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UNCERTAINTY PRINCIPLES AND CHARACTERIZATION OF THE HEAT

KERNEL FOR CERTAIN DIFFERENTIAL-REFLECTION OPERATORS

SALEM BEN SAID, ASMA BOUSSEN & MOHAMED SIFI

Abstract. We prove various versions of uncertainty principles for a certain Fourier

transform FA. Here A is a Chébli function (i.e. a Sturm-Liouville function with addi-

tional hypotheses).

We mainly establish an analogue of Beurling’s theorem, and its relatives such as

theorems of type Gelfand-Shilov, Morgan’s, Hardy’s, and Cowling-Price, for FA, and

relating them to the characterization of the heat kernel corresponding to FA.

Heisenberg’s and local uncertainty inequalities were also proved.

1. Introduction

One of the most famous and paradoxical predictions of quantum theory is the state-

ment that the position and the velocity of an object cannot both be measured exactly

at the same time, even in theory. The quantitative version of this phenomenon is the

Heisenberg uncertainty principle, which may be formulated as an inequality in Fourier

analysis [38]. Roughly speaking, Heisenberg’s inequality asserts that a nonzero function

f and its Euclidean Fourier transform f̂ cannot both be very small.

The uncertainty principle has also an interpretation in classical physics. Suppose f (t)

is a sound wave at time t, and denote by Var( f ) an index of its concentration in time.

We interpret f̂ (t) as the frequency distribution of the sound wave at time t, so Var( f̂ )

is an index of the concentration of the pitch. The uncertainty principle then says that a

sound cannot be very concentrated in both time and pitch. In particular, short duration

tones will have a poorly determined pitch. Singers take advantage of this: in very rapid

passages, errors in intonation will not be noticeable.

Heisenberg’s uncertainty principle tells us that if f is highly localized, then f̂ cannot

be concentrated near a single point, but it does not say anything about f̂ being concen-

trated in a small neighborhood or perhaps a finite number of widely separated points. In

fact, the latter phenomenon cannot occur either, and it is the object of local uncertainty

inequalities to make this precise. The first such inequalities were obtained by Faris [14],

and they were subsequently sharpened and generalized by Price [29, 30]. See also [28]

and [23].

Heisenberg’s inequality is an instance of various quantitative versions of uncertainty

principles due to Hardy in 1933 [18], Morgan in 1934 [25], Gelfand-Shilov in 1953

[17], Cowling-Price in 1983 [12], etc. Further details on uncertainty principles can be
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found in the textbook of Havin and Joricke [19], and in the expository papers of Havin

[20] and Folland-Sitaram [15].

Building on the paper [18] by Hardy, around 1964 Beurling proved a new version

of Heisenberg’s uncertainty principle, which found a lot of success for its elegance and

simplicity. This result appeared without proof in the collected works [3] of Beurling.

In 1991, Hörmander [22] reproduced a proof from the notes he made when Beurling

explained this result to him during a private conversation. It is known by now that

Beurling’s uncertainty principle is the master theorem of this subject in the sense that it

implies the theorems of Hardy, Morgan, Gelfand-Shilov, and Cowling-Price. Recently,

this theorem was further generalized by Bonami, Demange, and Jaming [5]. Analogues

of Beurling’s theorem in the context of Lie groups have been studied in [32, 2, 27, 33,

31] etc.

In this paper our aim is to prove the analogue of the above mentioned uncertainty prin-

ciples for a generalized Fourier transform associated with a wide family of differential-

reflection operators.

More precisely, we consider the operator

ΛA f (x) = f ′(x) +
A′(x)

A(x)

(

f (x) − f (−x)

2

)

, (1.1)

where A is so-called a Chébli function on R (i.e. a Sturm-Liouville function with addi-

tional hypotheses). In particular, the function A assumes:

A(x) = |x|2α+1B(x), (1.2)

where α > −1
2

and B is any even, positive and smooth function with B(0) = 1, and the

limit

2̺ := lim
x→+∞

A′(x)

A(x)
(1.3)

exists and nonnegative.

For instance, if A(x) = | sinh x|2α+1(cosh x)2β+1, with α > β ≥ −1/2, then the operator

(1.1) reduces to Heckman’s operator in one dimension [21]. Operators of type (1.1)

have a long history going back to the pioneering paper [13] by Dunkl.

For λ ∈ C, denote by Ψ(λ, x) the unique solution to the equation ΛA f (x) = iλ f (x)

with the initial data f (0) = 1. In particular, for λ, x ∈ R we have |Ψ(λ, x)| ≤ 1.

On the space L1(R, A(x)dx) we consider the Fourier transform FA defined by

FA f (λ) =

∫

R

f (x)Ψ(λ,−x)A(x)dx, λ ∈ R. (1.4)

By now, the transform FA is very well understood. See [4] for a detailed harmonic

analysis related to FA.

For t > 0 and x ∈ R, let ht(x) = h(t, x) := F −1
A (e−tλ2

)(x) be the heat kernel associated

with the heat semigroup etΛ2
A . In particular, the map x 7→ h(t, x) is even and belongs to

the space L1(R, A(x)dx). The estimates proved in [16] for h(t, x) will play a crucial rule

in several places.
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Below we will write ‖ · ‖Lp
x

and ‖ · ‖Lp

λ
instead of ‖ · ‖Lp(R,A(x)dx) and ‖ · ‖Lp(R,ξ(λ)dλ),

respectively. Here ξ(λ)dλ denotes a Plancherel measure supported on R\]−̺, ̺[, which

will be given explicitly in the next section, where ̺ is as in (1.3).

Define the following domain

D̺ :=























{1} if ̺ = 0,

(1
2
, 1] if 0 < ̺ < 1,

[1
2
, 1] otherwise.

(1.5)

The Heisenberg inequality for FA reads:

Theorem A (Heisenberg’s type; see Theorem 3.3). Let r, s be two positive constants

and γ ∈ D̺. Then, for all f ∈ L2(R, A(x)dx) we have

‖ |x|γs f ‖
r

r+s

L2
x

‖ |λ|r FA( f )‖
s

r+s

L2
λ

& ‖ f ‖L2
x
.

The proof of this theorem uses a similar approach to that employed in [8] for a sub-

Laplacian on a Lie group of polynomial volume growth.

As mentioned earlier, the local uncertainty principle comes to fill in the blank left by

Heisenberg’s uncertainty principle. For FA, the local uncertainty inequality states:

Theorem B (the local type; see Theorem 4.2). Let s be a positive constant so that

s < α + 1, and let E ⊆ R\] − ̺, ̺[ be a measurable set such that 0 < ξ(E) < ∞. Then,

for all nonzero function f ∈ L2(R, A(x)dx), we have

‖ f ∗A wE‖L2
x
� cs,E ‖wE‖

s
α+1

L2
x

‖ |x|s f ‖L2
x
,

where wE := F −1
A χE ∈ L2(R, A(x)dx).

We now turn our attention to an analogue of Beurling’s uncertainty principle, which

has been extended to many directions and contexts. The principle result of this paper

is to prove Beurling’s theorem, and its relatives such as the theorems of Gelfand-Shilov

and Cowling-Price, for the Fourier transform FA.

Theorem C (Beurling’s type; see Theorem 5.1). Let f ∈ L2(R, A(x)dx) satisfy

∫

R

∫

R

| f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
A(x)dx ξ(λ)dλ < ∞, (1.6)

for some nonnegative integer N. Then f is of the form

f (x) =

n
∑

k=0

ckΛ
(k)

A,x
h(t, x) n <

N − (2α + 2)

2
, (1.7)

where ck are complex constants, and the subscript x in Λ
(k)

A,x
h(t, x) denotes the relevant

variable in the k-th power of the operator ΛA applied to the heat kernel h(t, x) for some

t > 0.
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In the limit case α = −1/2, with B(x) = 1 for all x ∈ R, the above statement collapses

to the Bonami-Demange-Jaming result in one dimension [5].

Theorem C has several interesting consequences. We begin with the following varia-

tion of the uncertainty principle involving conjugate exponents p and q:

Theorem D (Gelfand-Shilov type; see Theorem 6.1). Let f ∈ L2(R, A(x)dx) and N be

a nonnegative integer. Assume that

∫

R

| f (x)| e
(2s)p

p
|x|p

(1 + |x|)N
A(x)dx < ∞,

∫

R

|FA( f )(λ) |e
(2t)q

q
|λ|q

(1 + |λ|)N
ξ(λ)dλ < ∞,

where 1 < p < ∞, 1
p
+ 1

q
= 1, and s, t are positive constants.

1) If st > 1
4

then f = 0 almost everywhere.

2) If st = 1
4

and p , 2 (hence q , 2) then f = 0 almost everywhere.

3) If st = 1
4

and p = q = 2, then

f (x) =

n
∑

k=0

ck Λ
(k)

A,x
h(2t2, x) n < N − (2α + 2). (1.8)

In particular, if 2α+2 < N ≤ 2α+3 then f (x) = c0 h(2t2, x), where c0 is an arbitrary

constant for ̺ = 0, and c0 = 0 for ̺ > 0.

The uncertainty principle below follows partially from Theorem D above.

Theorem E (Morgan’s type; see Theorem 6.2). Suppose a measurable function f : R→
C satisfies

| f (x)| . (1 + |x|)M e−s|x|p e−̺|x|
√

B(x)
, |FA( f )(λ)| . e−t|λ|q ,

where s, t are positive constants, M is a nonnegative integer, 1 < p < ∞, and 1
p
+ 1

q
= 1.

Here B(x) is as in (1.2).

1) If (sp)
1
p (tq)

1
q > 1 then f = 0 almost everywhere.

