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We introduce and study differential-reflection operators Λ A,ε acting on smooth functions defined on R. Here A is a Sturm-Liouville function with additional hypotheses and ε ∈ R. For special pairs (A, ε), we recover Dunkl's, Heckman's and Cherednik's operators (in one dimension).

As, by construction, the operators Λ A,ε are mixture of d/dx and reflection operators, we prove the existence of an operator V A,ε so that

1-ε 2 , we develop an L p -Fourier analysis for F A,ε , and then we prove an L p -Schwartz space isomorphism theorem for F A,ε .

Details of this paper will be given in another article [3].

Résumé. Nous introduisons et étudions des opérateurs différentiels aux différences Λ A,ε agissant sur les fonctions régulières définies sur R. Ici A est une fonction de Sturm-Liouville avec des hypothèses supplémentaires et ε ∈ R. Pour des cas particuliers de paires (A, ε), nous obtenons les opérateurs de Dunkl, de Heckman et de Cherednik (unidimensionnels). Comme, par construction, les opérateurs Λ A,ε entremêlent d/dx et des opérateurs de réflexion, nous prouvons qu'il existe un opérateur V A,ε tel que

La positivité de l'opérateur V A,ε a été établie.

À l'aide des fonctions propres de Λ A,ε , nous introduisons une transformée de Fourier généralisée F A,ε . Nous développons de l'analyse de Fourier de type L p pour F A,ε quand 0 < p ≤ 2 1+ √ 1-ε 2 et -1 ≤ ε ≤ 1, et nous caractérisons l'image des p-espaces de Schwartz par F A,ε .

A family of differential-reflection operators

It became apparent long ago that radial Fourier analysis on real rank one symmetric spaces is closely connected to certain classes of special functions in one variable:

-Bessel functions in connection with radial Fourier analysis on Euclidean spaces, -Jacobi functions in connection with radial Fourier analysis on hyperbolic spaces. We refer to [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF] for a detailed exposition.

In the late 80's/early 90's Dunkl [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF] found a remarkable family of commuting operators that now bear his name. In one dimension this reads

D α f (x) = f ′ (x) + 2α + 1 x f (x) -f (-x) 2 α ≥ -1/2. (1.1)
The eigenfunctions of Dunkl's operators, known as the Dunkl kernel, are the nonsymmetric version of Bessel functions. Some years after [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF], in [START_REF] Cherednik | A unification of Knizhnik-Zamolodchnikov equations and Dunkl operators via affine Hecke algebras[END_REF] Cherednik wrote down a trigonometric variant of the Dunkl operator. In one dimension this reads

T α,β f (x) = f ′ (x) + (2α + 1) coth x + (2β + 1) tanh x f (x) -f (-x) 2 -̺ f (-x), (1.2) 
where α ≥ β ≥ -1/2, α -1/2, and ̺ = α + β + 1. The eigenfunctions of Cherednik's operators, known as the Opdam functions [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF], are the nonsymmetric version of Jacobi functions. We mention that the trigonometric Dunkl operators were originally introduced by Heckman [START_REF] Heckman | An elementary approach to the hypergeometric shift operators of Opdam[END_REF] in a different form. In one dimension his operator reads

S α,β f (x) = f ′ (x) + (2α + 1) coth x + (2β + 1) tanh x f (x) -f (-x) 2 .
This paper gives some aspects of harmonic analysis associated with the following family of one dimensional (A, ε)-operators

Λ A,ε f (x) = f ′ (x) + A ′ (x) A(x) f (x) -f (-x) 2 -ε̺ f (-x),
where ε ∈ R and A : R → R + satisfies the following conditions (cf. [START_REF] Bloom | Harmonic analysis of probability measures on hypergroups[END_REF][START_REF] Chébli | Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur (0, ∞)[END_REF][START_REF] Trimèche | Generalized wavelets and hypergroups[END_REF]):

