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UNCERTAINTY PRINCIPLES AND CHARACTERIZATION OF THE HEAT
KERNEL FOR CERTAIN DIFFERENTIAL-REFLECTION OPERATORS

SALEM BEN SAID, ASMA BOUSSEN & MOHAMED SIFI

ABSTRACT. We prove various versions of uncertainty principles for a certain Fourier
transform .%,. Here A is a Chébli function (i.e. a Sturm-Liouville function with addi-
tional hypotheses).

We mainly establish an analogue of Beurling’s theorem, and its relatives such as
theorems of type Gelfand-Shilov, Morgan’s, Hardy’s, and Cowling-Price, for .%4, and
relating them to the characterization of the heat kernel corresponding to .%,.

Heisenberg’s and local uncertainty inequalities were also proved.

1. INTRODUCTION

One of the most famous and paradoxical predictions of quantum theory is the state-
ment that the position and the velocity of an object cannot both be measured exactly
at the same time, even in theory. The quantitative version of this phenomenon is the
Heisenberg uncertainty principle, which may be formulated as an inequality in Fourier
analysis [38]]. Roughly speaking, Heisenberg’s inequality asserts that a nonzero function
f and its Euclidean Fourier transform f cannot both be very small.

The uncertainty principle has also an interpretation in classical physics. Suppose f(¢)
is a sound wave at time ¢, and denote by Var(f) an index of its concentration in time.
We interpret f(@) as the frequency distribution of the sound wave at time ¢, so Var( £
is an index of the concentration of the pitch. The uncertainty principle then says that a
sound cannot be very concentrated in both time and pitch. In particular, short duration
tones will have a poorly determined pitch. Singers take advantage of this: in very rapid
passages, errors in intonation will not be noticeable.

Heisenberg’s uncertainty principle tells us that if f is highly localized, then f cannot
be concentrated near a single point, but it does not say anything about f being concen-
trated in a small neighborhood or perhaps a finite number of widely separated points. In
fact, the latter phenomenon cannot occur either, and it is the object of local uncertainty
inequalities to make this precise. The first such inequalities were obtained by Faris [14]],
and they were subsequently sharpened and generalized by Price [29,[30]. See also [28]]
and [23]].

Heisenberg’s inequality is an instance of various quantitative versions of uncertainty
principles due to Hardy in 1933 [[18]], Morgan in 1934 [25], Gelfand-Shilov in 1953
[17)], Cowling-Price in 1983 [[12]], etc. Further details on uncertainty principles can be
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found in the textbook of Havin and Joricke [19], and in the expository papers of Havin
[20] and Folland-Sitaram [[13].

Building on the paper by Hardy, around 1964 Beurling proved a new version
of Heisenberg’s uncertainty principle, which found a lot of success for its elegance and
simplicity. This result appeared without proof in the collected works of Beurling.
In 1991, Hormander [22] reproduced a proof from the notes he made when Beurling
explained this result to him during a private conversation. It is known by now that
Beurling’s uncertainty principle is the master theorem of this subject in the sense that it
implies the theorems of Hardy, Morgan, Gelfand-Shilov, and Cowling-Price. Recently,
this theorem was further generalized by Bonami, Demange, and Jaming [5]]. Analogues
of Beurling’s theorem in the context of Lie groups have been studied in [32} 2, 27, 33|
etc.

In this paper our aim is to prove the analogue of the above mentioned uncertainty prin-
ciples for a generalized Fourier transform associated with a wide family of differential-
reflection operators.

More precisely, we consider the operator

A'(x) (f(X) - f(—X))

Aaf(x) = f(x) + A0 >

(1.1)

where A is so-called a Chébli function on R (i.e. a Sturm-Liouville function with addi-
tional hypotheses). In particular, the function A assumes:
A(x) = X' B(x), (1.2)

where o« > —% and B is any even, positive and smooth function with B(0) = 1, and the
limit

20 = lim A& (1.3)

coto A(X)
exists and nonnegative.