2) If (sp)
1
p (tq)

1
q = 1 and p , 2 (hence q , 2) then f = 0 almost everywhere.

3) If (sp)
1
p (tq)

1
q = 1 and p = q = 2, i.e. st = 1

4
, then, for all M, we have:

(i) For ̺ = 0, f (x) is, up to a constant, the heat kernel h(t, x).

(ii) For ̺ > 0, f = 0 almost everywhere.

When p = q = 2, we shall call Morgan’s type theorem as the Hardy type theorem

(see Corollary 6.3). The case st < 1
4

is included in Corollary 6.3. One can think of

Morgan’s type theorem as an intermediate result between the Paley-Winener theorem

for FA, corresponding to p = 1, and Hardy’s type uncertainty principle.

Next we state a generalization of Hardy’s type theorem (or Morgan’s type theorem

with p = q = 2), where the uniform conditions are replaced by integrability conditions.
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Theorem F (Cowling-Price type; see Theorem 6.5). Let f ∈ L2(R, A(x)dx) and assume

that for positive real numbers s, t, and nonnegative integers N1, N2,

∫

R

( | f (x)| es|x|2 e̺|x|(1−
1
p

)B(x)
1
2

(1− 1
p

)

(1 + |x|)N1

)p

A(x)dx < ∞,
∫

R

( |FA( f )(λ)| et|λ|2

(1 + |λ|)N2

)q

ξ(λ)dλ < ∞,

where 1 ≤ p, q ≤ ∞, and B(x) is as in (1.2).

1) If st < 1
4
, then there exist infinitely many linearly independent functions satisfying

the above two conditions.

2) If st > 1
4

then f (x) = 0 almost everywhere.

3) If st = 1
4

then

f (x) =

n
∑

k=0

ck Λ
(k)

A,x
h(t, x) n < N2 −

(2α + 2)

q
. (1.9)

In particular, if {(2α + 2)/q} < N2 ≤ {(2α + 2)/q} + 1 then f (x) = c0 h(t, x), with:

(i) For ̺ = 0, c0 is an arbitrary constant whenever N1 > {(2α + 2)/p}, otherwise

c0 = 0.

(ii) For ̺ > 0, c0 = 0.

For p = q = ∞, the Cowling-Price type theorem implies Hardy’s type uncertainty

principle.

2. Background

The purpose of this section is to recall some results from the literature on the so-called

Chébli transform. For more details we refer the reader to [9, 10, 11, 35, 36].

Throughout this paper we will denote by A a function on R satisfying the following

hypotheses:

(H1) A(x) = |x|2α+1B(x),where α > −1
2

and B is an even, positive and smooth function

on R with B(0) = 1.

(H2) A is increasing and unbounded on R+.

(H3) A′/A is a decreasing and smooth function on R∗+, and hence the limit 2̺ :=

lim
x→+∞

A′(x)/A(x) ≥ 0 exists.

Such a function A is called a Chébli function. From (H1) it follows that

A′(x)

A(x)
=

2α + 1

x
+ C(x), for x , 0, (2.1)

where C := B′/B is an odd and smooth function on R.
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2.1. The Chébli transform. Let ∆A, or simply ∆, be the following second order differ-

ential operator

∆ =
d2

dx2
+

A′(x)

A(x)

d

dx
. (2.2)

For µ ∈ C, we consider the Cauchy problem














∆ f (x) = −(µ2 + ̺2) f (x)

f (0) = 1, f ′(0) = 0.
(2.3)

In [11] the author proved that the system (2.3) has a unique solution ϕµ. Moreover, ϕµ is

an even smooth function on R, and the map µ 7→ ϕµ(x) is analytic. We refer to [10, 36]

for more details on ϕµ.

For f ∈ L1(R+, A(x)dx), the Chébli transform of f is given by

F∆( f )(µ) :=

∫

R+

f (x)ϕµ(x)A(x)dx, | Im µ| ≤ ̺. (2.4)

The following Plancherel formula for F∆ was proved in [11].

Theorem 2.1. There exists a unique positive measure σ with support R+ such that F∆

induces an isometric isomorphism from L2(R+, A(x)dx) onto L2(R+, σ(dµ)), and for any

f ∈ L1(R+, A(x)dx) ∩ L2(R+, A(x)dx) we have
∫

R+

| f (x)|2A(x)dx =

∫

R+

|F∆( f )(µ)|2 σ(dµ).

To have a nice behavior for the Plancherel measure σ we need a further (growth)

restriction on the function A. Following [35], we will assume that A′/A satisfies the

additional hypothesis:

(H4) There exists a constant δ > 0 such that for all x ∈ [x0,∞) (for some x0 > 0),

A′(x)

A(x)
=























2̺ + e−δxD(x) if ̺ > 0,

2α + 1

x
+ e−δxD(x) if ̺ = 0,

(2.5)

where D being a smooth function bounded together with its derivatives.

In these circumstances, the Plancherel measure σ is absolutely continuous with re-

spect to the Lebesgue measure and has density |c(µ)|−2, where c is a continuous function

on R+ and zero free on R∗+. Moreover, by [36, Proposition 6.1.12 and Corollary 6.1.5]

(see also [6]), for µ ∈ C we have:

(i) If ̺ ≥ 0 and α > −1/2, then |c(µ)|−2 ∼ |µ|2α+1 whenever |µ| ≫ 1.

(ii) If ̺ > 0 and α > −1/2, then |c(µ)|−2 ∼ |µ|2 whenever |µ| ≪ 1.

(iii) If ̺ = 0 and α > 0, then |c(µ)|−2 ∼ |µ|2α+1 whenever |µ| ≪ 1.

In the literature, the function c is called Harish-Chandra’s function of the Laplacian ∆.

We refer to [7] for more details on the c-function.

Henceforth we will assume that Chébli’s function A satisfies the additional hypothesis

(H4). In particular, it follows that for |x| large enough:
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(i) A(x) ∼ e2̺|x| for ̺ > 0.

(ii) A(x) ∼ |x|2α+1 for ̺ = 0.

2.2. A family of differential-reflection operators. Consider the following differential-

reflection operator

ΛA f (x) = f ′(x) +
A′(x)

A(x)

(

f (x) − f (−x)

2

)

. (2.6)

In view of the hypothesis (H4) on A′/A, the space D(R) (of smooth functions with

compact support on R) and the space S (R) (of Schwartz functions on R) are invariant

under the action of ΛA.

For completeness’ sake, the operator LA := Λ2
A

is given by

LA f (x) = f ′′(x) +

(

A′(x)

A(x)

)

f ′(x) +

(

A′(x)

A(x)

)′ (
f (x) − f (−x)

2

)

. (2.7)

Let λ ∈ C and consider the differential-reflection equation

ΛA f (x) = iλ f (x), (2.8)

where f : R→ C.

Theorem 2.2. (see [4, Theorem 3.2]) The solution space of (2.8) is 1-dimensional for

all λ ∈ C. This solution space contains a (unique) function Ψ(λ, ·) such thatΨ(λ, 0) = 1.

Further, for every x ∈ R, the function λ 7→ Ψ(λ, x) is analytic on C. More explicitly, we

have:

Ψ(λ, x) =



















ϕµ(x) +
1

iλ
∂xϕµ(x) if λ ∈ C\{0},

1 if λ = 0,
(2.9)

where µ satisfies the relation µ2 = λ2 − ̺2. Furthermore, for all λ, x ∈ R, we have

|Ψ(λ, x)| ≤ 1.

Example 2.3. Assume that A(x) = Aα,β(x) = (sinh |x|)2α+1(cosh x)2β+1 with α ≥ β ≥
−1/2 and α , −1/2. In this example, the differential-reflection operator (2.6) coincides

with the Heckman operator in one dimension,

ΛAα,β f (x) = f ′(x) +

(

(2α + 1) coth x + (2β + 1) tanh x

)

(

f (x) − f (−x)

2

)

.

The eigenfunction Ψ(λ, x) is given by

Ψ(λ, x) = ϕ(α,β)
µ (x) +

1

iλ
∂xϕ

(α,β)
µ (x)

= ϕ(α,β)
µ (x) +

iλ

4(α + 1)
sinh(2x)ϕ(α+1,β+1)

µ (x),

where ϕ
(α,β)
µ denotes the Jacobi function, and µ2 = λ2 − (α + β + 1)2.
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2.3. An intertwining operator. In [34, Theorem 2.2] the author proved that there ex-

ists a unique automorphism VA, or simply V, of C∞(R) such that

ΛA ◦ V = V ◦
d

dx
and V f (0) = f (0). (2.10)

In particular, by the uniqueness of the solution Ψ(λ, x), it follows that

Ψ(λ, x) = V(eiλ ·)(x). (2.11)

Moreover, by [34, Theorem 3.2], there exists a positive kernel K so that

V f (x) =

∫

|y|<|x|
K(x, y) f (y) dy, x , 0. (2.12)

Henceforth, we will denote by tV the dual operator of V in the sense that
∫

R

V f (x) g(x) A(x)dx =

∫

R

f (y) tVg(y) dy, (2.13)

for suitable f and g. That is,

tVg(y) =

∫

|x|>|y|
K(x, y) g(x) A(x)dx. (2.14)

2.4. A generalized Fourier transform. On the space L1(R, A(x)dx) we consider the

generalized Fourier transform FA defined by

FA( f )(λ) =

∫

R

f (x)Ψ(λ,−x)A(x)dx, λ ∈ R.

In view of (2.11) and (2.13) we have

FA = Feuc ◦ tV. (2.15)

where Feuc is the Euclidean Fourier transform.