(C1) A(x) = |x| 2α+1 B(x), where α > -1 2 and B ∈ C ∞ (R) is even, positive, and 
B(0) = 1. (C2) On R + \ {0}, A is increasing, whereas A ′ /A is
decreasing. This condition implies that the limit ̺ := lim x→+∞ A ′ (x)/2A(x) ≥ 0 exists. (C3) There exists a constant δ > 0 such that for x ≫ 0,

A ′ (x) A(x) =            2̺ + e -δx D(x) if ̺ > 0, 2α + 1 x + e -δx D(x) if ̺ = 0, (1.3) 
with |D (k) (x)| ≤ c k for all x ≫ 0 and k ∈ N. The function A and the real number ε are the deformations parameters giving back the above three operators (as special examples) when:

(1)

A(x) = A α (x) = |x| 2α+1 and ε arbitrary (Dunkl's operators D α ), (2) A(x) = A α,β (x) = | sinh x| 2α+1 (cosh x) 2β+1 and ε = 0 (Heckman's operators S α,β ), ( 3 
) A(x) = A α,β (x) = | sinh x| 2α+1 (cosh x) 2β+1 and ε = 1 (Cherednik's operators T α,β ). Let λ ∈ C and consider the initial data problem Λ A,ε f (x) = iλ f (x), f (0) = 1, (1.4) 
where f : R → C. We prove that:

Theorem 1.1. I) For λ ∈ C, there exists a unique solution Ψ A,ε (λ, •) to the problem (1.4). Further, for every x ∈ R, the function λ → Ψ A,ε (λ, x) is analytic on C. II) Under the restriction -1 ≤ ε ≤ 1, for all x ∈ R we have:

1) For λ ∈ R we have |Ψ A,ε (λ, x)| ≤ √ 2. 2) For λ ∈ iR we have Ψ A,ε (λ, x) > 0.
3) Assume that λ ∈ C and |x| ≥ x 0 with x 0 > 0. Then

∂ N x Ψ A,ε (λ, x) ≤ c(|λ| + 1) N (|x| + 1)e (| Im λ|-̺(1- √ 1-ε 2 )) |x| .
4) Assume that λ ∈ C and x ∈ R. Then

∂ M λ Ψ A,ε (λ, x) ≤ c|x| M (|x| + 1)e (| Im λ|-̺(1- √ 1-ε 2 )) |x| .
Sketch of Proof. I) The proof is based on the following facts: Fact 1) Under the conditions (C1) and (C2), the Cauchy problem

       h ′′ (x) + A ′ (x) A(x) h ′ (x) = -(µ 2 + ̺ 2 )h(x) h(0) = 1, h ′ (0) = 0, (1.5) 
with µ ∈ C, admits a unique solution which we denote by ϕ µ (see [START_REF] Chébli | Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur (0, ∞)[END_REF][START_REF] Chébli | Opérateurs de translation généralisée et semi-groupes de convolution, Théorie du potentiel et analyse harmonique[END_REF]). Fact 2) Define µ ε so that µ 2 ε = λ 2 + (ε 2 -1)̺ 2 . For iλ ε̺, the function

Ψ A,ε (λ, x) := ϕ µ ε (x) + 1 iλ -ε̺ ϕ ′ µ ε (x). (1.6)
satisfies the problem (1.4). Fact 3) We may rewrite (1.6) as

Ψ A,ε (λ, x) = ϕ µ ε (x) + (iλ + ε̺) sg(x) A(x) |x| 0 ϕ µ ε (t)A(t)dt, (1.7) 
which implies that λ → Ψ A,ε (λ, x) is analytic, and therefore the restriction on λ can be dropped. The uniqueness follows by standard arguments. II.1) The proof is inspired by Opdam's proof of Proposition 6.1 in [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF]. Using the fact that Ψ A,ε satisfies