For instance, if A(x) = |sinh x>**!(cosh x)***!, with & > 8 > —1/2, then the operator
(1.1) reduces to Heckman’s operator in one dimension [21]]. Operators of type (1.1)
have a long history going back to the pioneering paper [13] by Dunkl.

For 4 € C, denote by ¥(4, x) the unique solution to the equation A4 f(x) = idf(x)
with the initial data f(0) = 1. In particular, for A, x € R we have [¥(4, x)| < 1.

On the space L' (R, A(x)dx) we consider the Fourier transform .%#, defined by

Faf) = ff(x)‘P(/l, —x)A(x)dx, AeR. (1.4)
R

By now, the transform .%, is very well understood. See [4] for a detailed harmonic
analysis related to .7 ,.

Forz > 0 and x € R, let h(x) = h(t, x) := F} I(¢7")(x) be the heat kernel associated
with the heat semigroup ¢™i. In particular, the map x — h(t, x) is even and belongs to
the space L' (R, A(x)dx). The estimates proved in [[16] for h(t, x) will play a crucial rule
in several places.
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Below we will write || - ||, and || - || L instead of || - ||zrr.awax and || - llrweyans
respectively. Here E(1)d A denotes a Plancherel measure supported on R\] — o, o[, which
will be given explicitly in the next section, where o is as in (1.3).

Define the following domain

{1} if o =0,
D, := (%,1] if0<p<, (1.5)
[%, 1] otherwise.

The Heisenberg inequality for .%, reads:

Theorem A (Heisenberg’s type; see Theorem [3.3). Let r, s be two positive constants
andy € D,. Then, forall f € L*(R, A(x)dx) we have

- -
™ A5 1A Za (OIS 2 112
x A

The proof of this theorem uses a similar approach to that employed in [8]] for a sub-
Laplacian on a Lie group of polynomial volume growth.

As mentioned earlier, the local uncertainty principle comes to fill in the blank left by
Heisenberg’s uncertainty principle. For .%#,, the local uncertainty inequality states:

Theorem B (the local type; see Theorem 4.2). Let s be a positive constant so that
s <a+ 1, andlet E C R\] — o, 0l be a measurable set such that 0 < E(E) < oo. Then,
for all nonzero function f € L*(R, A(x)dx), we have

S
AWEl2 S Cs e [IWES *fllzs
1f #a wellz = coplwell 5 1T fll2
. ‘X
where wg 1= Z;yr € L*(R, A(x)dx).

We now turn our attention to an analogue of Beurling’s uncertainty principle, which
has been extended to many directions and contexts. The principle result of this paper
is to prove Beurling’s theorem, and its relatives such as the theorems of Gelfand-Shilov
and Cowling-Price, for the Fourier transform .%,.

Theorem C (Beurling’s type; see Theorem 5.1). Let f € L*(R, A(x)dx) satisfy

f O ZA(F)(D)] eI
R JR (1 + |x] + [PV

A(x)dx E(1)dA < o0, (1.6)

for some nonnegative integer N. Then f is of the form

f = ahlnty < XTI (1.7)

k=0 2

where c; are complex constants, and the subscript x in AX())Ch(t, X) denotes the relevant
variable in the k-th power of the operator A, applied to the heat kernel h(t, x) for some
t>0.
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In the limit case @ = —1/2, with B(x) = 1 for all x € R, the above statement collapses
to the Bonami-Demange-Jaming result in one dimension [5]].

Theorem (Clhas several interesting consequences. We begin with the following varia-
tion of the uncertainty principle involving conjugate exponents p and g:

Theorem D (Gelfand-Shilov type; see Theorem 6.1). Let f € L*(R, A(x)dx) and N be
a nonnegative integer. Assume that

T+ ) E()dA < oo,

QP p 204
lfx)le ™ | Za(f) D) e s
fR ALy < o fR (L + )Y

where 1 < p < oo, % + é =1, and s, t are positive constants.