To state the alleged inverse transform of FA, let us introduce the following Plancherel

measure

ξ(λ)dλ :=
|λ|

√

λ2 − ̺2 |c(
√

λ2 − ̺2)|2
1R \ ]−̺,̺[(λ) dλ. (2.16)

Theorem 2.4. (see [4, Theorem 8.1 and 8.2])

1) If f ∈ L1(R, A(x)dx) and FA( f ) ∈ L1(R, ξ(λ)dλ) then

f (x) =
1

4

∫

R

FA( f )(λ)Ψ(λ, x) ξ(λ)dλ almost everywhere. (2.17)

2) If f ∈ L1(R, A(x)dx) ∩ L2(R, A(x)dx), then FA( f ) ∈ L2(R, ξ(λ)dλ) and furthermore
∫

R

| f (x)|2A(x)dx =
1

4

∫

R

|FA( f )(λ)|2 ξ(λ)dλ. (2.18)

3) There exists a unique unitary operator on L2(R, ξ(λ)dλ) that coincides with (1/2)FA

on L1(R, A(x)dx) ∩ L2(R, A(x)dx).
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For 0 < p ≤ 1, denote by Sp(R) the space consisting of all functions f ∈ C∞(R) such

that

σ
(p)

s,k
( f ) := sup

x∈R
(|x| + 1)s ϕ0(x)−2/p | f (k)(x)| < ∞, (2.19)

for any s ∈ N and any k ∈ N. The topology of Sp(R) is defined by the seminorms σ
(p)

s,k
.

We pin down that Sp(R) is a dense subspace of Lq(R, A(x)dx) for p ≤ q < ∞, while it

is not contained in Lq(R, A(x)dx) for 0 < q < p.

We set

Cp :=
{

λ ∈ C | | Im λ| ≤ ̺
(2

p
− 2

)}

. (2.20)

Let S (Cp) be the Schwartz space consists of all complex valued functions h that are

analytic in the interior of Cp, and such that h together with all its derivatives extend

continuously to Cp and satisfy

τ
(p)

t,ℓ
(h) := sup

λ∈Cp

(|λ| + 1)t |h(ℓ)(λ)| < ∞, (2.21)

for any t ∈ N and any ℓ ∈ N. The topology of S (Cp) is defined by the seminorms τ
(p)

t,ℓ
.

Using Anker’s approach [1], we proved in [4, Theorem 9.6] the following result:

Theorem 2.5. For all 0 < p ≤ 1, the Fourier transform FA is a topological isomorphism

between Sp(R) and S (Cp).

2.5. A generalized convolution product. For fixed x, y ∈ R∗ and for a suitable func-

tion f , we consider the following generalized translation operator (see [26, (5.3) and

(6.1)] or [37, (4.4)])

τy f (x) =

∫

R

f (z) dµx,y(z),

where

supp(µx,y) ⊂ [−|x| − |y|,−| |x| − |y| |] ∪ [| |x| − |y| |, |x| + |y|].
For x = 0 or y = 0, µx,y is nothing other than the δ-measure. It is worth mentioning that

τyΨ(λ, ·)(x) = Ψ(λ, x)Ψ(λ, y). (2.22)

For more details on the generalized translation operator τy we refer the reader to [37].

We recall the following result from [37, Theorem 4]. To simplify the notation, we will

write ‖ · ‖Lp
x

instead of ‖ · ‖Lp(R,A(x)dx) where the lower-index in L
p
x denotes the relevant

variable.

Lemma 2.6. Let f ∈ Lp(R, A(x)dx) with 1 ≤ p ≤ ∞. Then τy f (x) exists and is finite for

almost every x ∈ R. Moreover

τy f ∈ Lp(R, A(x)dx) and ‖τy f ‖Lp
x
≤ 2|1−

2
p
| ‖ f ‖Lp

x
.

The integral

f ∗A g(x) :=

∫

R

τ−y f (x)g(y)A(y)dy

is called the generalized convolution product of f and g. For the existence of ∗A, one

can impose different conditions on the functions f and g. In particular, by standard
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arguments, one can prove the statement below. In order to be self-contained, we shall

give a proof:

Proposition 2.7. 1) Assume that 1 ≤ p, q, r ≤ ∞ satisfy
1

p
+

1

q
− 1 =

1

r
. Then, for

every f ∈ Lp(R, A(x)dx) and g ∈ Lq(R, A(x)dx), we have f ∗A g ∈ Lr(R, A(x)dx) and

‖ f ∗A g‖Lr
x
≤ 2|1−

2
p
| ‖ f ‖Lp

x
‖g‖Lq

x
. (2.23)

2) Let f ∈ L1(R, A(x)dx) and g ∈ L1(R, A(x)dx). Then, f ∗A g ∈ L1(R, A(x)dx) and

satisfies

FA( f ∗A g)(λ) = FA( f )(λ) FA(g)(λ).

3) Let f ∈ L2(R, A(x)dx) and g ∈ L2(R, A(x)dx). Then, f ∗A g ∈ L2(R, A(x)dx) if and

only if FA( f ) FA(g) ∈ L2(R, ξ(λ)dλ) and

FA( f ∗A g)(λ) = FA( f )(λ) FA(g)(λ).

Proof. 1) If r = ∞ then (1/p)+(1/q) = 1.Hence, by Hölder’s inequality and Lemma 2.6,

f ∗A g(x) exists for each x and ‖ f ∗A g‖L∞x ≤ 2|1−
2
p | ‖ f ‖Lp

x
‖g‖Lq

x
. Next, suppose 1 ≤ r < ∞.

Note that p ≤ r and q ≤ r. Let s = p(1 − 1/q) = 1 − p/r and note that 0 ≤ s < 1.

Let t = r/q and note that 1 ≤ t < ∞. Define q′ by (1/q) + (1/q′) = 1 and note that

1 < q′ ≤ ∞. Let

h(x) :=

∫

R

|τ−y f (x)g(y)|A(y)dy =

∫

R

|τx f (−y)|1−s |g(y)| |τx f (−y)|s A(y)dy.

By Hölder’s inequality we have

h(x) ≤
(

∫

R

|τx f (−y)|(1−s)q |g(y)|q A(y)dy
)1/q

‖ |τx f |s ‖
L

q′
y
.

If s = 0 then q = 1. If s , 0 then sq′ = p. In either cases taking the qth power we obtain

h(x)q ≤
(

∫

R

|τx f (−y)|(1−s)q |g(y)|q A(y)dy
)

‖τx f ‖sq

L
p
y

≤ 2sq|1− 2
p
| ‖ f ‖sq

L
p
y

(

∫

R

|τx f (−y)|(1−s)q |g(y)|q A(y)dy
)

.

Thus, by the generalized Minkowski inequality we have

‖h‖q
L

qt
x

= ‖hq‖Lt
x

≤ 2sq|1− 2
p | ‖ f ‖sq

L
p
y

(

∫

R

(

∫

R

|τx f (−y)|(1−s)q |g(y)|q A(y)dy
)t

A(x)dx
)1/t

≤ 2sq|1− 2
p
| ‖ f ‖sq

L
p
y

∫

R

(

∫

R

|τx f (−y)|(1−s)qt |g(y)|qt A(x)dx
)1/t

A(y)dy

≤ 2q|1− 2
p
|‖ f ‖q

L
p
y

‖g‖q
L

q
y

,

since qt = r and (1 − s)r = p. Taking the qth root we obtain the statement.

2) For f and g in L1(R, A(x)dx), it follows from the first part that f ∗A g ∈ L1(R, A(x)dx).

In view of (2.22) the rest of the statement is a routine checking.
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3) The third statement can be proved by mimicking the argument used in [36, page

189] for the Chébli transform F∆. The details are left to the reader. �

Henceforth, the notation X . Y will be used to indicate that X ≤ CY with a positive

constant C independent of significant quantities.

3. A Heisenberg type inequality forFA

Recall from (2.7) that −LA is a positive self-adjoint operator on L2(R, A(x)dx). Then,

for t > 0, etLA defines an utltracontractive semigroup, called the heat semigroup, so that

for all f ∈ C∞c (R), u(x, t) := etLA f (x) solves the homogeneous heat equation

∂tu(x, t) = LAu(x, t), u(x, 0) = f (x).

The solution etLA f (x) can be written as etLA f (x) = ht ∗A f (x), where ht(x) = h(t, x) :=

F −1
A (e−tλ2

)(x) is the heat kernel.

We claim that ht belongs to the Schwartz space Sp(R) with 0 < p ≤ 1 (see (2.19)),

and therefore ht ∈ Lq(R, A(x)dx) for all 0 < q < ∞. Indeed, as the function λ 7→ e−tλ2

belongs to the Schwartz space S (Cp), it follows from Theorem 2.5 that ht ∈ Sp(R).

The second part of the claim is due to the fact that Sp(R) is a dense subspace of

Lq(R, A(x)dx) for p ≤ q < ∞.
In view of the claim above, we may rewrite the heat kernel as

ht(x) =
1

4

∫

R

e−tλ2

Ψ(λ, x) ξ(λ)dλ, (t, x) ∈ R∗+ × R, (3.1)

where the Plancherel measure ξ(λ)dλ is as in (2.16). By the expression (2.9) of Ψ(λ, x),

the integral in (3.1) becomes

ht(x) =
1

2

∫ ∞

0

e−t(µ2+̺2) ϕµ(x) |c(µ)|−2dµ.

The following statement is nothing other than Lemma 3.2 in [24].

Lemma 3.1. The following estimates hold:

1) For ̺ > 0, we have

‖ht‖L2
x
∼















t−
α+1

2 for 0 < t ≤ 1,

e−t̺2

t−
3
4 for t > 1.