Ψ ′ A,ε (λ, x) = - A ′ (x) 2A(x) Ψ A,ε (λ, x) -Ψ A,ε (λ, -x) + ε̺Ψ A,ε (λ, -x) + iλΨ A,ε (λ, x), ( 1.8) 
we prove that for all x ∈ R + , the derivative

|Ψ A,ε (λ, -x)| 2 +|Ψ A,ε (λ, x)| 2 ′ ≤ 0. This implies that for x ∈ R + , we have |Ψ A,ε (λ, -x)| 2 + |Ψ A,ε (λ, x)| 2 ≤ |Ψ A,ε (λ, 0)| 2 + |Ψ A,ε (λ, 0)| 2 = 2. II.2) Assume that Ψ A,ε (λ, •) is not strictly positive. Since Ψ A,ε (λ, 0) = 1 > 0, it follows that Ψ A,ε (λ, •) vanishes. Let x 0 be a zero of Ψ A,ε (λ, •) so that |x 0 | = inf |x| : Ψ A,ε (λ, x) = 0 . We prove that Ψ A,ε (λ, ±x 0 ) = 0 and Ψ ′ A,ε (λ, ±x 0 ) = 0. Differentiating (1.8
), we see that the second derivative of Ψ A,ε (λ, •) vanishes at ±x 0 . Repeating the same argument over and over again to get

Ψ (k) A,ε (λ, ±x 0 ) = 0 for all k ∈ N. Since Ψ A,ε (λ, •) is a real analytic function, we deduce that Ψ A,ε (λ, x) = 0 for all x ∈ R. This contradicts Ψ A,ε (λ, 0) = 1. II.3) If N = 0 we show that for λ ∈ C we have |Ψ A,ε (λ, x)| ≤ Ψ A,ε (0, x) e | Im λ| |x| , (1.9) 
where Ψ A,ε (0, x) = 1 for ε = 0, and

Ψ A,ε (0, x) ≤ c ε (|x| + 1)e -̺(1- √ 1-ε 2 )|x| for ε 0. So assume N ≥ 1.
The identity (1.8) allows us to express the derivatives of Ψ A,ε (λ, •) in terms of lower order derivatives. On the other hand, since A ′ /(2A) satisfies the condition (C3), it follows that

A ′ (x) 2A(x) (N) ≤ C, ∀ |x| ≥ x 0 with x 0 > 0.
II.4) If M = 0 this is just (1.9). So assume M ≥ 1. If x = 0, the statement follows from Liouville's theorem. If x 0, apply Cauchy's integral formula for Ψ A,ε (λ, x) over a circle with radius proportional to 1 |x| , centered at λ in the complex plane.

The existence and the positivity of an intertwining operator

Recall from the (sketch of) proof of Theorem 1.1.I the function ϕ µ which is the unique solution to the Cauchy problem (1.5). By [START_REF] Chébli | Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur (0, ∞)[END_REF] we have the following Laplace type representation 

ϕ µ (x) = |x| 0 K(|x|, y) cos(µy)dy x ∈ R * , ( 2 
ϕ µ ε (x) = |x| 0 K ε (|x|, y) cos(λy)dy x ∈ R * , (2.2) 
where the relationship between µ ε and λ is given by µ

2 ε = λ 2 + (ε 2 -1)̺ 2 . Here K ε (|x|, •) is even, continuous and supported in [-|x|, |x|]. Now, in view of the expression (1.7) of the eigenfunction Ψ A,ε (λ, x), we deduce that Ψ A,ε (λ, x) = |y|<|x| K ε (x, y)e iλy dy x ∈ R * , (2.3) 
where K ε (x, •) is a continuous function supported in [-|x|, |x|]. This integral representation of Ψ A,ε (λ, x) is the starting point for obtaining an intertwining operator between the operator Λ A,ε and the ordinary derivative d/dx. More precisely, for f ∈ C ∞ (R) we define V A,ε f by

V A,ε f (x) =            |y|<|x| K ε (x, y) f (y)dy x 0 f (0) x = 0, (2.4) 
where the kernel K ε (x, y) is as in (2.3).

Theorem 2.1. 1) The operator V A,ε is the unique automorphism of C ∞ (R) such that

Λ A,ε • V A,ε = V A,ε • d dx . (2.5) 2) For all (x, y) ∈ R * × R, the kernel K ε (x, y) is positive.
The positivity of V A,ε played a fundamental role in [START_REF] Ben Said | Uncertainty principles and characterization of the heat kernel for certain differential-reflection operators[END_REF] in establishing an analogue of Beurling's theorem, and its relatives such as theorems of type Gelfand-Shilov, Morgan's, Hardy's, and Cowling-Price in the setting of this paper.