1) If st > }L then f = 0 almost everywhere.
2) If st = zlt and p # 2 (hence q #+ 2) then f = 0 almost everywhere.

3) Ifst:iandp:q:Z,then

f(x) = Z a AP RQAX)  n<N-(Qa+2). (1.8)

k=0

In particular, if 2a+2 < N < 2a+3 then f(x) = co h(2t*, x), where ¢, is an arbitrary
constant for o = 0, and ¢y = 0 for o > 0.

The uncertainty principle below follows partially from Theorem Dl above.

Theorem E (Morgan’s type; see Theorem 6.2). Suppose a measurable function f : R —
C satisfies

~sll? pol

@< (1 + )" \ZA(HD] < e

VBG)
where s,t are positive constants, M is a nonnegative integer, 1 < p < oo, and % + é = 1.
Here B(x) is as in (1.2).

1) If(sp)%(tq)é > 1 then f = 0 almost everywhere.
2) If(sp)%(tq)é =l and p # 2 (hence q # 2) then f = 0 almost everywhere.
3) If(sp)%(tq)é =landp=q=2 ie st= %, then, for all M, we have:

(i) Foro =0, f(x) is, up to a constant, the heat kernel h(t, x).

(1) For o > 0, f = 0 almost everywhere.

When p = g = 2, we shall call Morgan’s type theorem as the Hardy type theorem
(see Corollary 6.3). The case st < }L is included in Corollary 6.3. One can think of
Morgan’s type theorem as an intermediate result between the Paley-Winener theorem
for .#,, corresponding to p = 1, and Hardy’s type uncertainty principle.

Next we state a generalization of Hardy’s type theorem (or Morgan’s type theorem

with p = ¢ = 2), where the uniform conditions are replaced by integrability conditions.
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Theorem F (Cowling-Price type; see Theorem 6.3). Let f € L*(R, A(x)dx) and assume
that for positive real numbers s, t, and nonnegative integers Ny, N,

F ()] e M5 B(x)20-5)
L=

f ( | Za(f))] M
e\ (1 + A

)4
) A()dx < oo,
)q £(1)dA < oo,

where 1 < p,q < oo, and B(x) is as in (1.2).

1) If st < %, then there exist infinitely many linearly independent functions satisfying
the above two conditions.
2) If st > }L then f(x) = 0 almost everywhere.

3) If st = § then

F@ =Y e APhEx)  n<N,- (2"‘; 2 (1.9)

k=0

In particular, if {2a + 2)/q} < N> < {Q2a + 2)/q} + 1 then f(x) = ¢ h(t, x), with:
(1) For o = 0, cq is an arbitrary constant whenever N; > {(2a + 2)/p}, otherwise
Co = 0.
(i) Foro >0, ¢y = 0.

For p = g = oo, the Cowling-Price type theorem implies Hardy’s type uncertainty
principle.

2. BACKGROUND

The purpose of this section is to recall some results from the literature on the so-called
Chébli transform. For more details we refer the reader to [9, (10, 11}, 35 36]].

Throughout this paper we will denote by A a function on R satisfying the following
hypotheses:

(H1) A(x) = |x[***' B(x), where @ > —1 and B is an even, positive and smooth function
on R with B(0) = 1.
(H2) A is increasing and unbounded on R,.

(H3) A’/A is a decreasing and smooth function on R}, and hence the limit 20 :=
lim A’(x)/A(x) > 0 exists.
X—+00

Such a function A is called a Chébli function. From (H1) it follows that

A(x) 2a+1
Alx)

+ C(x), forx # 0, 2.1

where C := B’/B is an odd and smooth function on R.
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2.1. The Chébli transform. Let A4, or simply A, be the following second order differ-
ential operator

& AWwd
R s 2.2)
For u € C, we consider the Cauchy problem
(22
Af() = =2 + ) f () 03
fO =1, f(0)=0.