(3.2)

2) For ̺ = 0, and with the additional condition α > 0, we have

‖ht‖L2
x
∼ t−

α+1
2 , for t > 0. (3.3)

The next lemma is a cornerstone of the main result of this section. Define

D̺ :=























{1} if ̺ = 0,

(1
2
, 1] if 0 < ̺ < 1,

[1
2
, 1] otherwise.

(3.4)
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Lemma 3.2. Let γ ∈ D̺ and let s > 0 so that γs < α + 1 for ̺ ≥ 0, and with the

additional condition α > 0 for ̺ = 0. Then, for all f ∈ L2(R, A(x)dx), we have

‖ f ∗A ht‖L2
x
. t−

s
2 ‖ |x|γs f ‖L2

x
.

Proof. Let us start with the case ̺ > 0. For r > 0, let χr be the characteristic function of

the interval [−r, r], and let χ′r = 1 − χr. Define the functions fr and f r by

fr := f χr, f r := f χ′r.

Since f r ∈ L2(R, A(x)dx) and ht ∈ L1 ∩ L2(R, A(x)dx), by Proposition 2.7.1 and 2.7.3,

it follows that ht ∗A f r ∈ L2(R, A(x)dx) and FA(ht ∗A f r) = FA(ht)FA( f r). By using the

Plancherel formula twice we get

‖ht ∗A f r‖L2
x
= ‖e−tλ2

FA( f r)‖L2
λ

≤ ‖FA( f r)‖L2
λ

≤ r−γs ‖ |x|γs f ‖L2
x
,

since γs > 0. Above, the notation ‖ · ‖L2
λ

stands for ‖ · ‖L2(R,ξ(λ)dλ).

On the other hand, by appealing to Proposition 2.7.1 we have

‖ht ∗A fr‖L2
x
≤ ‖ht‖L2

x
‖ fr‖L1

x

≤ ‖ht‖L2
x
‖ |x|γs f ‖L2

x

(

2

∫ r

0

x−2γsA(x)dx

)
1
2

.

Further, one may check that under the assumption on γs, we have

(

∫ r

0

x−2γsA(x)dx

)
1
2

. r−γsV(r),

where

V(r) =















rα+1 for r ≤ 1,

e̺r
√

r for r > 1.
(3.5)

This is due to the fact that, for ̺ > 0, A(x) ∼ e2̺|x| when |x| >> 1 and A(x) ∼ |x|2α+1 when

|x| << 1 .

Consequently,

‖ht ∗A f ‖L2
x
≤ ‖ht ∗A f r‖L2

x
+ ‖ht ∗A fr‖L2

x

. r−γs ‖ |x|γs f ‖L2
x

(

1 + V(r) ‖ht‖L2
x

)

.

Now, choosing r = t
1

2γ we obtain

‖ht ∗A f ‖L2
x
. t−

s
2 ‖ |x|γs f ‖L2

x

(

1 + V(t
1

2γ ) ‖ht‖L2
x

)

.

Using the estimate (3.2) for ‖ht‖L2
x

we deduce that

V(t
1

2γ ) ‖ht‖L2
x
∼















t
α+1

2

(

1
γ
−1

)

for t ≤ 1,

t
1
4

(

1
γ
−3

)

e−̺t(̺−t(1−2γ)/(2γ)) for t > 1.
(3.6)

Thus, V(t
1

2γ ) ‖ht‖L2
x

is bounded for all γ ∈ D̺ and for all t > 0.
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The case ̺ = 0 runs similarly. �

The principal result of this section is the following:

Theorem 3.3. (Heisenberg’s inequality) Let r, s be positive constants and let γ ∈ D̺.
Then, for all f ∈ L2(R, A(x)dx) we have

‖ |x|γs f ‖
r

r+s

L2
x

‖ |λ|r FA( f )‖
s

r+s

L2
λ

& ‖ f ‖L2
x
.

Proof. We will give the proof for ̺ > 0; the case ̺ = 0 runs similarly. Let us assume

first that γ ∈ D̺ and s > 0 so that γs < α + 1. By Lemma 3.2 and by the Plancherel

formula (2.18), we have

‖ f ‖L2
x
≤ ‖ht ∗A f ‖L2

x
+ ‖ f − ht ∗A f ‖L2

x

. t−
s
2 ‖ |x|γs f ‖L2

x
+ ‖(1 − e−tλ2

) (t|λ|2)−
r
2 (t|λ|2)

r
2 FA( f )‖L2

λ
. (3.7)

Suppose that r ≤ 2. Then the function u 7→ (1 − e−u)u−
r
2 is bounded for all u ≥ 0, and

therefore

‖ f ‖L2
x
. t−

s
2 ‖ |x|γs f ‖L2

x
+ t

r
2 ‖ |λ|r FA( f )‖L2

λ
. (3.8)

The minimum value of the right hand-side of (3.8) (as a function of t > 0) is, up to a

constant,

‖ |x|γs f ‖
r

r+s

L2
x

‖ |λ|r FA( f )‖
s

r+s

L2
λ

.

This finishes the proof in the case where γs < α + 1 and r ≤ 2.

Suppose that r > 2. Consider a real number r′ so that 0 < r′ ≤ 2 < r. Obviously

ur′ ≤ 1 + ur for all u ≥ 0. In particular, for u = |λ|/
√
ε with ε > 0, we have

( |λ|2

ε

)
r′
2

≤ 1 +

( |λ|2

ε

)
r
2

.

It follows that

‖ |λ|r′FA( f )‖L2
λ
≤ ε

r′
2 ‖FA( f )‖L2

λ
+ ε

r′−r
2 ‖ |λ|r FA( f )‖L2

λ

= ε
r′
2 ‖ f ‖L2

x
+ ε

r′−r
2 ‖ |λ|r FA( f )‖L2

λ
. (3.9)

Optimizing (3.9) in ε we get

‖ |λ|r′ FA( f )‖L2
λ
. ‖ f ‖1−

r′
r

L2
x

‖ |λ|r FA( f )‖
r′
r

L2
λ

. (3.10)

Since r′ ≤ 2, the inequality (3.10) implies

‖ f ‖L2
x
. ‖ |x|γs f ‖

r′
r′+s

L2
x

‖ |λ|r′ FA( f )‖
s

r′+s

L2
λ

. ‖ |x|γs f ‖
r′

r′+s

L2
x

‖ f ‖
(

1− r′
r

)

s
r′+s

L2
x

‖ |λ|r FA( f )‖
(

r′
r

)

( s
r′+s )

L2
λ

.

That is

‖ f ‖L2
x
. ‖ |x|γs f ‖

r
r+s

L2
x

‖ |λ|r FA( f )‖
s

r+s

L2
λ

.

This finishes the proof when γs < α + 1 and r > 2.
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Next we discuss the remaining case γs ≥ α+1. Let s′ > 0 such that γs′ < α+1 ≤ γs.

Since γs′ < γs it follows that
(

|x|
ε

)γs′

≤ 1 +

(

|x|
ε

)γs

, ∀ε > 0.

Now the statement can be proven in a fashion similar to what was used in the case

γs < α + 1 and r > 2. �

4. A local uncertainty inequality forFA

In this section we will establish a local uncertainty inequality for the Fourier trans-

form FA. We will prove that if f is highly localized, then FA( f ) cannot be concentrated

in a small neighborhood of two or more widely separated points.

The following lemma is needed for later use.

Lemma 4.1. Assume that λ ∈ R. For all x ∈ R, |Ψ(λ, x)| = 1 if and only if λ = 0.

Proof. From (2.9) we have Ψ(0, x) = 1 for all x ∈ R. Now let us prove the opposite

direction. Since Ψ(λ, ·) is a solution to (2.8), it follows that

∂xΨ(λ, x) = −
A′(x)

2A(x)
(Ψ(λ, x) −Ψ(λ,−x)) + iλΨ(λ, x).

Using the oddness of the function A′, we deduce that

∂x{Ψ(λ,−x)} = − A′(x)

2A(x)
(Ψ(λ,−x) − Ψ(λ, x)) − iλΨ(λ,−x),

and by consequence

∂x{Ψ(λ,−x)} = − A′(x)

2A(x)
(Ψ(λ,−x) − Ψ

(

λ, x
)

) + iλΨ(λ,−x).

Therefore

∂x|Ψ(λ,−x)|2 = − A′(x)

2A(x)
{

(

Ψ(λ,−x) −Ψ(λ, x)
)

Ψ(λ,−x) +
(

Ψ(λ,−x) −Ψ(λ, x)
)

Ψ(λ,−x)

}

.

Similarly we have

∂x|Ψ(λ, x)|2 = − A′(x)

2A(x)
{

(

Ψ(λ, x) − Ψ(λ,−x)
)

Ψ(λ, x) +
(

Ψ(λ, x) −Ψ(λ,−x)
)

Ψ(λ, x)

}

.

Hence, for every x ∈ R, we get

∂x

{

|Ψ(λ, x)|2 + |Ψ(λ,−x)|2
}

= −
A′(x)

A(x)
|Ψ(λ,−x) −Ψ(λ, x)|2. (4.1)

Assume that there exists a λ0 ∈ R such that |Ψ(λ0, x)| = 1 for all x ∈ R. From (4.1) it

follows that |Ψ(λ0,−x) − Ψ(λ0, x)| = 0. That is Ψ(λ0, x) = Ψ(λ0,−x) for every x ∈ R.
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By the expression (2.9) of Ψ(λ, x) we deduce that ϕ′µ0
(x) = 0 for all x ∈ R, where µ2

0
=

λ2
0
−̺2. In view of the definition (2.2) of the Laplacian ∆, saying ϕ′µ0

(x) = 0 is equivalent

to ∆ϕµ0
(x) = 0. Thus, knowing that ∆ϕµ0

(x) = −λ2
0
ϕµ0

(x), we have λ2
0
ϕµ0

(x) = 0 for all

x ∈ R. Since ϕµ0
(0) = 1, we deduce that λ0 = 0. �

We now come to the main result of this section.

