τ (0) t,0 (h),
for some integer t > 0. This finishes the proof of Lemma 3.11.

In summary, we have proved:

Theorem 3.12. Let -1 ≤ ε ≤ 1 and 0 < p ≤ 2 1+ √ 1-ε 2 .
Then the Fourier transform F A,ε is a topological isomorphism between S p (R) and S (C p,ε ).

Pointwise multipliers

For -1 ≤ ε ≤ 1 and 0 < p ≤ Let f be a Lebesgue measurable function on R such that

R | f (x)|ϕ 0 (x) 2/p (|x| + 1) -ℓ A(x)dx < ∞
for some ℓ ∈ N. Then the functional T f defined on S p (R) by

T f , φ = R f (x)φ(-x)A(x)dx, φ ∈ S p (R) is in S ′ p (R). Indeed, | T f , φ | ≤ σ (p) ℓ,0 (φ) R | f (x)|ϕ 0 (x) 2/p (|x| + 1) -ℓ A(x)dx < ∞.
Further, since p ≤ 

π ε (dλ) = |λ| λ 2 -(1 -ε 2 )̺ 2 c λ 2 -(1 -ε 2 )̺ 2 2 1 R \ - √ 1-ε 2 ̺, √ 1-ε 2 ̺ (λ)dλ,
where c is the Harish-Chandra's function associated to the operator ∆ (see Section 2). Then the functional T h defined on S (C p,ε ) by

T h , ψ = R h(λ)ψ(λ) 1 - ε̺ iλ π ε (dλ), ψ ∈ S (C p,ε )
is in the dual space S ′ (C p,ε ). In fact,

| T h , ψ | ≤ c τ (0) 0,ℓ (ψ) R |h(λ)|(|λ| + 1) -ℓ 1 - ε̺ iλ π ε (dλ) < ∞.
Moreover, since |c(µ)| -2 ∼ |µ| 2α+1 for |µ| large (with α > -1/2) and

|c(µ)| -2 ∼       
|µ| 2 for |µ| < < 1 and ̺ > 0, |µ| 2α+1 for |µ| < < 1 and ̺ = 0, it follows that the Schwartz space S (C p,ε ) can be identified with a subspace of S ′ (C p,ε ).

For T in S ′ p (R), we define the distributional Fourier transform

F A,ε (T ) of T on S (C p,ε ) = F A,ε (S p (R)) by F A,ε (T ), F A,ε (φ) = T, φ , φ ∈ S p (R).
(4.1) This can be written,

F A,ε (T ), ψ = T, F -1 A,ε (ψ) , ψ ∈ S (C p,ε ).
This definition is an extension of the Fourier transform on S p (R). Indeed, let f ∈ S p (R) with 0 < p ≤ 2 1+ √ 1-ε 2 ≤ 2. Applying Fubini's theorem, then, for every φ ∈ S p (R), we have 

T F A,ε ( f ) , F A,ε (φ) = R F A,ε ( f )(λ)F A,ε (φ)(λ) 1 - ε̺ iλ π ε (dλ) = R f (x) R F A,ε (φ)(λ)Ψ A,ε (λ, -x) 1 - ε̺ iλ π ε (dλ) A(x)dx = R f (x)φ(-x)A(x)dx = T f , φ . Hence F A,ε (T f ) = T F A,ε ( f ) . A function ψ defined on C p,
2 2+ √ 1-ε 2 ≤ p ≤ 2 1+ √ 1-ε 2 whenever ̺ > 0. If T ∈ S ′ p (R) such that ψ := F A,ε (T )
(|x| + 1) s ϕ 0 (x) -2 p + √ 1-ε 2 | f m (x)| < ∞. ( 4 

.3)

Here Λ A,ε is the differential-reflection operator (1.1).

Proof. It is assumed that ψ = F A,ε (T ) is a pointwise multiplier of S (C p,ε ). Then by Lemma 4.1, for all t ∈ N there is an integer n t ∈ N such that sup λ∈C p,ε

(|λ| + 1) -n t |ψ (t) (λ)| < ∞. (4.4) 
Fix s ∈ N and consider an integer ℓ that will be later specified. Define the function κ on C p,ε by

κ(λ) = (iλ + ̺ + 1) -ℓ ψ(λ).
In view of our assumption on p, the function κ satisfies the first and the second conditions in the definition of the space S (C p,ε ). Further, since |Ψ A,ε (λ, x)| ≤ √ 2 for all λ ∈ R, we have

|F -1 A,ε (κ)(x)| := c R κ(λ)Ψ A,ε (λ, x) 1 - ε̺ iλ π ε (dλ) ≤ c 1 R |κ(λ)| 1 - ε̺ iλ π ε (dλ), where 1 - ε̺ iλ π ε (dλ) = λ 2 + ε 2 ̺ 2 λ 2 -(1 -ε 2 )̺ 2 1 c λ 2 -(1 -ε 2 )̺ 2 2 1 R \ ]- √ 1-ε 2 ̺, √ 1-ε 2 ̺[ (λ)dλ.
Thus, in view of the estimate (4.4) and the behavior of |c(µ)| -2 for small and large |µ|, it follows that