In [[L1] the author proved that the system (2.3) has a unique solution ¢,. Moreover, ¢, is
an even smooth function on R, and the map u — ¢,(x) is analytic. We refer to [[10} 36]
for more details on ¢,,.

For f € L'(R,, A(x)dx), the Chébli transform of f is given by

T w) = f JO@(0)A(X)dx, [Imu| < o. (2.4)
Ry

The following Plancherel formula for .%, was proved in [L1]].

Theorem 2.1. There exists a unique positive measure o with support R, such that 7,
induces an isometric isomorphism from L*(R., A(x)dx) onto L>(R., o(du)), and for any
fe LR, A(x)dx) N L>(R,, A(x)dx) we have

NERETE fR L ZAHER oldp).

To have a nice behavior for the Plancherel measure ¢ we need a further (growth)
restriction on the function A. Following [33]], we will assume that A’/A satisfies the
additional hypothesis:

(H4) There exists a constant 6 > 0 such that for all x € [xg, o) (for some xy > 0),

—_5x .
A,(X) _ 2@ + e D(.X') if o > O,

A(x) =) 2a+1 (2.5)
X

+eD(x) if 0=0,

where D being a smooth function bounded together with its derivatives.

In these circumstances, the Plancherel measure o is absolutely continuous with re-
spect to the Lebesgue measure and has density |c(u)|~2, where c is a continuous function
on R, and zero free on R%. Moreover, by [36, Proposition 6.1.12 and Corollary 6.1.5]
(see also [6]), for u € C we have:

(i) If o > 0 and @ > —1/2, then |c(u)| > ~ |u|***! whenever |u| > 1.
(ii) If o > 0 and @ > —1/2, then |c(u)| % ~ |u|> whenever |u| < 1.
(iii) If o = 0 and @ > 0, then |c(u)|7% ~ |u>***! whenever |u| < 1.

In the literature, the function c is called Harish-Chandra’s function of the Laplacian A.
We refer to [[7]] for more details on the c-function.

Henceforth we will assume that Chébli’s function A satisfies the additional hypothesis
(H4). In particular, it follows that for |x| large enough:
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(i) A(x) ~ e*M for o > 0.
(ii) A(x) ~ |x***! for o = 0.

2.2. A family of differential-reflection operators. Consider the following differential-
reflection operator

Asf(x) = f'(x) + (2.6)

A'(x) (f(X) - f(—X))
A(x) 2 '

In view of the hypothesis (H4) on A’/A, the space Z(R) (of smooth functions with
compact support on R) and the space .¥(R) (of Schwartz functions on R) are invariant
under the action of Ay4.

For completeness’ sake, the operator .Z) := Af1 is given by

_ 1& v A,(X) ' f(X) - f(—X)
Lf(x)=f (x)+(A(x))f(x)+(A(x)) ( > ) (2.7)
Let A € C and consider the differential-reflection equation
Apf(x) =idf(x), (2.8)

where f : R — C.

Theorem 2.2. (see [4, Theorem 3.2]) The solution space of (2.8)) is 1-dimensional for
all A € C. This solution space contains a (unique) function WY(A, -) such that ¥(4,0) = 1.
Further, for every x € R, the function A — Y(A, x) is analytic on C. More explicitly, we
have:

1 .
Pu(X) + =00 (x) if 1€ C\{0},
1 if 1=0,

Y(A,x) = { (2.9)

where u satisfies the relation y* = A> — o*. Furthermore, for all A, x € R, we have
P4, x)| < 1.

