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INTERTWINING OPERATORS ASSOCIATED TO A FAMILY OF

DIFFERENTIAL-REFLECTION OPERATORS

SALEM BEN SAID, ASMA BOUSSEN & MOHAMED SIFI

Abstract. We introduce a family of differential-reflection operatorsΛA,ε acting on smooth func-

tions defined on R. Here A is a Sturm-Liouville function with additional hypotheses and ε ∈ R.
For special pairs (A, ε), we recover Dunkl’s, Heckman’s and Cherednik’s operators (in one di-

mension). The spectral problem for the operatorsΛA,ε is studied. In particular, we obtain suitable

growth estimates for the eigenfunctions of ΛA,ε.

As the operators ΛA,ε are mixture of d/dx and reflection operators, we prove the existence of

an intertwining operator VA,ε between ΛA,ε and the usual derivative. The positivity of VA,ε is also

established.

2010 Mathematics Subject Classification. 34K99, 34B25, 33E30.
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1. Introduction

Dunkl’s ascertainment in the late eighties of the operators that now bear his name is one of

the most significant developments in the theory of special functions associated to root systems

[9]. Some early work in this area was done by Koornwinder [20], Heckman and Opdam [18],

and Opdam [23]. A lot of the motivation for the subject comes from analysis on Riemannian

symmetric spaces.

In [9] Dunkl generalized the operator ∂/∂xi to a mixture of a differential and a reflection

operator. In one dimension it is denoted by Dα, α ≥ −1/2. By the specialization α = 1
2
d − 1

with d ∈ N≥2, the operator D2
α coincides on even functions with the radial part of the Laplace

operator on the flat symmetric space M(d)/S O(d), where M(d) is the motion group of Rd.

Important work in the analysis of Dunkl operators has been done by several authors (see for

instance [9, 11, 12, 16, 24, 29, 34]; this list is far from being complete).

Some years after, Heckman [17] wrote down a trigonometric variant of the Dunkl operators.

In one dimension it is denoted by Hα,β, α ≥ β ≥ −1/2, α , −1/2. For α = 1
2
(p − 1) and

β = 1
2
(q − 1) with p ≥ q > 0, the restriction of H2

α,β
to even functions coincides with the radial

part of the Laplace-Beltrami operator on Riemannian symmetric spaces of the non-compact

type and of real rank one. Significant results in the analysis of Heckman operators have been

obtained by several authors (see for instance [2, 8, 19]).

Next, in [7] Cherednik made a slight but significant variation of Heckman’s operator. See

[16, 25, 35] for a comparison between Heckman and Cherednik operators.

In the present paper we consider some aspects of harmonic analysis associated to the follow-

ing family of (A, ε)-operators

ΛA,ε f (x) = f ′(x) +
A′(x)

A(x)

(

f (x) − f (−x)

2

)

− ε̺ f (−x), (1.1)

where A is so-called a Chébli function on R (i.e. A is a continuous R+-valued function on R

satisfying certain regularity and convexity hypotheses), ̺ is the index of A, and ε ∈ R.We note
1



that ̺ ≥ 0. The function A and the real number ε are the deformation parameters giving back

the above three cases (as special examples): Dunkl’s operators when A(x) = Aα(x) = |x|2α+1 and

ε arbitrary; Heckman’s operators when A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 0; and

Cherednik’s operators when A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 1.

We would like to mention that a differential-reflection operator built in terms of a Chébli

function has been the first time done in [22]. This is one of the major themes of research at the

“school of harmonic analysis” in Tunisia.

This paper consists of tow parts. In the first part we consider the spectral problem for this

family of (A, ε)-operators (1.1). More precisely, let λ ∈ C and consider the equation

ΛA,ε f (x) = iλ f (x), (1.2)

where f : R → C. We prove that there exists a unique solution ΨA,ε(λ, ·) of (1.2) satisfying

ΨA,ε(λ, 0) = 1.Moreover, under the assumption −1 ≤ ε ≤ 1, we establish in Theorems 3.4 and

3.5 suitable estimates for the growth of the eigenfunction ΨA,ε(λ, x) and of its partial deriva-

tives. Our first step is Theorem 3.3, where we prove that ΨA,ε(λ, ·) > 0 whenever λ ∈ iR. In a

forthcoming paper [4], these estimates will play crucial tools for developing Lp-Fourier analysis

associated to the (A, ε)-operators (1.1).

We note that ΨA,ε reduces to the Dunkl kernel in the (Aα, ε)-case [10, 26]; to the Heckman

kernel in the (Aα,β, 0)-case [2, 8, 19]; and to the Cherednik kernel (or Opdam’s kernel) in the

(Aα,β, 1)-case [1, 14, 25].

In the second part of this paper we start by studying the existence of an intertwining operator

between ΛA,ε and the ordinary derivative. We prove that there exists a unique isomorphism

VA,ε : C∞(R) → C∞(R) satisfyingΛA,ε◦VA,ε = VA,ε◦ d
dx
,with VA,ε f (0) = f (0) (see Theorem 4.7).

The construction of VA,ε involves Delsarte type operators [21,31]. Our construction generalizes

the one given in [13] for A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 1. For A(x) = Aα(x) =

|x|2α+1 and ε arbitrary, the intertwining operator VA,ε reduces to the Dunkl intertwining operator

in one dimension [28].

Another important result concerning the intertwining operator VA,ε is that the latter is of

positive type in the sense that, if f ≥ 0 then VA,ε f ≥ 0 (see Theorem 4.10). The major technical

step in the proof of Theorem 4.10 is the positivity of VA,ε(ht(u, ·))(x), where ht(u, v) denotes the

Euclidean heat kernel at time t > 0. For ε = 0 and 1, this result can be found in [36] and [37],

while for A(x) = Aα(x) = |x|2α+1 and ε arbitrary, the positivity of VA,ε goes back to [27]. We

pin down that the positivity of VA,ε played a fundamental role in [3] in establishing an analogue

of Beurling’s theorem, and its relatives such as theorems of type Gelfand-Shilov, Morgan’s,

Hardy’s, and Cowling-Price in the setting of this paper.

The organization of this paper is as follows: In Section 2 we recapitulate some definitions and

basic notations, as well as some results from literature. In Section 3 we study the main properties

of the eigenfunction ΨA,ε. In particular, we obtain estimates for the growth of ΨA,ε and of its

partial derivatives. In Section 4 we derive a Laplace type representation of the eigenfunction

ΨA,ε. Next, we prove the existence and the positivity of the intertwining operator VA,ε between

ΛA,ε and the ordinary derivative.

2. Background

In this introductory section we present results from [5, 6, 32, 33].

Throughout this paper we will denote by A a function on R satisfying the following hypothe-

ses:
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(H1) A(x) = |x|2α+1B(x), where α > −1
2

and B is any even, positive and smooth function on R

with B(0) = 1.

(H2) A is increasing and unbounded on R+.

(H3) A′/A is a decreasing and smooth function onR∗+, and hence the limit 2̺ := lim
x→+∞

A′(x)/A(x) ≥
0 exists.