Theorem 4.2. (Local uncertainty inequality) Let s be a positive constant so that s <

α+ 1, and let E ⊆ R\]− ̺, ̺[ be a measurable set such that 0 < ξ(E) < ∞. Then, for all

nonzero function f ∈ L2(R, A(x)dx), we have

‖ f ∗A wE‖L2
x
� cs,E ‖wE‖

s
α+1

L2
x

‖ |x|s f ‖L2
x
,

where wE := F −1
A
χE ∈ L2(R, A(x)dx).

Proof. For r > 0, let χr be the characteristic function of the interval Ir =] − r, r[ and let

χ′r = 1 − χr. By Minkowski’s inequality and the Plancherel formula (2.18), we have

‖FA( f ) χE‖L2
λ
≤ ‖FA( f χr) χE‖L2

λ
+ ‖FA( f χ′r) χE‖L2

λ

≤
√

ξ(E) ‖FA( f χr)‖L∞
λ
+ ‖FA( f χ′r)‖L2

λ

≤
√

ξ(E) ‖ f χr‖L1
x
+ ‖ f χ′r‖L2

x
. (4.2)

By Hölder’s inequality, it is clear that

‖ f χr‖L1
x
≤

(

2

∫ r

0

t−2sA(t)dt
)

1
2 ‖ |x|s f ‖L2

x
. (4.3)

The above integral between parentheses converges, since s < α + 1. Further, we have

‖ f χ′r‖L2
x
≤ ‖ |x|−s χ′r‖L∞x ‖ |x|

s f ‖L2
x

≤ r−s ‖ |x|s f ‖L2
x
. (4.4)

In view of (4.3) and (4.4), the inequality (4.2) becomes

‖FA( f ) χE‖L2
λ
≤ Θs,E(r) ‖ |x|s f ‖L2

x
(4.5)

for every r > 0, where

Θa,E(r) := r−s +
√

ξ(E)
(

2

∫ r

0

t−2sA(t)dt
)

1
2

≤ r−s
(

1 +
√

ξ(E)
rα+1

√
1 + α − s

(

sup
t∈[0,r]

B(t)
)

1
2
)

.

Above we have used the fact that A(x) = |x|2α+1B(x), where α > −1
2

and B is an even,

positive and smooth function on R. Let us choose r = r0 := ξ(E)−
1

2α+2 . Thus, the inequal-

ity (4.5) reduces to

‖FA( f ) χE‖L2
λ
≤

(

1 +
1

√
1 + α − s

(

sup
t∈[0,r0]

B(t)
)

1
2
)

ξ(E)
s

2α+2 ‖ |x|s f ‖L2
x
. (4.6)
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Next we will prove that the inequality (4.6) is strict. To do so, let us assume that there

exists a nonzero function f̃ ∈ L2(R, A(x)dx) for which

‖FA( f̃ ) χE‖L2
λ
=

(

1 +
1

√
1 + α − s

(

sup
t∈[0,r0]

B(t)
)

1
2
)

ξ(E)
s

2α+2 ‖ |x|s f̃ ‖L2
x
. (4.7)

Using (4.7), one can check the following identities:

‖FA( f̃ χr0
) χE ‖L2

λ
=

√

ξ(E) ‖FA( f̃ χr0
)‖L∞

λ
, (4.8)

‖ f̃ χr0
‖L1

x
= ‖FA( f̃ χr0

)‖L∞
λ
, (4.9)

‖ f̃ χr0
‖L1

x
= ‖ |x|−s χr0

‖L2
x
‖ |x|s f̃ ‖L2

x
. (4.10)

The strategy is to use the identities (4.9) and (4.10) to identify the function f̃ , and then

to employ the identity (4.8) to derive a contradiction.

First, by Cauchy-Schwarz, the identity (4.10) holds true if and only if

| f̃ (x)| = c |x|−2s χr0
(x),

for some constant c > 0. That is, there exists a complex valued function φ on R satisfy-

ing |φ(x)| = 1 and such that

f̃ (x) = c φ(x) |x|−2s χr0
(x). (4.11)

In view of (4.11), the identity (4.9) becomes

‖ f̃ ‖L1
x
= ‖FA( f̃ )‖L∞

λ
.

Then, there exists λ0 ∈ R such that

‖ f̃ ‖L1
x
= |FA( f̃ )(λ0)|, (4.12)

which implies

‖ f̃ ‖L1
x
= e−iθ0 FA( f̃ )(λ0), (4.13)

for some θ0 ∈ R. By the expression (4.11) of f̃ , the identity (4.13) is explicitly given by:

c

∫

R

|x|−2sχr0
(x)

(

1 − e−iθ0 φ(x)Ψ(λ0,−x)
)

A(x)dx = 0. (4.14)

In particular we get
∫

R

|x|−2sχr0
(x)

(

1 − Re
{

e−iθ0 φ(x)Ψ(λ0,−x)
}

)

A(x)dx = 0. (4.15)

Since |e−iθ0 φ(x)Ψ(λ0,−x)| ≤ 1,which is essentially due to the fact that |Ψ(λ0,−x)| ≤ 1, it

follows that |Re
{

e−iθ0 φ(x)Ψ(λ0,−x)
}

| ≤ 1. By this elementary observation, the identity

(4.15) implies

1 − Re
{

e−iθ0 φ(x)Ψ(λ0,−x)
}

= 0

for almost every x ∈ R. Using again the fact that |e−iθ0 φ(x)Ψ(λ0,−x)| ≤ 1, we conclude

that

e−iθ0 φ(x)Ψ(λ0,−x) = 1 (4.16)

for almost every x ∈ R. By a standard argument, the identity (4.16) holds true for all

x ∈ R. Since |φ(x)| = 1, we deduce from (4.16) that |Ψ(λ0,−x)| = 1 for all x ∈ R. In
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view of Lemma 4.1, this is true if and only if λ0 = 0. Consequently, the identity (4.16)

becomes

φ(x) = eiθ0 ,

and therefore (see (4.11))

f̃ (x) = c eiθ0 |x|−2s χr0
(x). (4.17)

We claim that the function f̃ found above is not accommodate in the identity (4.8).

Indeed, substituting (4.17) back in (4.8) we see that

‖FA( f̃ ) χE‖2L2
λ

= ξ(E) ‖FA( f̃ )‖2L∞
λ
.

That is
∫

E

(

‖FA( f̃ )‖2L∞
λ
− |FA( f̃ )(λ)|2

)

ξ(λ)dλ = 0. (4.18)

Since by assumption ξ(E) > 0, it follows that the integrand in (4.18) vanishes for almost

every λ ∈ E, i.e.

|FA( f̃ )(λ)| = ‖FA( f̃ )‖L∞
λ

(4.19)

for almost every λ ∈ E. Recall from above that ‖FA( f̃ )‖L∞
λ
= |FA( f̃ )(0)|. Thus, (4.19)

reads |FA( f̃ )(λ)| = |FA( f̃ )(0)| for almost every λ ∈ E. Hence, there exists a measurable

function κ such that

FA( f̃ )(λ) = κ(λ) FA( f̃ )(0), (4.20)

with |κ(λ)| = 1. In view of the expression (4.17) of f̃ , we may rewrite the above identity

as

c eiθ0

∫

R

|x|−2sχr0
(x) (κ(λ) − Ψ(λ,−x)) A(x)dx = 0. (4.21)

In a similar fashion to what was used in the previous integral (4.14), we deduce that for

almost every λ ∈ E and for every x ∈ R

κ(λ) −Ψ(λ,−x) = 0.

Since |κ(λ)| = 1,we obtain |Ψ(λ,−x)| = 1 for almost every λ ∈ E (which is ⊂ R\]−̺, ̺[).

(i) If ̺ > 0, then, by Lemma 4.1, this cannot be true. It follows that the identity

(4.18) does not hold. That is our assumption (4.7) cannot operate.

(ii) If ̺ = 0, then Lemma 4.1 reduces the set of λ’s to {0}. That is ξ(E) = 0, which

contradicts the hypothesis on the set E. Thus, (4.18) does not remain true. In

other words, our assumption (4.7) cannot last.

In conclusion, the inequality in (4.6) is strict. �

5. A Beurling type theorem

In this section we establish the analogue of Beurling’s theorem for the Fourier trans-

form FA. In the limit case α = −1/2, with B(x) = 1 for all x ∈ R, our theorem coincides

with the Bonami-Demange-Jaming result in one dimension [5], which generalizes the

original Beurling’s theorem.
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Theorem 5.1. Let f ∈ L2(R, A(x)dx) satisfy
∫

R

∫

R

| f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
A(x)dx ξ(λ)dλ < ∞, (5.1)

for some nonnegative integer N. Then f is of the form

f (x) =

n
∑

k=0

ckΛ
(k)

A,x
h(t, x) n <

N − (2α + 2)

2
, (5.2)

where ck are complex constants, and the subscript in Λ
(k)

A,x
h(t, x) denotes the relevant

variable in the k-th power of the operator ΛA applied to the heat kernel h(t, x) for some

t > 0. In particular, if N ≤ 2α + 2 then f = 0.

We will first prove the following statement.

Proposition 5.2. Under the same assumptions as in Theorem 5.1, we have:

1) The function f belongs to the space L1(R, A(x)dx).