F -1 A,ε (κ)(x) exists for all x ∈ R provided that ℓ > n 0 + 2α + 2. Moreover, for all φ ∈ S p (R), Fubini's theorem leads to R φ(-x)F -1 A,ε (κ)(x)A(x)dx = c 1 R φ(-x) R κ(λ)Ψ A,ε (λ, x) 1 - ε̺ iλ π ε (dλ) A(x)dx = c 1 R κ(λ) R φ(-x)Ψ A,ε (λ, x) A(x)dx 1 - ε̺ iλ π ε (dλ) = c 1 R κ(λ)F A,ε (φ)(λ) 1 - ε̺ iλ π ε (dλ).
It follows that the inverse Fourier transform F -1 A,ε (κ) of κ as an element of S ′ (C p,ε ) concurs with the classical Fourier transform of κ. Further

T = F -1 A,ε ((iλ + ̺ + 1) ℓ κ) = ℓ m=0 ℓ m (̺ + 1) ℓ-m Λ m A,ε F -1 A,ε (κ) := ℓ m=0 Λ m A,ε f m .
It remains for us to show that, given s ∈ N, the functions f m satisfy (4.3), provided that ℓ is large enough. To do so, we will use a similar approach to that in the proof of Lemma 3.11. Denote by ξ := F -1 A,ε (κ) and by g := F -1 euc (κ), where F euc denotes the Euclidean Fourier transform. Observe that if ℓ is large enough, then g is well defined. For j ∈ N ≥1 , let ω j ∈ C ∞ (R) such that ω j = 0 on I j-1 := [-( j -1), j -1] and ω j = 1 outside of I j . We shall assume that ω j together with all its derivatives are bounded, uniformly in j.

We set g j := ω j g, and define κ j := F euc (g j ) and ξ j = F -1 A,ε (κ j ). Since ω j = 1 outside of I j , it follows that g jg = 0 outside of I j , that is supp(g jg) ⊂ I j . Using the support conservation property from the proof of Lemma 3.11, we deduce that ξ may differ from ξ j only inside I j . Now, we will estimate the function

x → (|x| + 1) s ϕ 0 (x) -2 p + √ 1-ε 2 ξ(x), (4.5) 
first on I 1 and next on

I j+1 \ I j for j ∈ N ≥1 . We claim that |Ψ A,ε (λ, x)| ≤ c 2 (|λ| + 1)ϕ 0 (x) for λ ∈ R such that |λ| ≥ √ 1 -ε 2 ̺. Indeed, as λ ∈ R is such that |λ| ≥ √ 1 -ε 2 ̺, it follows that µ ε ∈ R.
Thus, the claim follows from the superposition (2.12) of Ψ A,ε (λ, x) and the facts that

|ϕ µ ε (x)| ≤ ϕ 0 (x) and |ϕ ′ µ ε (x)| ≤ c (µ 2 ε +̺ 2 )ϕ 0 (x) (see Lemma 2.2).
From the claim above we have On the other hand, we have j g) (r) (x) = r q=0 c q g (q) (x)ω (r-q) j (x) → 0 as |x| → +∞. (4.8)

In fact, starting from g = F -1 euc (κ), we obtain g (q) (x) = c R κ(λ)(iλ) q e iλx dλ. (4.9)

Thus, if ℓ > n 0 + t 1 + 1 then by Riemann-Lebesgue lemma for the Euclidean Fourier transform, g (q) (x) → 0 as |x| → ∞. Thus (4.8) holds true. Now, in view of (4.8) we may rewrite (4.7) as (λ + 1) t 1 κ j (λ) = t 1 r=0 r q=0 c q,r R g (q) (x)ω (r-q) j (x)e iλx dx.

Recall that the function ω j vanishes on I j-1 and is bounded, together with all its derivatives, uniformly in j. Therefore, Next we shall prove that the right hand is finite. Assume first that ̺ = 0. By (4.9) we have (x + 1) s+2 g (q) (wx) = We claim that (κ(λ)λ q ) (r) → 0 as |λ| → +∞ (4.11)

|(λ + 1) t 1 κ j (λ)| ≤ c t 1 q=0 R\I j-1 |g (q) (x)|dx
provided that ℓ is large enough. Indeed, this claim follows immediately from the fact that (κ(λ)λ q ) (r) = r a=0 c a λ q-r+a κ (a) (λ) (with ra ≤ q) = r a=0 a b=0 c a,b λ q-r+a (iλ + 1) -ℓ-a+b ψ (b) (λ), (4.12)

together with the fact that ψ satisfies (4.4). Thus, by (4.11) we may rewrite (4.10) as (x + 1) s+2 g (q) (wx) = s+2 r=0 c ′ q,r R (κ(λ)λ q ) (r) e iλwx dλ. (

Using again the fact that ψ satisfies (4.4) together with the double sum (4.12), it follows from (4.13) that for ̺ = 0 sup w∈{±1} sup x∈R + \I j-1 (x + 1) s+2 |g (q) (wx)| < ∞ provided that ℓ is large enough. Now assume that ̺ > 0. Since g = F -1 euc (κ) and κ is holomorphic in the interior of C p,ε , Cauchy's integral theorem gives p(u) e αu g (q) (u) = cst R p(i∂ λ ) (iλ -α) q κ(λ + iα) e iλu dλ, with p(x) = (x + 1) s+2 and α = 

.15) 2 . 3 .