(H4) There exists a constant δ > 0 such that for all x ∈ [x0,∞) (for some x0 > 0),

A′(x)

A(x)
=






2̺ + e−δxD(x) if ̺ > 0,

2α + 1

x
+ e−δxD(x) if ̺ = 0,

with D being a smooth function bounded together with its derivatives.

Such a function A is called a Chébli function. From (H1) it follows that

A′(x)

A(x)
=

2α + 1

x
+C(x), x , 0, (2.1)

where C := B′/B is an odd and smooth function on R.

Let ∆A, or simply ∆, be the following second order differential operator

∆ =
d2

dx2
+

A′(x)

A(x)

d

dx
. (2.2)

For µ ∈ C, we consider the Cauchy problem

∆ f (x) = −(µ2 + ̺2) f (x) with f (0) = 1 and f ′(0) = 0. (2.3)

In [6] the author proved that the system (2.3) admits a unique solution ϕµ. For every µ ∈ C, the

solution ϕµ is an even smooth function on R and the map µ 7→ ϕµ(x) is analytic. The following

Laplace type representation of ϕµ can be found in [6] (see also [32]).

Lemma 2.1. For every x ∈ R∗ there exists a probability measure νx on R supported in [−|x|, |x|]
such that for all µ ∈ C

ϕµ(x) =

∫ |x|

−|x|
e(iµ−̺)tνx(dt).

Also, for x ∈ R∗, there is a non-negative even continuous function K(|x|, ·) supported in [−|x|, |x|]
such that for all µ ∈ C

ϕµ(x) =

∫ |x|

0

K(|x|, t) cos(µt)dt. (2.4)

The following estimates of the eigenfunctions ϕµ can be found in [5, 6, 33].

Lemma 2.2. Let µ ∈ C such that | Im µ| ≤ ̺. Then

1) ϕ±i̺(x) = 1, ϕ−µ(x) = ϕµ(x) and |ϕµ(x)| ≤ 1.

2) e−̺|x| ≤ ϕ0(x) ≤ c(|x| + 1)e−̺|x|.

3) |ϕµ(x)| ≤ ϕi Imµ(x) ≤ e| Im µ||x|ϕ0(x).

4) |ϕ′µ(x)| ≤ c (̺2 + |µ|2)e| Im µ||x|ϕ0(x).

We close this section by giving some basic results of (the analogue of) the Abel transform

associated to the second order differential operator ∆.
3



Denote by De(R) the space of even and compactly supported functions in C∞(R). In [32] the

author has proved that the Abel transform defined on De(R) by

A f (y) =
1

2

∫

|x|>|y|
K(|x|, y) f (x)A(x)dx (2.5)

is an automorphism of De(R) satisfying

A ◦ (∆ + ̺2) =
d2

dx2
◦A . (2.6)

3. A family of differential-reflection operators

For ε ∈ R we consider the following one-dimensional differential-reflection operators

ΛA,ε f (x) = f ′(x) +
A′(x)

A(x)

(

f (x) − f (−x)

2

)

− ε̺ f (−x). (3.1)

In view of (2.1) and the hypothesis (H4) on A′/A, the space D(R) (of smooth functions with

compact support on R) and the space S (R) (of Schwartz functions on R) are invariant under

the action of ΛA,ε.

Let S denote the symmetry (S f )(x) := f (−x). The following lemma is needed later. The easy

proof is left to the reader.

Lemma 3.1. Let f ∈ C∞(R) such that supx∈R(1 + |x|)res|x|| f (t)(x)| < ∞ for every r, t ∈ N and

for some 2̺ ≤ s < ∞, and let g ∈ C∞(R) such that g and all its derivatives are at most of

polynomial growth. Then
∫

R

ΛA,ε f (x)g(x)A(x)dx = −
∫

R

f (x)(ΛA,ε + 2ε̺S )g(x)A(x)dx.

Let λ ∈ C and consider the initial data problem

ΛA,ε f (x) = iλ f (x) with f (0) = 1, (3.2)

where f : R→ C.We have the following statement.

Theorem 3.2. Let λ ∈ C. There exists a unique solutionΨA,ε(λ, ·) to the problem (3.2). Further,

for every x ∈ R, the function λ 7→ ΨA,ε(λ, x) is analytic on C. More explicitly:

(i) For iλ , ε̺,

ΨA,ε(λ, x) = ϕµε(x) +
1

iλ − ε̺
ϕ′µε(x) with µ2

ε := λ2 + (ε2 − 1)̺2. (3.3)

We may rewrite the solution (3.3) as

ΨA,ε(λ, x) = ϕµε(x) + (iλ + ε̺)
sgn(x)

A(x)

∫ |x|

0

ϕµε(t)A(t)dt. (3.4)

(ii) For iλ = ε̺,

ΨA,ε(λ, x) = 1 + 2ε̺
sgn(x)

A(x)

∫ |x|

0

A(t)dt. (3.5)

Proof. The proof is easy and standard. �

The following positivity result is the basic ingredient in obtaining suitable growth estimates

of ΨA,ε.
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Theorem 3.3. Assume that −1 ≤ ε ≤ 1. For all λ ∈ iR, the function ΨA,ε(λ, ·) is real and strictly

positive.

Proof. The proof is inspired by [30]. If we take complex conjugates in (3.2), we see that

ΨA,ε(λ, ·) and ΨA,ε(λ, ·) satisfy the same system (3.2). Since ΨA,ε(λ, 0) = 1, the uniqueness

part in Theorem 3.2 shows that ΨA,ε(λ, x) = ΨA,ε(λ, x) for all x ∈ R.
Assume that ΨA,ε(λ, ·) is not strictly positive. Since ΨA,ε(λ, 0) = 1 > 0, it follows that

ΨA,ε(λ, ·) vanishes. Let x0 be a zero of ΨA,ε(λ, ·) so that

|x0| = inf
{

|x| : ΨA,ε(λ, x) = 0
}

.

Since ΨA,ε(λ, 0) = 1 we have ΨA,ε(λ, x) ≥ 0 on [−|x0|, |x0|]. In particular ΨA,ε(λ,−x0) ≥ 0. We

claim that

Ψ′A,ε(λ, x0) = 0 and ΨA,ε(λ,−x0) = 0. (3.6)

To prove (3.6), let us first assume that x0 > 0. Then Ψ′A,ε(λ, x0) ≤ 0.Moreover,

Ψ′A,ε(λ, x) =
( A′(x)

2A(x)
+ ε̺

)(

ΨA,ε(λ,−x) − ΨA,ε(λ, x)
)

+ (iλ + ε̺)ΨA,ε(λ, x). (3.7)

Thus

Ψ′A,ε(λ, x0) =
( A′(x0)

2A(x0)
+ ε̺

)

ΨA,ε(λ,−x0). (3.8)

From (3.8) it follows that Ψ′A,ε(λ, x0) is positive. This is due to the fact that ε ≥ −1 and the

fact that A′/(2A) is a decreasing function on R∗+ and lim
x→+∞

A′(x)/2A(x) = ̺. We deduce that

Ψ′A,ε(λ, x0) = 0, and therefore, from (3.8), ΨA,ε(λ,−x0) = 0.