2) The function tV f belongs to the space Lp(R) for 1 ≤ p ≤ ∞.

Proof. 1) On one hand, since f ∈ L2(R, A(x)dx) then f is locally integrable on R with

respect to the measure A(x)dx. On the other hand, from the master condition (5.1) it

follows that
∫

R

| f (x)| e|x| |λ|

(1 + |x|)N
A(x)dx < ∞ (5.3)

for almost every λ ∈ R\]−̺, ̺[ so that FA( f )(λ) , 0. We pin down that if FA( f )(λ) = 0

for almost every λ ∈ R\] − ̺, ̺[, then by the Plancherel Theorem 2.4.3 we get f = 0

almost everywhere.

Let λ0 ∈ R\[−̺, ̺] such that FA( f )(λ0) , 0, and rewrite the inequality (5.3) for

λ = λ0. Since e|x| |λ0 |/(1 + |x|)N >> 1 for |x| large enough, and since f ∈ L1
loc

(R, A(x)dx),

we deduce that f ∈ L1(R, A(x)dx).

2) By assumption and the first statement, we have f ∈ L1 ∩ L2(R, A(x)dx). We claim

that
tV f ∈ L1(R) ∩ L∞(R). (5.4)

Indeed,
∫

R

|tV f (y)|dy ≤
∫

R

∫

|x|>|y|
K(x, y) | f (x)| A(x)dxdy

≤
∫

R

| f (x)|
(

∫

|y|<|x|
K(x, y)dy

)

A(x)dx

= ‖ f ‖L1
x
< ∞. (5.5)

Above we have used the fact that K is positive and that
∫

|y|<|x|
K(x, y)dy = Ψ(0, x) = 1,

(see (2.12) and (2.11)). Thus tV f ∈ L1(R).
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Next we will prove that tV f ∈ L∞(R). By the master condition (5.1) we deduce that

there exists x0 ∈ R∗ such that
∫

R

|FA( f )(λ)| e|x0 | |λ|

(1 + |λ|)N
ξ(λ)dλ < ∞.

Since e|x0 | |λ|/(1 + |λ|)N >> 1 for |λ| large enough (say |λ| > R), it follows that
∫

|λ|>R

|FA( f )(λ)| ξ(λ)dλ < ∞. (5.6)

On the other hand, as f ∈ L1 ∩ L2(R, A(x)dx), by the Plancherel Theorem 2.4.2, we

deduce that FA( f ) ∈ L2(R, ξ(λ)dλ). Hence FA( f ) ∈ L1
loc

(R, ξ(λ)dλ). In conclusion,

FA( f ) ∈ L1(R, ξ(λ)dλ). This conclusion leads to FA( f ) ∈ L1(R). In fact, let us split
∫

R

|FA( f )(λ)|dλ = I1 + I2 + I3

according to
∫

R

=

∫

|λ|<ρ+1

+

∫

ρ+1≤|λ|≤L

+

∫

|λ|>L

.

Here L > 0 is chosen large enough so that ξ(λ) > 1 for |λ| > L.

Since FA( f ) ∈ L1(R, ξ(λ)dλ), we deduce that

I3 ≤
∫

|λ|>L

|FA( f )(λ)| ξ(λ)dλ < ∞.

For I2, observe that the function λ 7→ |λ|√
λ2−ρ2 |c(

√
λ2−ρ2)|2

is continuous and bounded for

ρ+ 1 ≤ |λ| ≤ L. Thus, there exist a, b > 0 such that a ≤ ξ(λ) ≤ b for ρ+ 1 ≤ |λ| ≤ L, and

therefore

I2 ≤
1

a

∫

ρ+1≤|λ|≤L

|FA( f )(λ)| ξ(λ)dλ < ∞.

Before studying the finiteness of the integral I1, we point down that FA( f ) ∈ L∞(R).

The latter fact is due to the identity FA( f ) = Feuc ◦ tV f (since f ∈ L1 ∩ L2(R, A(x)dx))

and that tV f ∈ L1(R). Hence

I1 ≤ 2(ρ + 1) ‖FA( f )‖L∞(R) < ∞.
In conclusion,

∫

R

|FA( f )(λ)|dλ = I1 + I2 + I3 < ∞,

i.e. FA( f ) ∈ L1(R).

Since tV f ∈ L1(R) and Feuc ◦ tV f = FA( f ) ∈ L1(R), by the inversion formula for

Euclidean Fourier transform we deduce that tV f ∈ L∞(R). This finishes the proof of our

claim (5.4).

In the light of (5.4), the second statement of Proposition 5.2 follows from Lyapunov

inequality. �

Now we turn our attention to Beurling’s Theorem 5.1.
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Proof of Theorem 5.1. We will show that the master condition (5.1) implies
∫

R

∫

R

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
dx ξ(λ)dλ < ∞. (5.7)

Choose a nonzero λ0 ∈ R\[−̺, ̺] such that FA( f )(λ0) , 0, and write the integral (5.7)

as the superposition of

I :=

∫

R

∫

|λ|≤|λ0 |

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx

and

J :=

∫

R

∫

|λ|>|λ0 |

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx.

Obviously we have

I .

∫

R

|tV f (x)| e|x| |λ0 |

(1 + |x|)N
dx. (5.8)

We write the integral on the right hand-side of (5.8) as the superposition of I1 and I2

where

I1 :=

∫

|x|≤ N
|λ0 |

|tV f (x)| e|x| |λ0 |

(1 + |x|)N
dx, I2 :=

∫

|x|> N
|λ0 |

|tV f (x)| e|x| |λ0 |

(1 + |x|)N
dx.

Recall from Proposition 5.2 that ‖tV f ‖L1(R) < ∞. Then

I1 .

∫

|x|≤ N
|λ0 |

|tV f (x)|dx ≤ ‖tV f ‖L1(R) < ∞.

For ℓ > 0, the function ϕℓ(s) =
eℓs

(1 + s)N
is monotonically increasing for s > N

ℓ
. Thus,

by (5.3) one concludes

I2 ≤
∫

|x|> N
|λ0 |

e|x| |λ0 |

(1 + |x|)N

(

∫

|y|>|x|
K(y, x) | f (y)| A(y)dy

)

dx

≤
∫

|y|> N
|λ0 |

| f (y)| e|y| |λ0 |

(1 + |y|)N

(

∫

|x|<|y|
K(y, x)dx

)

A(y)dy

≤
∫

R

| f (y)| e|y| |λ0 |

(1 + |y|)N
A(y)dy < ∞.

To show that J is finite, let us assume first that |λ0| ≤ N, and let us write the integral

J as J = J1 + J2 + J3 where

J1 :=

∫

|x|≤ N
|λ0 |

∫

|λ0 |<|λ|≤N

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx,

J2 :=

∫

|x|> N
|λ0 |

∫

|λ0 |<|λ|≤N

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx,
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and

J3 :=

∫

R

∫

|λ|>N

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx.

Clearly we have

J1 .

∫

|x|≤ N
|λ0 |

|tV f (x)|dx < ∞.

For ℓ > 0, the function

ψℓ(s) =
eℓs

(1 + s + ℓ)N
(5.9)

is monotonically increasing for s > N
ℓ
. Therefore, by the master condition (5.1) one

concludes

J2 ≤
∫

|λ0 |<|λ|≤N

|FA( f )(λ)| ×

(

∫

|x|> N
|λ0 |

e|x| |λ|

(1 + |x| + |λ|)N

{

∫

|y|>|x|
K(y, x) | f (y)| A(y)dy

}

dx
)

ξ(λ)dλ

≤
∫

|λ0 |<|λ|≤N

|FA( f )(λ)|
(

∫

|y|> N
|λ0 |

e|y| |λ|

(1 + |y| + |λ|)N
| f (y)| A(y)dy

)

ξ(λ)dλ

≤
∫

R

∫

R

| f (y)| |FA( f )(λ)| e|y| |λ|

(1 + |y| + |λ|)N
A(y)dy ξ(λ)dλ < ∞.

Let ψℓ be as in (5.9). For ℓ > N, the function ψℓ is monotonically increasing for all

s ≥ 0. Hence, using again the master condition (5.1) to deduce that

J3 ≤
∫

|λ|>N

|FA( f )(λ)|
(

∫

R

e|x| |λ|

(1 + |x| + |λ|)N

{

∫

|y|>|x|
K(y, x) | f (y)| A(y)dy

}

dx
)

ξ(λ)dλ

≤
∫

|λ|>N

|FA( f )(λ)|
(

∫

R

e|y| |λ|

(1 + |y| + |λ|)N
| f (y)| A(y)dy

)

ξ(λ)dλ

≤
∫

|λ|>N

∫

R

|FA( f )(λ)| | f (y)|
e|y| |λ|

(1 + |y| + |λ|)N
A(y)dy ξ(λ)dλ < ∞.

In conclusion, the integral J is finite when |λ0| ≤ N. Now we consider the case when

|λ0| > N. However, in this case

J =

∫

R

∫

|λ|>|λ0 |>N

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx ≤ J3 < ∞.

This finishes the proof of the claim (5.7).

Next we will prove that in (5.7) the measure ξ(λ)dλ can be replaced by dλ, i.e.

∫

R

∫

R

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
dλdx < ∞. (5.10)
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By the asymptotic behavior of |c(λ)|−2 near infinity (see Subsection 2.1), we can

choose a suitable large R > 0 such that ξ(λ) > 1 for |λ| > R. Hence we have

∫

R

∫

R

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
dλdx

≤
∫

R

∫

|λ|≤R

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
dλdx +

∫

R

∫

|λ|>R

|tV f (x)| |FA( f )(λ)| e|x| |λ|

(1 + |x| + |λ|)N
ξ(λ)dλ dx.