 23 Intertwining operators. First, let us recall the following Laplace type representation of Ψ A,ε (λ, •) which can be found in [5, Corollary 4.4].

. 24 )

 24 for any t ∈ N and any ℓ ∈ N. The topology of S (C p,ε ) is defined by the seminormsτ (ϑ p,ε ) t,ℓ (h) := sup λ∈C p,ε (|λ| + 1) t |h (ℓ) (λ)|. (3.25) For ϑ p,ε = 0 or ̺ = 0, S (C p,ε ) is the classical Schwartz space on R. By [4, Lemma 4.17] the Paley-Wiener space PW(C) is dense in the Schwartz space S (C p,ε ). Lemma 3.10. The Fourier transform F A,ε maps S p (R) continuously into S (C p,ε ) and is injective.

2 1+ √ 1 -ε 2 ,

 212 denote by S ′ p (R) and by S ′ (C p,ε ) the topological dual spaces of S p (R) and S (C p,ε ), respectively.

2 1+ √ 1 -ε 2 ≤ 2 ,

 2122 the Schwartz space S p (R) can be seen as a subspace ofS ′ p (R) by identifying f ∈ S p (R) with T f ∈ S ′ p (R). Now let h be a measurable function on R such that R |h(λ)|(|λ| + 1) -ℓ 1 -ε̺ iλ π ε (dλ) < ∞for some ℓ ∈ N. Here π ε (dλ) denotes the Plancherel measure (3.2),

  is a pointwise multiplier of S (C p,ε ), then for any s ∈ N there exist ℓ ∈ N and continuous functions f m defined on R, m = 0, 1, . . . , ℓ, such thatT = ℓ m=0 Λ m A,ε f mand, for every such m, sup x∈R

|ξ(x)| ≤ c 3 R 1 ( 2 p

 312 |κ(λ)| |ΨA,ε (λ, x)| 1 -ε̺ iλ π ε (dλ) ≤ c 4 ϕ 0 (x) R |κ(λ)| (|λ| + 1) 1 -ε̺ iλ π ε (dλ).Since I 1 is compact, we deduce that for every s ∈ Nsup x∈I |x| + 1) s ϕ 0 (x) -2 p + √ 1-ε 2 |ξ(x)| < ∞ whenever ℓ > n 0 + 2α + 3.Here the parameter n 0 comes from (4.4). Now we consider the estimate of the function (4.5) on I j+1 \ I j for j ∈ N ≥1 . Recall that ξ = ξ j outside of I j .Arguing as above, we obtain|ξ j (x)| ≤ c 5 ϕ 0 (x) sup + 1) t 1 κ j (λ)|for some integer t 1 > 2α + 3. It follows that supx∈I j+1 \I j (|x| + 1) s ϕ 0 (x) -2 p + √ 1-ε 2 |ξ j (x)| ≤ c 6 j s e + 1) t 1 κ j (λ)|.Since κ j = F euc (g j ) with g j = ω j g, we claim that|(λ + 1) t 1 κ j (λ)| ≤ c 7 t 1 q=0 sup w∈{±1} sup x∈R + \I j-1 (x + 1) 2 |g (q) (wx)|. (4.6)Indeed, on the one hand (λ + 1) t 1 κ j (λ) =

1 ( 2

 12 |x| + 1) 2 |g (q) (x)|.This finishes the proof of our claim (4.6). ̺x |g (q) (wx)|.

  )λ q ∂ r λ e iλwx dλ.(4.10)

2 p - 1 - √ 1 - 1 (x + 1) s+2 e 2 p - 1 - √ 1 -ε 2 2 p + √ 1 -ε 2

 1112112212 ε 2 ̺. The same argument as above implies that supw∈{±1} sup x∈R + \I j-̺x |g (q) (wx)| < ∞ provided that ℓ is large enough.Putting the pieces together we conclude that supx∈I j+1 \I j (|x| + 1) s ϕ 0 (x) -|ξ j (x)| < ∞for ℓ large enough.

  ε is called a pointwise multiplier of S (C p,ε ) if the mapping φ → ψφ is continuous from S (C p,ε ) into itself. The following statement comes from [2, Proposition 3.2], with changes appropriate to our setting. Lemma 4.1. Let ψ be a function defined on C p,ε . Then, ψ is a pointwise multiplier of S (C p,ε ) if and only if ψ satisfies the following three conditions:(i) ψ is holomorphic in the interior of C p,ε .(ii) For every t ∈ N, the derivatives ψ (t) extend continuously to C p,ε .(iii) For every t ∈ N, there exists n t ∈ N, such that

	sup λ∈C p,ε	(|λ| + 1) -n t |ψ (t) (λ)| < ∞.	(4.2)
	Theorem 4.2. Suppose that 0 < p ≤	1+	2 √ 1-ε 2 whenever ̺ = 0, and
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