Now, let us assume that x0 < 0. Then Ψ′
A,ε

(λ, x0) ≥ 0. Moreover, for x0 < 0, equation (3.8)

implies Ψ′
A,ε

(λ, x0) ≤ 0. This is due to ε ≤ 1 and to assumptions on A′/(2A). Then, as above, we

conclude that Ψ′
A,ε

(λ, x0) = 0, and once again appealing to (3.8) we have ΨA,ε(λ,−x0) = 0. This

finishes the proof of the claim (3.6).

Starting this time fromΨA,ε(λ,−x0) = 0 and proceeding analogously as in the caseΨA,ε(λ, x0) =

0, we conclude that Ψ′
A,ε

(λ,−x0) = 0 and ΨA,ε(λ, x0) = 0.

In summary, ΨA,ε(λ,±x0) = 0 and Ψ′
A,ε

(λ,±x0) = 0. Differentiating (3.7), we see that the

second derivative of ΨA,ε(λ, ·) vanishes at ±x0. Repeating the same argument over and over

again to get Ψ
(k)

A,ε
(λ,±x0) = 0 for all k ∈ N. Since ΨA,ε(λ, ·) is a real analytic function, we deduce

that ΨA,ε(λ, x) = 0 for all x ∈ R. This contradicts ΨA,ε(λ, 0) = 1. Thus, either ΨA,ε(λ, x) is

strictly positive for all x, or it is strictly negative for all x. But since ΨA,ε(λ, 0) = 1, it must be

ΨA,ε(λ, x) > 0 for all x ∈ R. �

The following theorem contains estimates for the growth of the eigenfunction ΨA,ε.

Theorem 3.4. Suppose that −1 ≤ ε ≤ 1 and x ∈ R. Then:

1) For λ ∈ R we have |ΨA,ε(λ, x)| ≤
√

2.

2) For λ = a + ib ∈ C we have |ΨA,ε(λ, x)| ≤ ΨA,ε(ib, x).

3) For λ = ib ∈ iR we have ΨA,ε(ib, x) ≤ ΨA,ε(0, x) e|b| |x|.

4) For λ = 0 we distinguish the following two cases:

a) For ε = 0, we have ΨA,0(0, x) = 1.

b) For ε , 0, there is a constant cε > 0 such that ΨA,ε(0, x) ≤ cε(|x| + 1)e−̺(1−
√

1−ε2)|x|.
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Proof. 1) Assume that λ ∈ R. Since ΨA,ε(λ, x) is a solution of the problem (3.2), we deduce that

{ΨA,ε(λ,±x)}′ = − A′(x)

2A(x)

(

ΨA,ε(λ,±x) − ΨA,ε(λ,∓x)
)

± ε̺ΨA,ε(λ,∓x) ± iλΨA,ε(λ,±x). (3.9)

By taking complex conjugates in (3.9), we obtain
{

|ΨA,ε(λ,±x)|2
}′
=

= Re

{

−A′(x)

A(x)

(

ΨA,ε(λ,±x) −ΨA,ε(λ,∓x)
)

ΨA,ε(λ,±x) ± 2ε̺ΨA,ε(λ,∓x)ΨA,ε(λ,±x)

}

.

Since A′(x)/A(x) ≥ 2̺ ≥ 0 for all x ∈ R+, it follows that

{

|ΨA,ε(λ,−x)|2
}′
+

{

|ΨA,ε(λ, x)|2
}′
= −A′(x)

A(x)

∣
∣
∣ΨA,ε(λ,−x) − ΨA,ε(λ, x)

∣
∣
∣
2 ≤ 0, ∀x ∈ R+.

This implies

|ΨA,ε(λ,−x)|2 + |ΨA,ε(λ, x)|2 ≤ |ΨA,ε(λ, 0)|2 + |ΨA,ε(λ, 0)|2 = 2, ∀x ∈ R+.

As a consequence

|ΨA,ε(λ,−x)| ≤
√

2 and |ΨA,ε(λ, x)| ≤
√

2, ∀x ∈ R+.

2) For λ = a+ ib ∈ Cwe define the function Qε,λ(x) :=
ΨA,ε(λ, x)

ΨA,ε(ib, x)
. By Theorem 3.3 the function

Qε,λ is well defined. Using the identity (3.9) we have

{

|Qε,λ(±x)|2
}′
= ±2 Re

{

Q′ε,λ(±x)Qε,λ(±x)
}

= −2
( A′(x)

2A(x)
± ε̺

)(

|Qε,λ(±x)|2 − Re
{

Qε,λ(∓x)Qε,λ(±x)
})ΨA,ε(ib,∓x)

ΨA,ε(ib,±x)
. (3.10)

Since −1 ≤ ε ≤ 1, then, by assumptions on the function A′/(2A), we have

( A′(x)

2A(x)
± ε̺

)

≥ 0 ∀ x ∈ R+.

It follows from (3.10) that for every x ∈ R+
{

|Qε,λ(±x)|2
}′ ≤ −2

( A′(x)

2A(x)
± ε̺

)

|Qε,λ(±x)|
(

|Qε,λ(±x)| − |Qε,λ(∓x)|
)ΨA,ε(ib,∓x)

ΨA,ε(ib,±x)
.

Thus we can conclude that
{

|Qε,λ(±x)|2
}′ ≤ 0 if |Qε,λ(±x)| ≥ |Qε,λ(∓x)|.

As a real analytic function of x, |Qε,λ(x)|2 and |Qε,λ(−x)|2 coincide either everywhere or on a

discrete subset of R with no accumulation point. In the first case, |Qε,λ(x)|2 = |Qε,λ(−x)|2 is a

decreasing function of x ∈ R+. In the second case, for x ∈ R+, let

M(x) := max
{

|Qε,λ(x)|2, |Qε,λ(−x)|2
}

.

If |Qε,λ(x)| > |Qε,λ(−x)|, then M(x) = |Qε,λ(x)|2 and M′(x) =
{

|Qε,λ(x)|2
}′
< 0. If |Qε,λ(x)| <

|Qε,λ(−x)|, then M(x) = |Qε,λ(−x)|2 and M′(x) =
{

|Qε,λ(−x)|2
}′
< 0. If |Qε,λ(x)| = |Qε,λ(−x)| for

some x ∈ R+, then M has left and right derivatives at x, which are non-positive. Thus M is

decreasing on R+. In conclusion, for every x ∈ R+, |Qε,λ(x)|2 ≤ M(0) = 1 and |Qε,λ(−x)|2 ≤
M(0) = 1. That is for every x ∈ R, we have |Qε,λ(x)| ≤ |Qε,λ(0)| = 1. This finishes the proof of

6



the second statement.