The inequality (5.7) implies that the second integral on the right hand-side is finite. To

prove the finiteness of the first integral on the right hand-side, one can follow the same

approach we used above for the finiteness of the integral I (see (5.8)).

The final step in the proof is to use the fact that FA = Feuc ◦ tV , see (2.15). In order

to use the Euclidean version of Beurling’s theorem, recall from Proposition 5.2 that
tV( f ) ∈ L2(R).

Now, in view of (5.10), the Euclidean version of Beurling’s theorem implies

tV f (x) = P(x) e−
|x|2
4r , ∀x ∈ R, (5.11)

where r > 0 and P is a polynomial of degree n < N−1
2

(see [5, Theorem 1.1]). In

particular, if N ≤ 1 then f = 0 almost everywhere. Using the well known fact that the

Euclidean Fourier transform of e
− t2

2a2 is given by ae−
ξ2a2

2 , we deduce from (5.11) that

FA( f )(λ) = Feuc ◦ tV( f )(λ) = Q(λ)e−r|λ|2 , (5.12)

where Q is a polynomial of the same degree of P.

Substituting (5.11) and (5.12) back in (5.7) we see that the integrand in (5.7) is

|P(x)| |Q(λ)|
(1 + |x| + |λ|)N

e
−(
|x|

2
√

r
−
√

r|λ|)2

ξ(λ). (5.13)

Using the asymptotic behavior of |c(λ)|−2 for |λ| large (see Subsection 2.1), it is easy

to check that deg(P) (= deg(Q)) <
N−(2α+2)

2
as otherwise the integrand in (5.13) is not

integrable in the neighborhood of the lines |x| = 2r|λ|. Hence, the condition n < N−1
2

should be replaced by n <
N−(2α+2)

2

(

which is < N−1
2

)

. In particular, if N ≤ 2α + 2, then

f = 0 almost everywhere.

For N > 2α+2, the injectivity of the Fourier transform FA together with (5.12) imply

that f is of the form

f (x) =

n
∑

k=0

ckΛ
(k)

A,x
h(r, x) n <

N − (2α + 2)

2
, (5.14)

where ck are complex constants, and the subscript in Λ
(k)

A,x
h(r, x) denotes the relevant

variable in the k-th power of the operator ΛA applied to the heat kernel h(r, x) for some

r > 0. �
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6. Applications of Beurling’s type theorem

In this section we will show that Beurling’s type Theorem 5.1 has several interesting

consequences. More precisely, we will prove how theorems of Gelfand-Shilov, Mor-

gan’s, Hardy’s, and Cowling-Price type all follow from Theorem 5.1.

Theorem 6.1 (Gelfand-Shilov type). Let f ∈ L2(R, A(x)dx) and N be a nonnegative

integer. Assume that

∫

R

| f (x)| e
(2s)p

p
|x|p

(1 + |x|)N
A(x)dx < ∞, (GS1)

∫

R

|FA( f )(λ) |e
(2t)q

q
|λ|q

(1 + |λ|)N
ξ(λ)dλ < ∞, (GS2)

where 1 < p < ∞, 1
p
+ 1

q
= 1, and s, t are positive constants.

1) If st > 1
4

then f = 0 almost everywhere.

2) If st = 1
4

and p , 2 (hence q , 2) then f = 0 almost everywhere.

3) If st = 1
4

and p = q = 2, then

f (x) =

n
∑

k=0

ck Λ
(k)

A,x
h(2t2, x) n < N − (2α + 2), (6.1)

where ck are complex constants, and the subscript in Λ
(k)

A,x
h(2t2, x) denotes the rele-

vant variable in the k-th power of the operatorΛA applied to the heat kernel h(2t2, x).

In particular,

(i) If N ≤ 2α + 2 then f = 0 almost everywhere.

(ii) If 2α+2 < N ≤ 2α+3 then f (x) = c0 h(2t2, x), where c0 is an arbitrary constant

for ̺ = 0, and c0 = 0 for ̺ > 0.

Proof. Since 4st|x| |λ| ≤ (2s)p

p
|x|p + (2t)q

q
|λ|q, the conditions (GS1) and (GS2) imply

∫

R

∫

R

| f (x)| |FA( f )(λ)|
(1 + |x| + |λ|)2N

e4st|x| |λ|A(x)dx ξ(λ)dλ

≤
∫

R

∫

R

| f (x)| e
(2s)p

p
|x|p

(1 + |x|)N

|FA( f )(λ)| e
(2t)q

q
|λ|q

(1 + |λ|)N
A(x)dx ξ(λ)dλ < ∞. (6.2)

As 4st ≥ 1, it follows that f satisfies Beurling’s master condition (5.1) with 2N instead

of N. Thus, f ∈ L1(R, A(x)dx) and we have

tV f (x) = P(x) e−
|x|2
4a , (6.3)

FA( f )(λ) = Q(λ) e−a|λ|2 , (6.4)

where a > 0, and P and Q are two polynomials of the same degree n < N − (α + 1).

Further, by same arguments as in the proof of Theorem 5.1, the inequality (6.2) implies
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that f satisfies
∫

R

∫

R

|tV f (x)| |FA( f )(λ)| e4st|x| |λ|

(1 + |x| + |λ|)2N
dxdλ < ∞. (6.5)

Furthermore, we claim that

∫

R

|tV f (x)| e
(2s)p

p
|x|p

(1 + |x|)N
dx < ∞. (6.6)

Indeed,

∫

R

|tV f (x)| e
(2s)p

p
|x|p

(1 + |x|)N
dx ≤

∫

R

e
(2s)p

p
|x|p

(1 + |x|)N

(

∫

|y|>|x|
K(y, x) | f (y)|A(y)dy

)

dx.

Choose a suitable large R > 0 for which the function u 7→ e
(2s)p

p
up

(1 + u)N
is increasing for

u > R. Thus
∫

R

|tV f (x)| e
(2s)p

p
|x|p

(1 + |x|)N
dx ≤

∫

|x|≤R

e
(2s)p

p
|x|p

(1 + |x|)N

(

∫

|y|>|x|
K(y, x) | f (y)|A(y)dy

)

dx

+

∫

|y|>R

| f (y)| e
(2s)p

p |y|
p

(1 + |y|)N

(

∫

|y|>|x|
K(y, x)dx

)

A(y)dy.

By the condition (GS1), the second integral on the right hand-side is finite, while the

first one is bounded (up to a constant) by
∫

|x|≤R

(

∫

|y|>|x|
K(y, x)| f (y)|A(y)dy

)

dx

which is ≤
∫

R

| f (y)| A(y)dy < ∞,

since f ∈ L1(R, A(x)dx). This finishes the proof of the claim (6.6).

Substituting (6.3) and (6.4) in (6.5) we see that the integrand is

|P(x)| |Q(λ)|
(1 + |x| + |λ|)2N

e
−(
|x|

2
√

a
−
√

a|λ|)2

e(4st−1)|x| |λ|.

Hence, if st > 1
4

then the integrand grows exponentially in the neighborhood of the lines

|x| = 2a|λ| and the integral in (6.5) diverges. Now we assume that st = 1
4
. By replacing

(6.3) and (6.4) in (6.6) and (GS2) respectively, we obtain

∫

R

|P(x)| e− |x|
2

4a e
(2s)p

p
|x|p

(1 + |x|)N
dx < ∞, (6.7)

∫

R

|Q(λ)| e−a|λ|2 e
(2t)q

q
|λ|q

(1 + |λ|)N
ξ(λ)dλ < ∞. (6.8)

However, when p > 2 (and hence q < 2), respectively q > 2 (and hence p < 2), the

relation (6.7), respectively (6.8), does not hold true unless P = 0, respectively Q = 0.

Thus, we are left with the case p = q = 2. Recall that we are assuming here st = 1
4
.
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In these circumstances, the finiteness of the integrals (6.7) and (6.8) imply that a = 2t2.

Moreover, the inequality (6.8) implies that the degree n of Q should satisfy n < N −
(2α + 2) (which is < N − (α + 1)). Now the injectivity of the Fourier transform FA and

the fact that FA( f )(λ) = Q(λ)e−a|λ|2 (see (6.4)), gives

f (x) =

n
∑

k=0

ck Λ
(k)

A,x
h(2t2, x) n < N − (2α + 2), (6.9)

where ck are complex constants and the subscript in Λ
(k)

A,x
h(2t2, x) denotes the relevant

variable in the k-th power of the operator ΛA applied to the heat kernel h(2t2, x).

Assume that 2α+ 2 < N ≤ 2α+ 3. Then f (x) = c0 h(2t2, x). At this stage of the proof

we will distinguish the two cases ̺ > 0 and ̺ = 0. Recall that A(x) = |x|2α+1B(x), where

α > −1
2

and B is an even, positive and smooth function on R with B(0) = 1. From [16,

Theorem 3.1] there exist two real numbers µ1 and µ2 such that for t > 0 and x ∈ R,

eµ1t

2αΓ(α + 1)(2t)α+1

e−
|x|2
4t

√
B(x)

≤ h(t, x) ≤ eµ2t

2αΓ(α + 1)(2t)α+1

e−
|x|2
4t

√
B(x)

. (6.10)

By making use of the fact that for |x| large, A(x) ∼ e2̺|x| for ̺ > 0 and A(x) ∼ |x|2α+1 for

̺ = 0, we deduce from (6.10) that c0 = 0 for ̺ > 0, otherwise the heat kernel fails to

accommodate the inequality (GS1). For ̺ = 0, the estimates (6.10) show that h(2t2, x)

satisfies the condition (GS1) whenever N > 2α + 2 and no matter what value of c0 is

used. �

The following uncertainty principle follows partially from the above theorem.