For ε = 0 and 1, the positivity of K ε (x, y) can be found in [START_REF] Trimèche | Positivity of the transmutation operators associated with a Cherednik type operator on the real line[END_REF] and [START_REF] Trimèche | The transmutation operators relating to a Dunkl type operator on R and their positivity[END_REF].

Sketch of Proof of Theorem 2.1. 1) Write f as the superposition f = f e + f o of an even function f e and an odd function f o . We prove that V A,ε can be expressed as

V A,ε f (x) = id +ε̺M • A ε f e (x) + M • A ε f ′ o (x), (2.6) 
where

Mh(x) := sg(x) A(x) |x| 0 h(t)A(t)dt and A ε f (x) := 1 2 |y|<|x| K ε (|x|, y) f (y)dy, with K ε (|x|, y) is as in (2.2). The transform M is an isomorphism from C ∞ e (R) to C ∞ o (R) and its inverse is given by M -1 = d dx + A ′ (x) A(x) id, while A ε is an automorphism of C ∞ e (R). Further, (d 2 /dx 2 + (A ′ /A)(x)d/dx) • A ε = A ε • (d 2 /dx 2 -ε 2 ̺ 2 ) and Λ A,ε • M = id +ε̺M.
Now, the first statement follows from (2.6). The uniqueness of V A,ε is due to the fact that the unique solution Ψ A,ε to the problem (1.4) can be written as

Ψ A,ε (λ, x) = V A,ε (e iλ • )(x) (see (2.3)).
2) For a linear operator L on D(R) we denote by t L its dual operator in the sense that

R L f (x)g(x)A(x)dx = R f (y) t Lg(y)dy.
It is more convenient to deal with the dual operator t V A,ε than with V A,ε . For g ∈ D(R), we have t V A,ε g(y) = |x|>|y| K ε (x, y)g(x)A(x)dx. We shall prove that if g ≥ 0 then t V A,ε g ≥ 0.

For s > 0 and u, v ∈ R, let p s (u, v) := e -(u-v) 2 4s 2 √ πs be the Euclidean heat kernel. The key observation is that

R g(x)V A,ε (p s (u, .))(x)A(x)dx = R t V A,ε g(x)p s (x, u)dx = ( t V A,ε g * q s )(u) → t V A,ε g(u)
as s → 0, where q s (r) := p s (r, 0) and * is the Euclidean convolution product. Thus, the positivity of t V A,ε g reduces to the positivity of V A,ε (p s (u, •)). Now, by (2.4) and (2.3) we prove that for every s > 0 and u, x ∈ R, we have

V A,ε (p s (u, •))(x) = 1 2π R Ψ A,ε (-λ, x)e -sλ 2 e iλu dλ,
which allowed us to show that V A,ε (p s (u, •))(x) ≥ 0.

L p -Fourier analysis

For f ∈ L 1 (R, A(x)dx) put F A,ε f (λ) = R f (x)Ψ ε (λ, -x)A(x)dx, (3.1) 
which is well defined, by Theorem 1.

1.II.1 For -1 ≤ ε ≤ 1 and 0 < p ≤ 2 1+ √ 1-ε 2 , set ϑ p,ε := 2 p -1 - √ 1 -ε 2 . Observe that 1 ≤ 2 1+ √ 1-ε 2 ≤ 2. We introduce the tube domain C p,ε := {λ ∈ C | | Im λ| ≤ ̺ ϑ p,ε }. Theorem 3.1. Let f ∈ L p (R, A(x)dx) with 1 ≤ p ≤ 2 1+ √ 1-ε 2 .
Then the following properties hold. 1) For p > 1, the Fourier transform F A,ε ( f )(λ) is well defined for all λ in Cp,ε , the interior of C p,ε . Moreover, for all λ ∈ Cp,ε , we have |F A,ε ( f )(λ)| ≤ c f p . For p = 1, we may replace above the open domain Cp,ε by C p,ε .