3) We proceed analogously to the function Qε,λ above by considering the function

Rε,b(x) :=
ΨA,ε(ib, x)e−|b| |x|

ΨA,ε(0, x)
.

4) The fact that ΨA,0(0, x) = 1 follows immediately from (3.5). Assume that ε , 0. In this case

ΨA,ε(0, x) = ϕµ0
ε
(x) −

1

ε̺
ϕ′
µ0
ε
(x),

where µ0
ε satisfies (µ0

ε)
2 = (ε2 − 1)̺2. Since |ε| ≤ 1, it follows from Lemma 2.2 2), 3), 4) that

there exists a positive constant cε such that ΨA,ε(0, x) ≤ cε(|x| + 1)e−̺(1−
√

1−ε2)|x|. �

Henceforth, we will assume that −1 ≤ ε ≤ 1. We remind the reader that ϕi̺(x) = 1 and

ϕ
i
√

1−ε2̺(x) ≤ c(|x| + 1)e−̺(1−
√

1−ε2)|x|; see Lemma 2.2.

Theorem 3.5. 1) Assume that λ ∈ C and |x| ≥ x0 with x0 > 0. Given N ∈ N, there is a positive

constant c such that

∣
∣
∣
∣

∂N

∂xN
ΨA,ε(λ, x)

∣
∣
∣
∣ ≤ c(|λ| + 1)Ne| Im λ| |x|ϕ

i
√

1−ε2̺(x). (3.11)

2) Assume that λ ∈ C and x ∈ R. Given M ∈ N, there is a positive constant c such that

∣
∣
∣
∣

∂M

∂λM
ΨA,ε(λ, x)

∣
∣
∣
∣ ≤ c|x|Me| Imλ| |x|ϕ

i
√

1−ε2̺(x).

Proof. 1) If N = 0 this is nothing but Theorem 3.4 2), 3) and 4). So assume N ≥ 1. On the one

hand, ΨA,ε(λ, x) satisfies the following equation

Ψ′A,ε(λ, x) = − A′(x)

2A(x)

(

ΨA,ε(λ, x) −ΨA,ε(λ,−x)
)

+ ε̺ΨA,ε(λ,−x) + iλΨA,ε(λ, x).

This allows us to express the derivatives of ΨA,ε(λ, ·) in terms of lower order derivatives. On

the other hand, since A′/(2A) satisfies the hypothesis (H4), it follows that there exists a positive

constant C such that
∣
∣
∣
∣
∣
∣
∣

(

A′(x)

2A(x)

)(N)
∣
∣
∣
∣
∣
∣
∣

≤ C, ∀ |x| ≥ x0 with x0 > 0.

Now the estimate (3.11) can be proved by induction on N.

2) Recall that the mapping λ 7→ ΨA,ε(λ, x) is entire, for every x ∈ R, and that

|ΨA,ε(λ, x)| ≤ ce| Im λ| |x|ϕ
i
√

1−ε2̺(x) (3.12)

for all λ ∈ C and x ∈ R. If M = 0 this is just (3.12). So assume M > 0. If x = 0, the statement

follows from Liouville’s theorem. If x , 0, apply Cauchy’s integral formula for ΨA,ε(λ, x) over

a circle with radius proportional to 1
|x| , centered at λ in the complex plane. �
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4. An intertwining operator

4.1. A Laplace type representation of the eigenfunctions. In this section we will show that

ΨA,ε(λ, ·) can be expressed as the Laplace transform of a compactly supported function. In the

literature this is the so-called Mehler’s type formula.

Denote by C∞e (R) the space of even functions in C∞(R). For f ∈ C∞e (R) we set

Eε f (x) := f (x) −
̺ε|x|

2

∫

|y|<|x|
f (y)

J1(̺ε
√

x2 − y2)
√

x2 − y2
dy, (4.1)

where J1 is the Bessel function of the first kind and ̺ε :=
√

1 − ε2 ̺. If ε = ±1, then ̺±1 = 0,

and therefore E±1 = id . The following statement is nothing but a reformulation of Proposition

2.1 in [31]. See also Theorem 5.1 in [21].

Proposition 4.1. The integral transform Eε is an automorphism of C∞e (R) satisfying

d2

dx2
◦ Eε = Eε ◦

( d2

dx2
− ̺2

ε

)

and Eε f (0) = f (0). (4.2)

The inverse transform E −1
ε is given by

E
−1
ε f (x) = f (x) +

̺ε|x|
2

∫

|y|<|x|
f (y)

I1(̺ε
√

x2 − y2)
√

x2 − y2
dy,

where I1 is the modified Bessel function of the first kind.

Let De(R) be the space of even functions in D(R). For g ∈ De(R) put

t
Eεg(y) = g(y) − ̺ε

2

∫

|x|>|y|
|x| g(x)

J1(̺ε
√

x2 − y2)
√

x2 − y2
dx.

We may rewrite tEεg as

t
Eεg(y) = −

∫ ∞

|y|
g′(x)J0(̺ε

√

x2 − y2)dx.

Below we will show that De(R) is stable by tEε. Thus, one may check that for all f ∈ C∞e (R)

and all g ∈ De(R),
∫

R

Eε f (x) g(x)dx =

∫

R

f (y) t
Eεg(y)dy.

Theorem 4.2. The transform integral tEε is an automorphism of De(R) satisfying

t
Eε ◦

d2

dx2
=

( d2

dx2
− ̺2

ε

)

◦ t
Eε. (4.3)

The inverse transform tEε
−1

is given by

t
E
−1
ε g(y) = g(y) +

̺ε

2

∫

|x|>|y|
|x| g(x)

I1(̺ε
√

x2 − y2)
√

x2 − y2
dx = −

∫ ∞

|y|
g′(x)I0(̺ε

√

x2 − y2)dx.

Proof. It is clear that tEεg is an even function whenever g is even. A direct calculation gives the

intertwining property (4.3), which we may rewrite as D2 ◦ tEε =
tEε ◦ (D2+̺2

ε), where D denotes

the ordinary derivative. Thus, for all N ∈ N and for all y ∈ R+, we have

D2N ◦ t
Eεg(y) = t

Eε ◦ (D2 + ̺2
ε)

Ng(y) = −
∫ ∞

y

J0

(

̺ε
√

x2 − y2
)

D(D2 + ̺2
ε)

Ng(x)dx.
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Using the well know fact that |J0(r)| ≤ 1 for all r ∈ R+, it follows that if supp(g) ⊂ [−a, a], then

there exists a constant c such that

sup
y∈[−a,a]

|D2N ◦ t
Eεg(y)| ≤ c sup

x∈[−a,a]

|DMg(x)| < ∞,

for some positive integer M. Thus, the space De(R) is stable by tEε.

Recall that we may rewrite tEε and its “potential” inverse transform respectively as

t
Eεg(y) = −

∫ ∞

|y|
g′(x)J0(̺ε

√

x2 − y2)dx and t
E
−1
ε g(y) = −

∫ ∞

|y|
g′(x)I0(̺ε

√

x2 − y2)dx.