Theorem 6.2 (Morgan’s type). Suppose a measurable function f : R→ C satisfies

| f (x)| . (1 + |x|)M e−a|x|p e−̺|x|
√

B(x)
∀x ∈ R, (M1)

|FA( f )(λ)| . e−b|λ|q ∀λ ∈ C, (M2)

where a, b are positive constants, M is a nonnegative integer, 1 < p < ∞, and 1
p
+ 1

q
= 1.

1) If (ap)
1
p (bq)

1
q > 1 then f = 0 almost everywhere.

2) If (ap)
1
p (bq)

1
q = 1 and p , 2 (hence q , 2) then f = 0 almost everywhere.

3) If (ap)
1
p (bq)

1
q = 1 and p = q = 2, i.e. ab = 1

4
, then, for all M ≥ 0, we have:

(i) For ̺ = 0, f (x) is, up to a constant, the heat kernel h(b, x).

(ii) For ̺ > 0, f = 0 almost everywhere.

Proof. From the condition (M1) it follows that f ∈ L2(R, A(x)dx). For a =
(2s)p

p
and

b =
(2t)q

q
, the function f satisfies the condition (GS1) and (GS2) in Theorem 6.1 for

suitable N > 0. The condition (ap)
1
p (bq)

1
q ≥ 1 becomes 4st ≥ 1. Hence, the statements

1) and 2) are direct consequences of Theorem 6.1. For the statement 3), by mimicking

the proof of Theorem 6.1 one concludes that

FA( f )(λ) = R(λ) e−2t2 |λ|2 = R(λ) e−b|λ|2 .
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Making use of the condition (M2) we should have R(λ) = const.Hence, up to a constant,

FA( f )(λ) coincides with e−b|λ|2 , which is nothing other than the Fourier transform of the

heat kernel h(b, ·). That is

f (x) = c0 h(b, x),

for some constant c0 ∈ C. Finally, from (6.10) we deduce that, no matter what value of

M in the condition (M1) is used, for ̺ > 0, the constant c0 = 0 since the heat kernel

does not obey the condition (M1), while for ̺ = 0, the heat kernel accommodates the

inequality (M1). �

When p = q = 2, Morgan’s type theorem is nothing other than the following Hardy

type theorem.

Corollary 6.3 (Hardy’s type). Suppose a measurable function f : R→ C satisfies

| f (x)| . (1 + |x|)M e−a|x|2 e−̺|x|
√

B(x)
∀x ∈ R, (H1)

|FA( f )(λ)| . e−b|λ|2 ∀λ ∈ C, (H2)

where a, b are positive constants, and M is a nonnegative integer.

1) For ̺ > 0, if ab ≥ 1
4
, then f = 0 almost everywhere.

2) For ̺ = 0, we have:

(i) If ab > 1
4
, then f = 0 almost everywhere.

(ii) If ab = 1
4
, then f (x) is, up to some constant, the heat kernel h(b, x).

Remark 6.4. For ̺ ≥ 0, if ab < 1
4
, then there exist infinitely many linearly independent

functions satisfying (H1) and (H2). Indeed, for any r satisfying b < r < 1
4a
, the heat

kernel h(r, x) meets the conditions (H1) and (H2).

We close this section by a generalization of the Hardy type uncertainty principle,

where the uniform conditions are replaced by integrability conditions.

Theorem 6.5 (Cowling-Price’s type). Let f ∈ L2(R, A(x)dx) and assume that for posi-

tive real numbers a, b and nonnegative integers N1, N2,

∫

R

( | f (x)| ea|x|2 e̺|x|(1−
1
p̃

)B(x)
1
2

(1− 1
p̃

)

(1 + |x|)N1

) p̃

A(x)dx < ∞, (CP1)

∫

R

( |FA( f )(λ)| eb|λ|2

(1 + |λ|)N2

)q̃

ξ(λ)dλ < ∞, (CP2)

where 1 ≤ p̃, q̃ ≤ ∞.
1) If ab > 1

4
then f (x) = 0 almost everywhere.

2) If ab = 1
4

then

f (x) =

n
∑

k=0

ckΛ
(k)

A,x
h(b, x) n < N2 −

(2α + 2)

q̃
, (6.11)
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where ck are complex constants, and the subscript in Λ
(k)

A,x
h(b, x) denotes the relevant

variable in the k-th power of the operator ΛA applied to the heat kernel h(b, x). In

particular:

(i) If N2 ≤ {(2α + 2)/q̃} then f = 0 almost everywhere.

(ii) If {(2α + 2)/q̃} < N2 ≤ {(2α + 2)/q̃} + 1 then f (x) = c0 h(b, x), with:

(a) For ̺ > 0, c0 = 0.

(b) For ̺ = 0, c0 is an arbitrary constant whenever N1 > {(2α + 2)/p̃}, other-

wise c0 = 0.

Remark 6.6. (1) We pin down that when p̃ = q̃ = ∞, the Cowling-Price type theo-

rem implies the Corollary 6.3.

(2) For ̺ ≥ 0, if ab < 1
4
, then, for any N1, N2, there exist infinitely many linearly

independent functions satisfying (CP1) and (CP2). Indeed, for any r satisfying

b < r < 1
4a
, the heat kernel h(r, x) settles the conditions (CP1) and (CP2) for any

N1, N2.

Proof of Theorem 6.5. Assume first that 1 < p̃, q̃ < ∞. Denote by p̃′ and q̃′ the conju-

gates of p̃ and q̃, respectively.

Using the condition (CP1) and the asymptotic behavior of A(x) for |x| large, we can

choose a suitable r1 > 2α + 2 so that

∫

R

| f (x)| ea|x|2

(1 + |x|)N1+
r1
p̃′

A(x)dx

≤
(

∫

R

( | f (x)| ea|x|2 e̺|x|(1−
1
p̃

)B(x)
1
2

(1− 1
p̃

)

(1 + |x|)N1

) p̃

A(x)dx

)
1
p̃
(

∫

R

e−̺|x| |x|2α+1
√

B(x)

(1 + |x|)r1
dx

)
1
p̃′

< ∞.

Similarly, by the condition (CP2) and the asymptotic behavior of ξ(λ) for |λ| large, we

can choose a suitable r2 > 2α + 2 so that
∫

R

|FA( f )(λ)| eb|λ|2

(1 + |λ|)N2+
r2
q̃′
ξ(λ)dλ ≤

(

∫

R

( |FA( f )(λ)| eb|λ|2

(1 + |λ|)N2

)q̃

ξ(λ)dλ

)
1
q̃
(

∫

R

1

(1 + |λ|)r2
ξ(λ)dλ

)
1
q̃′

< ∞.
For p̃ = 1 and/or q̃ = 1 the above two inequalities are obvious.

Hence, for 1 ≤ p̃, q̃ < ∞, the function f satisfies Gelfand-Shilov conditions (GS1)

and (GS2) with p = q = 2, a = 2s2, b = 2t2, and N = max
(

N1 +
r1

p̃′
,N2 +

r2

q̃′

)

. Notice

that the condition ab ≥ 1/4 becomes st ≥ 1/4.

From Theorem 6.1, we get f = 0 almost everywhere for ab > 1/4, and when ab =

1/4,

f (x) =

n
∑

k=0

ck Λ
(k)

A,x
h(b, x) n < N − (2α + 2). (6.12)

Moreover, from the proof of Theorem 6.1 we knew that FA( f ) is of the form FA( f )(λ) =

Q(λ)e−b|λ|2 , where Q is a polynomial of degree n. Thus, in view of the condition (CP2),

we get the additional condition n < N2−{(2α+2)/q̃}, otherwise f = 0 almost everywhere
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is the only accommodate function in the inequality (CP2). In conclusion, the integer n

in (6.12) should satisfy n < N2 − {(2α + 2)/q̃} (which is < N − (2α + 2)). In particular,

if {(2α + 2)/q̃} < N2 ≤ {(2α + 2)/q̃} + 1 then f (x) = c0 h(b, x) for some c0 ∈ C.
By considering the asymptotic expression (6.10) of the heat kernel, it follows that for

̺ > 0 we should have c0 = 0, otherwise the condition (CP1) does not hold. For ̺ = 0,

using again the asymptotic expression of the heat kernel, we deduce that h(b, x) cannot

satisfy the condition (CP1) unless the constant N1 in the condition (CP1) verify N1 >

{(2α + 2)/p̃}.

Now assume that p̃ = ∞ and/or q̃ = ∞. Let g(x) :=
| f (x)| ea|x|2 e̺|x|

√
B(x)

(1 + |x|)N1
. The condi-

tion (CP1) with p̃ = ∞ implies
∫

R

| f (x)| ea|x|2

(1 + |x|)N1+r1
A(x)dx ≤ ‖g‖L∞x

(

∫

R

e−̺|x| |x|2α+1
√

B(x)

(1 + |x|)r1
dx

)

< ∞

whenever r1 > 2α + 2. Similarly, the condition (CP2) with q̃ = ∞ implies
∫

R

|FA( f )(λ)| eb|λ|2

(1 + |λ|)N2+r2
ξ(λ)dλ < ∞

whenever r2 > 2α + 2. The statement for p̃ = ∞ and/or q̃ = ∞ now follows in a similar

fashion to what we used above for 1 ≤ p̃, q̃ < ∞. �
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Exp. No. 828, 4, 223–246.
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(2008), no. 2, 289–296.

[25] G. W. Morgan, A note on Fourier transforms, J. London Math. Soc. 9 (1934), 187–192.
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