Example 2.3. Assume that A(x) = A, p(x) = (sinh|x])***!(cosh x)**! with @ > B >
—1/2 and a # —1/2. In this example, the differential-reflection operator (2.6) coincides
with the Heckman operator in one dimension,

Ap,, f(0) = f1(x) + ((2a + 1)cothx + (28 + 1) tanh x) (W) .
The eigenfunction ¥(A, x) is given by

1
PLD = GO0+ =0l

_ 80;(7"8)( X) + sinh(2x) g&ffm’ﬁ (),

i1
da+1)

where goff"ﬁ " denotes the Jacobi function, and > = 2> — (a + S+ 1)%
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2.3. An intertwining operator. In [34, Theorem 2.2] the author proved that there ex-
ists a unique automorphism V,, or simply V, of C*(R) such that

AyoV=Vo % and Vf(0) = f(0). (2.10)
In particular, by the uniqueness of the solution ¥'(4, x), it follows that
P4, x) = V(e ) (x). (2.11)
Moreover, by [34, Theorem 3.2], there exists a positive kernel K so that
VIx) = f|;|<|x| K(x,y) f(y)dy, x #0. (2.12)
Henceforth, we will denote by 'V the dual operator of V in the sense that
fR Vf(x)g(x) A(x)dx = fRf(Y) V() dy, (2.13)
for suitable f and g. That is,
Vel = L - K(x, y) g(x) A(x)dx. (2.14)

2.4. A generalized Fourier transform. On the space L'(R, A(x)dx) we consider the
generalized Fourier transform .%, defined by

Fa(HA) = ff(x)‘l’(/l, -x)A(x)dx, A€R.
R

In view of (2.11) and (2.13) we have
Ty = Fope 0V, (2.15)

where %, is the Euclidean Fourier transform.
To state the alleged inverse transform of .%,, let us introduce the following Plancherel

measure
Pl
E(1)dA = A Te (D) dA. (2.16)

\//12 — 02 c( \//12 -0
Theorem 2.4. (see [4, Theorem 8.1 and 8.2])
1) If f € L'(R, A(x)dx) and FA(f) € L'(R, E(A)dA) then

f(x) = % f FAa(HH D) WP(A, x) E(D)dA almost everywhere. (2.17)
R
2) If f € L\(R, A(x)dx) N L*(R, A(x)dx), then F4(f) € L*(R, E(A)dA) and furthermore
1
flf(x)le(x)dx =7 f|§A(f)(/1)|2 E(DdA. (2.18)
R R

3) There exists a unique unitary operator on L*(R, E(A)dA) that coincides with (1/2).%4
on L'(R, A(x)dx) N L*(R, A(x)dx).
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For 0 < p < 1, denote by .#,(R) the space consisting of all functions f € C*(R) such
that
a1 (f) = sup(al + D @o(0) 7 [f O] < oo, (2.19)

xeR
for any s € N and any k € N. The topology of .¥,(R) is defined by the seminorms a'if’ k)
We pin down that .%,(R) is a dense subspace of LY(R, A(x)dx) for p < g < oo, while it
is not contained in LY(R, A(x)dx) for 0 < g < p.
We set

C,:={1eC||Ima < Q(I% -2)}. (2.20)

Let .(C,) be the Schwartz space consists of all complex valued functions 4 that are
analytic in the interior of C,, and such that & together with all its derivatives extend
continuously to C, and satisfy
70 (h) = sup(ldl + 1Y RO < oo, (2.21)
AeC)

(p)

for any 7 € N and any ¢ € N. The topology of .”'(C,) is defined by the seminorms 7,/,".

Using Anker’s approach [1]], we proved in [4, Theorem 9.6] the following result:

Theorem 2.5. Forall 0 < p < 1, the Fourier transform %, is a topological isomorphism
between ./,,(R) and .7 (C,).

2.5. A generalized convolution product. For fixed x,y € R* and for a suitable func-
tion f, we consider the following generalized translation operator (see [26] (5.3) and

(6.1)] or (37, (4.4)])
() = fR ) ity (@),

where
supp(pty,y) C [=Ixl = [yl, =l = [yHT U [l = Iyl 1, |x] + [y[].
For x = 0 ory = 0, u,, is nothing other than the 6-measure. It is worth mentioning that
T, WY(4, )(x) = P4, x) ¥(4,y). (2.22)

For more details on the generalized translation operator 7, we refer the reader to [37].
We recall the following result from Theorem 4]. To simplify the notation, we will
write || - ||, instead of || - [|rr.a(ax) Where the lower-index in L? denotes the relevant
variable.