We will assume that y > 0. Then

t
Eε

(t
E
−1
ε g

)

(y) =

∫

x>y

{
∫

s>x

g′(s)I0(̺ε
√

s2 − x2)ds
}′

J0(̺ε
√

x2 − y2)dx

= −
∫

x>y

g′(x)J0(̺ε
√

x2 − y2)dx

+

∫

x>y

{
∫

s>x

g′(s)∂xI0(̺ε
√

s2 − x2)ds
}

J0(̺ε
√

x2 − y2)dx.

Integration by parts implies

∫

s>x

g′(s)∂xI0(̺ε
√

s2 − x2)ds =
̺2
ε

2
x g(x) −

∫

s>x

g(s)∂s∂xI0(̺ε
√

s2 − x2)ds.

Above we have used the fact that I′
0
(z) = I1(z) and that the function

( z
2

)−ν
Iν(z) is normalized at 0

by 1. Thus,

t
Eε

(t
E
−1
ε g

)

(y) =

∫

x>y

(

̺2
ε

2
x g(x) − g′(x)

)

J0(̺ε
√

x2 − y2)dx

−
∫

s>y

g(s)
{
∫ s

y

J0(̺ε
√

x2 − y2)∂s∂xI0(̺ε
√

s2 − x2)dx
}

ds.

Next, we will compute the integral within brackets on the right hand side of the identity above.

On the one hand, since I′0(z) = I1(z), we have

∂s∂xI0(̺ε
√

s2 − x2) = −̺εx∂s

(

(s2 − x2)−1/2I1(̺ε
√

s2 − x2)
)

= ̺ε
xs

(s2 − x2)3/2
I1(̺ε

√
s2 − x2) − ̺2

ε

xs

(s2 − x2)
I′1(̺ε

√
s2 − x2)

= −̺2
ε

xs

(s2 − x2)
I2(̺ε

√
s2 − x2).

Above we have used the well known differentiation identity I′ν(z) = Iν+1(z)+ ν
z
Iν(z). On the other

hand, using the following integral formula (see [15, formula (1), page 725])

∫ a

0

xµ+1(a2 − x2)−µ/2−1Jµ(x)Iν(
√

a2 − x2)dx =

(
a
2

)µ
Γ
(
ν−µ

2

)

2Γ
(
ν+µ

2
+ 1

) Jν(a), Re ν > Re µ > −1
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we have
∫ s

y

J0(̺ε
√

x2 − y2)∂s∂xI0(̺ε
√

s2 − x2)dx = −
̺2
ε

2
sJ2(̺ε

√

s2 − y2)

= − ̺ε
s

√

s2 − y2
J1(̺ε

√

s2 − y2) +
̺2
ε

2
sJ0(̺ε

√

s2 − y2)

= ∂s

(

J0(̺ε
√

s2 − y2)
)

+
̺2
ε

2
sJ0(̺ε

√

s2 − y2).

Above we have used the recurrence relation Jν+1(z) + Jν−1(z) = 2ν
z

Jν(z) and the fact that J′0(z) =

−J1(z). Consequently, tEε
(

tE −1
ε g

)

(y) = g(y). Similarly one proves that tE −1
ε

(
tEεg

)

= g. �

Recall from Lemma 2.1 the Laplace representation of ϕµ. The following alternative Laplace

representation of ϕµ is needed for later use. For x ∈ R and y ∈ R+ put

Kε(|x|, y) := t
E
−1
ε K(|x|, ·)(y), (4.4)

where K(|x|, ·) is as in (2.4). Observe that Kε(x, ·) is even, continuous and supported in [−|x|, |x|].
We note that if ε = ±1, then the transformation E±1 = id, and therefore K±1(x, y) = K(|x|, y).

Lemma 4.3. Let λ ∈ C. The integral representation (2.4) can be rewritten as

ϕµε(x) =

∫ |x|

0

Kε(x, y) cos(λy)dy,

where the relationship between µε and λ is µ2
ε = λ

2 + (ε2 − 1)̺2.

Proof. The cases ε = ±1 are trivial. So assume ε , ±1. Observe that we may rewrite Eε as

Eε( f )(y) =
(

y

∫ 1

0

f (yt)J0(̺εy
√

1 − t2)dt
)′

y
.

for all y > 0. Using the following integral formula (see [15, formula (7), page 722])

∫ a

0

cos(ct) J0(b
√

a2 − t2)dt =
sin(a

√
b2 + c2)

√
b2 + c2

, b > 0

we obtain

Eε
(

cos(µε·)
)

(y) =
(

y

∫ 1

0

cos(µεyt)J0(̺εy
√

1 − t2)dt
)′

y
= cos

({

(1 − ε2)̺2 + µ2
ε

︸            ︷︷            ︸

=λ2

}1/2
y
)

.

Thus E −1
ε

(

cos(λ·)
)

(y) = cos(µεy). Now, the statement follows directly from the Laplace repre-

sentation (2.4) of ϕµε(x). �

We now establish a Laplace type representation of the eigenfunction ΨA,ε(λ, ·). Henceforth

we will use the following notation

Gε(x, y) :=

∫ |x|

|y|
Kε(t, y)A(t)dt,

where Kε(t, y) is as in (4.4). The function Gε(x, ·) is even, continuous on its support [−|x|, |x|]
and of class C1 on ] − |x|, |x|[ (see e.g. [22, Lemma 2.8]). The following statement follows

directly from Lemma 4.3.
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Corollary 4.4. For all λ ∈ C the function ΨA,ε(λ, ·) : R∗ → C is the Laplace transform of a

compactly supported function. More precisely,

ΨA,ε(λ, x) =

∫

|y|<|x|
Kε(x, y)eiλydy, ∀x ∈ R∗,

where

Kε(x, y) :=
Kε(x, y)

2
+ ε̺

sgn(x)

2A(x)
Gε(x, y) − sgn(x)

2A(x)
∂yGε(x, y). (4.5)

4.2. The existence of an intertwining operator. This section is concerned with the existence

of an intertwining operator between ΛA,ε and the ordinary derivative d/dx.

Recall from Section 2 the definition of the Abel transform A which is an automorphism

of De(R). It is natural to define for smooth even functions the dual transform tA of A in the

following sense

∫

R

f (y)A g(y)dy =

∫

R

t
A f (x)g(x)A(x)dx. In [32] the author showed that

t
A f (x) =

1

2

∫

|u|<|x|
K(|x|, u) f (u)du.

where K(|x|, u) is as in (2.4). Further, by [32, Theorem 5.1], the transform tA is an automor-

phism of C∞e (R) (the space of even and smooth functions on R) satisfying

(∆ + ̺2) ◦ t
A = t

A ◦ d2

dx2
, (4.6)

where ∆ is the operator (2.2).