2) The function

F A,ε ( f ) is holomorphic on Cp,ε . 3) (Riemann-Lebesgue lemma) We have lim λ∈ Cp,ε ,|λ|→∞ |F A,ε ( f )(λ)| = 0. 4) The Fourier transform F A,ε is injective on L p (R, A(x)dx) for 1 ≤ p ≤ 2 1+ √ 1-ε 2 . Sketch of Proof.
The first two statements follow from the estimate of Ψ A,ε (λ, x) given in Theorem 1.1.II.4 (with N = 0), the fact that A(x) ≤ c|x| β e 2̺|x| (a consequence of the hypothesis (C3) on the function A), the fact that Ψ A,ε (λ, •) is holomorphic in λ, and Morera's theorem. To extend the first statement from Cp,ε to C p,ε when p = 1, in addition, we show that |Ψ A,ε (λ, x)| ≤ 2 for all λ ∈ C 1,ε and for all x ∈ R. The proof uses the maximum modulus principle and the fact that |Ψ A,ε (λ, x)| ≤ Ψ A,ε (i Im λ, x). For the Riemann-Lebesgue lemma, a classical proof for the Euclidean Fourier transform carries over. The forth statement is based on the following steps:

Step 1) For f ∈ L p (R, A(x)dx) et g ∈ D(R) we show, by means of Hölder's inequality and the first statement, that the mapping f → ( f, g) A := R f (x)g(-x)A(x)dx and

f → (F A,ε ( f ), F A,ε (g)) π ε := R F A,ε ( f )(λ)F A,ε (g)(λ) 1-ε̺ iλ π ε (dλ) are continuous functionals on L p (R, A(x)dx). Here π ε is a positive measure with support R\] - √ 1 -ε 2 ̺, √ 1 -ε 2 ̺[. Step 2) We show that ( f, g) A = (F A,ε ( f ), F A,ε (g)) π ε for all f, g ∈ D(R). Thus, by Step 1), ( f, g) A = (F A,ε ( f ), F A,ε (g)) π ε for all f ∈ L p (R, A(x)dx). Hence, if we assume that f ∈ L p (R, A(x)dx) and that F A,ε ( f ) = 0, then for all g ∈ D(R)
we have ( f, g) A = 0 and therefore f = 0.

For -1 ≤ ε ≤ 1 and 0 < p ≤ 2 1+ √ 1-ε 2 , denote by S p (R) the space consisting of all functions f ∈ C ∞ (R) such that σ (p) s,k ( f ) := sup x∈R (|x| + 1) s e 2 p ̺|x| | f (k) (x)| < ∞, (3.2) 
for any s, k ∈ N. The topology of S p (R) is defined by the seminorms σ (p) s,k . The space D(R) of smooth functions with compact support on R is a dense subspace of S p (R); see for instance [START_REF] Delorme | Espace de Schwartz pour la transformation de Fourier hypergóm trique, Appendix A by Mustapha Tinfou[END_REF]Appendix A].

Let S (C p,ε ) be the Schwartz space consists of all complex valued functions h that are analytic in the interior of C p,ε , and such that h together with all its derivatives extend continuously to C p,ε and satisfy

τ (ϑ p,ε ) t,ℓ (h) := sup λ∈C p,ε (|λ| + 1) t |h (ℓ) (λ)| < ∞, (3.3) 
for any t, ℓ ∈ N. The topology of S (C p,ε ) is defined by the seminorms τ (ϑ p,ε ) t,ℓ . Using Anker's approach [START_REF] Anker ; Helgason | The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra[END_REF] we prove the following result:

Theorem 3.2. Let -1 ≤ ε ≤ 1 and 0 < p ≤ 2 1+ √ 1-ε 2 .
Then the Fourier transform F A,ε is a topological isomorphism between S p (R) and S (C p,ε ).

Sketch of Proof.

The proof is based on the following steps:

Step 1) The transform F A,ε maps S p (R) continuously into S (C p,ε ) and is injective.