Lemma 2.6. Let f € L”(R,A(x)dx) with 1 < p < oo. Then 7, f(x) exists and is finite for
almost every x € R. Moreover

rf € PRAWdx) and |t fllp <277 I fll.
The integral
fHag(x) = fR T, f(X)g(MAY)dy

is called the generalized convolution product of f and g. For the existence of 4, one
can impose different conditions on the functions f and g. In particular, by standard
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arguments, one can prove the statement below. In order to be self-contained, we shall
give a proof:
... AP | 1
Proposition 2.7. 1) Assume that 1 < p,q,r < oo satisfy —+ ——1=—. Then, for
P g r
every f € LP(R, A(x)dx) and g € L1(R, A(x)dx), we have f %, g € L'(R, A(x)dx) and
If #4 gllz; < 277 A1z llgllze- (2.23)
2) Let f € L'(R,A(x)dx) and g € L'(R,A(x)dx). Then, f *, g € L'(R,A(x)dx) and
satisfies
Falf x4 QD) = Za(f)(A) Fa(@)A).
3) Let f € L*(R,A(x)dx) and g € L> (R, A(x)dx). Then, f x4 g € L*(R, A(x)dx) if and
only if Z4(f) Fa(g) € L*(R,E(D)dA) and
Falf x4 ) = Za(f) ) Fa(8)A).
Proof. 1)If r = cothen (1/p)+(1/q) = 1. Hence, by Holder’s inequality and Lemma 2.6,

£ 4 g(x) exists for each x and ||f # gll= < 2" 7| fll2llglle. Next, suppose 1 < r < co.
Note that p < rand ¢ < r. Let s = p(1 = 1/g) = 1 — p/r and note that 0 < s < 1.
Let t = r/q and note that 1 < ¢ < co. Define ¢’ by (1/q) + (1/¢’) = 1 and note that
1 <q < oo Let

h(x) := f It f(0)gWMIA()dy = f [T S g [T f (=) A)dy.
R R

By Holder’s inequality we have
) l/q \
h(x) < ( f [ FEDI 1O AGY) e f1 e
R J

If s =0then g = 1.1f s # 0 then sq’ = p. In either cases taking the g™ power we obtain

ot < ([ el g AG) e 1

IA

23171 fR [T fDI (g0 AG)dy)-

Thus, by the generalized Minkowski inequality we have

A, = Al
sqll—gl sq (1-5)q q t 1/t
< 20 ([ ([ et g Ao Ay
< 20301 [ ([ It o acoy) Ay
<

2
29=50AI1 el
AT

since gt = r and (1 — s)r = p. Taking the g™ root we obtain the statement.
2) For f and g in L'(R, A(x)dx), it follows from the first part that f+4 g € L'(R, A(x)dx).
In view of (2.22) the rest of the statement is a routine checking.
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3) The third statement can be proved by mimicking the argument used in [36, page
189] for the Chébli transform .%,. The details are left to the reader. O

Henceforth, the notation X < Y will be used to indicate that X < CY with a positive
constant C independent of significant quantities.

3. A HEISENBERG TYPE INEQUALITY FOR %4

Recall from (2.7) that —.%} is a positive self-adjoint operator on L*(R, A(x)dx). Then,
for t > 0, "+ defines an utltracontractive semigroup, called the heat semigroup, so that
forall f € CO(R), u(x,1) := ¢"“ f(x) solves the homogeneous heat equation

ou(x,t) = Lyu(x, 1), u(x,0) = f(x).