For −1 ≤ ε ≤ 1 we define the integral transform Aε on De(R) by

Aεg(y) =
1

2

∫

|x|>|y|
Kε(x, y)g(x)A(x)dx,

where the kernel Kε is as in (4.4). We note that for ε = ±1 the transform Aε reduces to the

Abel transform A . We may think of Aε as a deformation of the transform A . Let tAε be the

linear mapping of C∞e (R) so that

∫

R

f (y) Aεg(y)dy =

∫

R

t
Aε f (x) g(x)A(x)dx for f ∈ C∞e (R) and

g ∈ De(R). Then

t
Aε f (x) =

1

2

∫

|y|<|x|
Kε(x, y) f (y)dy.

Notice that for f ∈ C∞e (R) and g ∈ De(R), the functions tAε f and Aεg belong respectively to

C∞e (R) and De(R).Moreover,

Aε =
t
E
−1
ε ◦A and t

Aε =
t
A ◦ E

−1
ε .

The next corollary contains some additional properties of Aε and tAε.

Corollary 4.5. Let D be the ordinary derivative and let ∆ be the operator (2.2). Then for all

ε ∈ R we have:

1) Aε ◦ (∆ + ̺2) = (D2 + ̺2
ε) ◦Aε, where ̺2

ε = (1 − ε2)̺2.

2) (∆ + ̺2) ◦ tAε =
tAε ◦ (D2 + ̺2

ε).

Proof. The first statement is an immediate consequence of (2.6) and (4.3). The second trans-

mutation property follows from (4.2) and (4.6). �
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For f ∈ C∞(R) we define VA,ε f by

VA,ε f (x) =

∫

|y|<|x|
Kε(x, y) f (y)dy for x , 0, and VA,ε f (0) = f (0), (4.7)

where the kernel Kε(x, y) is as in (4.5). Observe that

ΨA,ε(λ, x) = VA,ε(e
iλ · )(x). (4.8)

Lemma 4.6. The operator VA,ε can be expressed as

VA,ε f (x) =
(

id+ε̺M
)

t
Aε fe(x) +

(

ε2̺2
M +

d

dx

)
t
Aε(I fo)(x), (4.9)

where

M h(x) :=
sgn(x)

A(x)

∫ |x|

0

h(t)A(t)dt and Ih(x) :=

∫ x

0

h(t)dt. (4.10)

Proof. As usual, we write f as the superposition f = fe + fo of an even function fe and an odd

function fo. On the one hand, we have

VA,ε fe(x) =

∫ |x|

−|x|

Kε(x, y)

2
fe(y)dy + ε̺

sgn(x)

2A(x)

∫ |x|

−|x|
Gε(x, y) fe(y)dy

= t
Aε fe(x) + ε̺M ◦ t

Aε fe(x).

On the other hand, VA,ε fo(x) = −
sgn(x)

A(x)

∫ |x|

0

fo(y)∂yGε(x, y)dy.We claim that

− sgn(x)

A(x)

∫ |x|

0

fo(y)∂yGε(x, y)dy =
(

ε2̺2
M +

d

dx

)
t
Aε(I fo)(x), (4.11)

where I fo is as in (4.10). Indeed, let us first recall the following formula (easy to check)

g′(x) =
sgn(x)

A(x)

∫ |x|

0

∆ g(t) A(t)dt (4.12)

for even functions. By invoking (4.12) in the first equality below and the transmutation property

in Corollary 4.5.2 in the second equality below we have

d

dx
t
Aε(I fo)(x) =

sgn(x)

A(x)

∫ |x|

0

∆ t
Aε(I fo)(s)A(s)ds

=
sgn(x)

A(x)

∫ |x|

0

t
Aε

( d2

dx2
− ε2̺2

)

(I fo)(s)A(s)ds

=
sgn(x)

A(x)

∫ |x|

0

{
∫ s

0

Kε(s, u) f ′o(u)du
}

A(s)ds − ε2̺2
M ◦ t

Aε(I fo)(x)

=
sgn(x)

A(x)

∫ |x|

0

f ′o(u)
{
∫ |x|

u

Kε(s, u)A(s)ds
}

du − ε2̺2
M ◦ t

Aε(I fo)(x)

= −
sgn(x)

A(x)

∫ |x|

0

fo(u)∂uGε(x, u)du − ε2̺2
M ◦ t

Aε(I fo)(x).

This concludes the proof of claim (4.11), and therefore the proof of Lemma 4.6. �
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Theorem 4.7. The operator VA,ε is the unique automorphism of C∞(R) such that

ΛA,ε ◦ VA,ε = VA,ε ◦
d

dx
,

where ΛA,ε is the differential-reflection operator (3.1).

Proof. For the proof of this theorem it is more convenient to rewrite VA,ε fo in (4.9) as

VA,ε fo(x) =M ◦ t
Aε

(

f ′o
)

(x). (4.13)

Indeed,

VA,ε fo(x) =
d

dx
t
Aε(I fo)(x) + ε2̺2

M
t
Aε(I fo)(x)

= M ∆ t
Aε(I fo)(x) + ε2̺2

M
t
Aε(I fo)(x)

= M (∆ + ε2̺2) t
Aε(I fo)(x)

= M
t
Aε

(

(I fo)′′
)

(x)

= M
t
Aε

(

f ′o
)

(x).

Let C∞e (R) and C∞o (R) be the subspaces of even and odd functions in C∞(R), respectively.

Firstly, the operator d/dx is one to one from C∞o (R) onto C∞e (R), and d/dx ◦ I = I ◦ d/dx = id .

Secondly, the transform M is an isomorphism from C∞e (R) to C∞o (R) and its inverse is given by

M
−1 =

d

dx
+

A′(x)

A(x)
id . (4.14)

Thus, from (4.9) and (4.13) it follows that VA,ε is an automorphism of C∞(R). We now prove

the transmutation property (4.7).

By (4.13) we have

ΛA,ε(VA,ε fo) = ΛA,ε

(

M
t
Aε( f ′o)

)

=
(

id+ε̺M
) t

Aε( f ′o).

Above we have used the fact that ΛA,ε ◦M = id+ε̺M .Moreover, using (4.14), one can check

that

ΛA,ε(VA,ε fe) = ΛA,ε(
t
Aε fe + ε̺M ◦ t

Aε fe)

=
d

dx
t
Aε fe − ε̺ t

Aε fe + ε̺
( d

dx
+

A′(x)

A(x)

)

M
t
Aε fe + ε

2̺2
M

t
Aε fe

=
( d

dx
+ ε2̺2

M
)

t
Aε fe.

In summary,

ΛA,ε(VA,ε f ) =
( d

dx
+ ε2̺2

M
)

t
Aε fe +

(

id+ε̺M
) t

Aε( f ′o). (4.15)

Now, by invoking the expression (4.9) of the operator VA,ε we get

VA,ε( f ′e ) =
(

ε2̺2
M +

d

dx

)
t
Aε fe and VA,ε( f ′o) =

(

id+ε̺M
)

t
Aε( f ′o).

Therefore

VA,ε( f ′) =
(

ε2̺2
M +

d

dx

)
t
Aε fe +

(

id+ε̺M
)

t
Aε( f ′o).