Step 2) The inverse Fourier transform F -1 A,ε : PW(C) -→ D(R) given by

F -1 A,ε h(x) = c R h(λ)Ψ A,ε (λ, x) 1 - ε̺ iλ π ε (dλ)
is continuous for the topologies induced by S (C p,ε ) and S p (R). Here PW(C) is the space of entire functions on C which are of exponential type and rapidly decreasing, and π ε is a positive measure with support R\] -√ 1 -ε 2 ̺, √ 1 -ε 2 ̺[. We pin down that PW(C) is dense in S (C p,ε ). For Step 1), we prove that F A,ε ( f ) is well defined for all f ∈ S p (R). This is due to the growth estimates for Ψ A,ε (λ, x) stated in Theorem 1.1.II.4. Moreover, since the map λ → Ψ A,ε (λ, x) is holomorphic on C, it follows that for all f ∈ S p (R), the function F A,ε ( f ) is analytic in the interior of C p,ε , and continuous on C p,ε . Finally, we prove that given a continuous seminorm τ on S (C p,ε ), there exists a continuous seminorm σ on S p (R) such that τ(F A,ε ( f )) ≤ cσ( f ) for all f ∈ S p (R). Indeed, by means of the growth estimates for ∂ ℓ λ Ψ A,ε (λ, x) stated in Theorem 1.1.II.4, we show first that

(iλ) r F A,ε ( f )(λ) (ℓ) ≤ c R |Λ r A,ε f (x)| (|x| + 1) ℓ+1 e (| Im λ|-̺(1- √ 1-ε 2 )) |x| A(x)dx,
and then we prove that |Λ r A,ε f (x)| is bounded by finite sums of the derivatives of f. Thus τ(F A,ε ( f )) ≤ c finite σ( f ) for all f ∈ S p (R). The injectivity of F A,ε on S p (R) follows from Theorem 3.1.4 and the fact that S p (R) ⊂ L q (R, A(x)dx) for all q < ∞ so that p ≤ q.

For Step 2), we start by proving a Paley-Wiener theorem for F A,ε , i.e. we prove that F A,ε is a linear isomorphism between the space D R (R) of smooth functions with support inside [-R, R] and the space PW R (C) of entire functions which are of R-exponential type and rapidly decreasing. We note that PW(C) = ∪ R>0 PW R (C).

Next, we take f ∈ D(R) and h ∈ PW(C) so that f = F -1 A,ε (h). Denote by g the image of h by the inverse Euclidean Fourier transform F -1 euc . Making use of the Paley-Wiener theorem for F A,ε and the classical Paley-Wiener theorem for F euc , we have the following support conservation property: supp( f ) ⊂ I R := [-R, R] ⇔ supp(g) ⊂ I R .

For j ∈ N ≥1 , let ω j ∈ C ∞ (R) with ω j = 0 on I j-1 and ω j = 1 outside of I j . Assume that ω j and all its derivatives are bounded, uniformly in j. We write g j = ω j g, and define h j := F euc (g j ) and f j := F -1 A,ε (h j ). Note that g j = g outside I j . Hence, by the above support property, f j = f outside I j .

In view of the growth estimate for ∂ k x Ψ A,ε (λ, x) stated in Theorem 1.1.II.3, we prove that for j ∈ N ≥1 , sup for some integer t > 0.

2 p 1 (|x| + 1 ) s e 2 p

 2112 x∈I j+1 \I j (|x| + 1) s e ̺|x| | f (k) j (x)| ≤ c s+3 r=0 τ (ϑ p,ε ) t,r (h),for some integer t > 0. For I 1 , we show first that there exists an integer m k ≥ 1 such that|∂ k x Ψ A,ε (λ, x)| ≤ c(|λ| + 1) m k (|x| + 1)e -̺|x| (3.4) for λ ∈ R such that |λ| ≥ √ 1 -ε 2 ̺.Then, using the compactness of I 1 , we prove that sup x∈I ̺|x| | f (k) (x)| ≤ cτ (0) t,0 (h),

Details of this paper will be given in another article [3].