This compares well with (4.15). The uniqueness of VA,ε is due to the fact that ΨA,ε(λ, x) =

VA,ε(e
iλ · )(x) and that VA,ε f (0) = f (0). �
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On the space D(R) of smooth functions with compact support, we consider the dual operator
tVA,ε of VA,ε in the sense that

∫

R

VA,ε f (x)g(x)A(x)dx =

∫

R

f (y) tVA,εg(y)dy. (4.16)

This can be written as

tVA,εg(y) =

∫

|x|>|y|
Kε(x, y)g(x)A(x)dx. (4.17)

Lemma 4.8. The dual operator tVA,ε can be expressed as

tVA,εg(y) = Aεge(y) −
(

ε̺ − d

dx

)

Aε(Jgo)(y),

where

Jh(x) :=

∫ x

−∞
h(t)dt.

Proof. The reader will have no trouble verifying that for every even function f ∈ C∞(R) and

every odd function g ∈ D(R)
∫

R

M f (x)g(x)A(x)dx = −
∫

R

f (x)Jg(x)A(x)dx.

Starting from the expression (4.9) of VA,ε in Lemma 4.6, and by invoking (4.13) in the first

equality below, we obtain
∫

R

VA,ε f (x)g(x)A(x)dx

=

∫

R

{
t
Aε fe(x)ge(x) + ε̺M t

Aε fe(x)go(x) +M
t
Aε f ′o(x)go(x)

}

A(x)dx

=

∫

R

{

fe(x)Aεge(x) − ε̺ fe(x)AεJgo(x) − f ′o(x)AεJgo(x)
}

dx

=

∫

R

{

f (x)Aεge(x) − ε̺ f (x)AεJgo(x) + fo(x)
d

dx
AεJgo(x)

}

dx

=

∫

R

f (x)
{

Aεge(x) − ε̺AεJgo(x) +
d

dx
AεJgo(x)

}

dx.

This finishes the proof of Lemma 4.8. �

The operator tVA,ε satisfies the following additional property.

Theorem 4.9. The operator tVA,ε is the unique automorphism of D(R) satisfying the intertwin-

ing property

d

dx
◦ tVA,ε =

tVA,ε ◦
(

ΛA,ε + 2ε̺S
)

,

where S denotes the symmetry (S f )(x) := f (−x).

Proof. The statement follows immediately from Lemma 3.1. �
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4.3. The positivity of the intertwining operator. We shall say that a linear operator L on

D(R) is positive, if L leaves the positive cone

D(R)+ := { f ∈ D(R) : f (x) ≥ 0 for all x ∈ R}
invariant. The following statement is the central result of this section.

Theorem 4.10. For −1 ≤ ε ≤ 1, the intertwining operator VA,ε is positive.

For ε = 0 and 1, Theorem 4.10 is known (cf. [36] and [37]), while for A(x) = Aα(x) = |x|2α+1

and ε arbitrary (the Dunkl setting), Theorem 4.10 goes back to [27]. However, the case −1 ≤
ε ≤ 1 has to overcome some technical difficulties compared to ε = 0 and 1, as ε could be

positive as well as negative.

The proof of the above theorem affords several steps, the crucial one being the positivity of

VA,ε(ps(u, ·))(x) for every s > 0 and u, x ∈ R, where

ps(u, v) :=
e−

(u−v)2

4s

2
√
πs

denotes the Euclidean heat kernel.

For simplicity we will write Wε(s; u, x) instead of VA,ε(ps(u, ·))(x). Below we list some prop-

erties of Wε(s; u, x).

Lemma 4.11. For every s > 0 and u, x ∈ R, we have

1) Wε(s; u, x) =
1

2π

∫

R

ΨA,ε(−λ, x)e−sλ2

eiλudλ.

2) The function (u, x) 7→ Wε(s; u, x) is of class C1 on R2.

3) (ΛA,ε + ∂u)Wε(s; u, x) = 0.

4) lim
‖(u,x)‖→+∞

Wε(s; u, x) = 0.

Proof. 1) For x = 0, we have Wε(s; u, 0) = ps(u, 0) = e−u2/4s

2
√
πs
. Thus, for x = 0, the statement

follows from the well known fact
∫

R

e−sλ2

eiλξdλ =

√

π

s
e−
ξ2

4s . (4.18)

For x , 0, using again (4.18) together with the Laplace type representation (4.7) of VA,ε, we

have

Wε(s; u, x) =
1

2π

∫ |x|

−|x|
Kε(x, y)

(
∫

R

e−sλ2

eiλ(u−y)dλ
)

dy

=
1

2π

∫

R

(
∫ |x|

−|x|
Kε(x, y)e−iλydy

)

e−sλ2

eiλu dλ

=
1

2π

∫

R

ΨA,ε(−λ, x)e−sλ2

eiλu dλ.

2) For |x| ≥ x0 with x0 > 0, the statement follows from 1) and the growth estimate of |∂xΨA,ε(λ, x)|
(see Theorem 3.5). Assume that |x| ≤ x0. Using the fact that

|ϕ′µ(x)| ≤ c |µ2 + ̺2| (|x| + 1) |x| e(| Im µ|−̺)|x|,

and that

|ϕ′′µ (x)| ≤ c |µ2 + ̺2| (|x| + 1)2 e(| Im µ|−̺)|x|,
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for all µ ∈ C and x ∈ R (cf. [33, Proposition 6.I.5]), we deduce from (3.3) that

|∂xΨA,ε(λ, x)| ≤ c(|λ| + 1)2(|x| + 1)2e(| Im µε |−̺)|x|,

where µ2
ε = λ

2−(1−ε2)̺2. It follows that in both cases λ2−(1−ε2)̺2 R 0,we have |∂xΨA,ε(λ, x)| ≤
c(|λ| + 1)2 for all |x| ≤ x0.

3) In view of 1), the present statement is easy to check.

4) For x = 0, Wε(s; u, 0) = ps(u, 0) = e
− u2

4s

2
√
πs
→ 0 as ‖(u, x)‖ → ∞.

For x , 0, using 1) and the growth property of the eigenfunction ΨA,ε in Theorem 3.4.4, we

get

|Wε(s; u, x)| ≤ cε(1 + |x|)e−̺(1−
√

1−ε2)|x|.

Now, the statement follows by means of polar coordinates. �

The following lemma is also needed.

Lemma 4.12. Writing Wε as Wε(s; u, x) = We
ε +Wo

ε , as a sum of the even and the odd part of

Wε with respect to x, we have We
ε(s; u, x) > 0.

Proof. Using Lemma 4.11.1 together with the expression (3.4) of the eigenfunction ΨA,ε, we

have

Wε(s; u, x)

=
1

2π

∫

R

(

ϕµε(x) + (−iλ + ε̺)
sgn(x)

A(x)

∫ |x|

0

ϕµε(z)A(z)dz
)

e−sλ2

eiλu dλ

=
1

2π

∫

R

ϕµε(x)e−sλ2

eiλudλ +
sgn(x)

2πA(x)

∫

R

(
∫ |x|

0

ϕµε(z)A(z)dz
)

(−iλ + ε̺)e−sλ2

eiλu dλ

=: We
ε(s; u, x) +Wo

ε (s; u, x).

Next we shall prove that We
ε(s; u, x) > 0. By Lemma 4.3, we have

We
ε(s; u, x) =

1

π

∫ +∞

0

e−sλ2

cos(λu)
(
∫ |x|

0

Kε(x, r) cos(λr)dr
)

dλ

=
1

π

∫ |x|

0

Kε(x, r)
(
∫ +∞

0

e−sλ2

cos(λu) cos(λr)dλ
)

dr

=
1

4
√
πs

∫ |x|

0

Kε(x, r)
(

e−
(u−r)2

4s + e−
(u+r)2

4s

)

dr.

Using the fact that r 7→ Kε(x, r) is even, we deduce that

We
ε(s; u, x) ≥ e−(|u|+|x|)2/4s

4
√
πs

∫ |x|

−|x|
Kε(x, r)dr =

e−(|u|+|x|)2/4s

2
√
πs
ϕ

i
√

1−ε2̺(x) > 0.

�

Now we come to the crucial step in the proof of Theorem 4.10.

Theorem 4.13. For every s > 0 and u, x ∈ R, we have Wε(s; u, x) ≥ 0.

Proof. For (u, x) ∈ R × {0}, we have Wε(s; u, 0) = ps(u, 0) = e
− u2

4s

2
√
πs
> 0.

For s > 0 and (u, x) ∈ (R × {0})c, assume that Wε(s; u, x) is not always non-negative. Since

Wε(s; u, 0) > 0 and lim‖(u,x)‖→+∞Wε(s; u, x) = 0 (see Lemma 4.11.3), then the above assumption
16



implies that the function (u, x) 7→ Wε(s; u, x) admits an absolute minimum (u0, x0) ∈ (R × {0})c

such that Wε(s; u0, x0) < 0. In particular, Wo
ε (s; u0, x0) = (Wε(s; u0, x0) −Wε(s; u0,−x0))/2 ≤ 0.

We claim that

Wo
ε (s; u0, x0) < 0. (4.19)

Indeed, if Wo
ε (s; u0, x0) = 0, then Wε(s; u0, x0) = We

ε(s; u0, x0), which is impossible since

Wε(s; u0, x0) < 0 while We
ε(s; u0, x0) > 0 (see Lemma 4.12).

On the other hand, using the fact that (u0, x0) is an absolute minimum, we have

(

ΛA,ε + ∂u

)

Wε(s; u0, x0) =
(A′(x0)

A(x0)
+ 2ε̺

)

Wo
ε (s; u0, x0) − ε̺Wε(s; u0, x0) (4.20)

= −ε̺We
ε(s; u0, x0) +

(A′(x0)

A(x0)
+ ε̺

)

Wo
ε (s; u0, x0). (4.21)

Recall that our assumption is that Wε(s; u, x) is not always non-negative for all s > 0 and

(u, x) ∈ (R × {0})c.We shall use Lemma 4.11.2 to prove that this assumption fails.

case 1: For ̺ = 0, the identity (4.20) reads

(

ΛA,ε + ∂u

)

Wε(s; u0, x0) =
A′(x0)

A(x0)
Wo
ε (s; u0, x0).

Now, Lemma 4.11.2 and the inequality (4.19) imply that (A′/A)(x0) = 0, which is not true in

the light of the hypotheses (H2) and (H4) on A′/A with ̺ = 0.

case 2: Let ̺ > 0 and ε = 0. As in the previous case, Lemma 4.11.2 and the inequality

(4.19) imply that (A′/A)(x0) = 0.However, by the hypothesis (H2) on A′/A,we have (A′/A)(x) R

±2̺ ≷ 0 for all x ≷ 0. Hence our assumption does not hold true.

case 3: Let ̺ > 0 and ε > 0.

subcase 3.1: Assume that x0 > 0. As We
ε(s; u0, x0) > 0 and Wo

ε (s; u0, x0) < 0, it follows

from (4.21) that
(

ΛA,ε + ∂u

)

Wε(s; u0, x0) < 0, which is absurd by Lemma 4.11.2.

subcase 3.2: Assume that x0 < 0.We pin down that

A′(x0)

A(x0)
+ 2ε̺ ≤ −2(1 − ε)̺ ≤ 0. (4.22)

By Lemma 4.11.2, we have
(

ΛA,ε + ∂u + ε̺ id
)

Wε(s; u0, x0) = ε̺Wε(s; u0, x0) < 0, (4.23)

while, by (4.20), (4.19) and (4.22),

(

ΛA,ε + ∂u + ε̺ id
)

Wε(s; u0, x0) =
(A′(x0)

A(x0)
+ 2ε̺

)

Wo
ε (s; u0, x0) ≥ 0,

which contradicts the inequality (4.23).

case 4: Let ̺ > 0 and ε < 0.

subcase 4.1: Assume that x0 > 0. Note that

A′(x0)

A(x0)
+ 2ε̺ ≥ 2(1 + ε)̺ ≥ 0. (4.24)

Hence, the identities (4.20), (4.19) and (4.24) imply that
(

ΛA,ε + ∂u

)

Wε(s; u0, x0) < 0, which is

absurd by Lemma 4.11.2.

subcase 4.2: Assume that x0 < 0. On the one hand, by Lemma 4.11.2, we have
(

ΛA,ε + ∂u − ε̺ id
)

Wε(s; u0, x0) = −ε̺Wε(s; u0, x0) < 0. (4.25)
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On the other hand, since x0 < 0 we have (A′/A)(x0) < 0. Thus, by (4.20) and (4.19),

(

ΛA,ε + ∂u − ε̺ id
)

Wε(s; u0, x0) = −2ε̺We
ε(s; u0, x0) +

A′(x0)

A(x0)
Wo
ε (s; u0, x0) > 0,

which contradicts the inequality (4.25).

This finishes the proof of Theorem 4.13. �

Now we are ready to prove the central result of this section.

Proof of Theorem 4.10. Let f be a positive function in D(R). Proving that VA,ε( f ) ≥ 0 is equiv-

alent to showing that tVA,ε( f ) ≥ 0 (see (4.7) and (4.17)).

By (4.16) we have
∫

R

f (x)VA,ε(ps(u, .))(x)A(x)dx =

∫

R

tVA,ε f (x)ps(x, u)dx = (tVA,ε f ∗ qs)(u),

where qs(r) :=
e−r2/4s

2
√
πs

and ∗ is the Euclidean convolution product. Since f ≥ 0 and VA,ε(ps(u, .))(x) =

Wε(s; u, x) ≥ 0, it follows that (tVA,ε f ∗ qs)(u) ≥ 0 for all s > 0 and u, x ∈ R. Thus

0 ≤ lim
s→0

(tVA,ε f ∗ qs)(u) = tVA,ε f (u).

�
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