The solution e*“* f(x) can be written as e“* f(x) = h, 4 f(x), where h,(x) = h(t, x) :=
F 1€ )(x) is the heat kernel.
We claim that &, belongs to the Schwartz space .,(R) with 0 < p < 1 (see (2.19)),

and therefore h, € LY(R, A(x)dx) for all 0 < g < oco. Indeed, as the function A — e
belongs to the Schwartz space .#(C,,), it follows from Theorem 2.5 that h, € ./,(R).
The second part of the claim is due to the fact that .#,(R) is a dense subspace of
LY(R, A(x)dx) for p < g < oo.

In view of the claim above, we may rewrite the heat kernel as

h(x) = % f W, x)EDdL, (1, x) R XR, 3.1)
R

where the Plancherel measure E(A4)dA is as in (2.16). By the expression (2.9) of ¥(4, x),
the integral in (3.1) becomes

1 00 _ 2+2 _
ho =3 f e o () e,

0
The following statement is nothing other than Lemma 3.2 in [24]).

Lemma 3.1. The following estimates hold:
1) For o > 0, we have

_asl
Il ~ {Z_I;I_% ;Z; Ot i tf . (3.2)
2) For o = 0, and with the additional condition a > 0, we have
iz ~ 5, for 1> 0. (3.3)
The next lemma is a cornerstone of the main result of this section. Define
{1} if o =0,
D, :=1(3.1] if0<o<1, (3.4)

[3.1] otherwise.
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Lemma 3.2. Let v € D, and let s > 0 so that ys < a + 1 for o > 0, and with the
additional condition a > 0 for 0 = 0. Then, for all f € L*(R, A(x)dx), we have

_3
1 a hullz < 72 1A £z

Proof. Let us start with the case o > 0. For r > 0, let y, be the characteristic function of
the interval [—r, r], and let x| = 1 — x,. Define the functions f, and f” by

fr=rxn =1
Since f" € L>(R,A(x)dx) and h, € L' N L*(R, A(x)dx), by Proposition 2.7.1 and 2.7.3,
it follows that &, 4 f" € L*(R, A(x)dx) and F(h; x4 ) = Fa(h).Z4(f"). By using the
Plancherel formula twice we get

resa £l = e Zalflliz

LZA N2

r A fllz,

since ys > 0. Above, the notation || - || 2 stands for || - |.2® gaa)-
On the other hand, by appealing to Proposition2.7.1 we have

e xa fill iz < el 1l

IA

IA

A

1

" 2
< Wz 13 fliz (2 f P A)
0

Further, one may check that under the assumption on ys, we have

A

; 1
( f x_zysA(x)dx)z < V),
0
where

Ve rotl forr<1, 3.5)
r) = )
e \r for r > 1.

This is due to the fact that, for o > 0, A(x) ~ ¢?*™ when |x| > 1 and A(x) ~ |x]***! when
x| < 1.
Consequently,

e 4 fllz2

IA

Whe #a M2 + A4 fill2
P flle (14 VO lIal2)

A

. 1 .
Now, choosing r = > we obtain

3 s L
e fllz < 23 0 iz (1 4+ VE) ihdl2).
Using the estimate (3.2) for [|A/||;; we deduce that

t%ﬂ(%_l) forr <1,

1
V() [\l 2 ~ {tﬁ(i—s) oo/ for 1> 1. (3.6)

Thus, V(t21_7) llAl,2 is bounded for all y € D, and for all 7 > 0.
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The case o = 0 runs similarly. O
The principal result of this section is the following:

Theorem 3.3. (Heisenberg’s inequality) Let r, s be positive constants and let y € D,,.
Then, for all f € L*(R, A(x)dx) we have

r s
™ £S5 1A Za OIS 2 12
x 1 ’

Proof. We will give the proof for o > 0; the case o = O runs similarly. Let us assume
first that y € D, and s > 0 so that ys < a + 1. By Lemma 3.2/ and by the Plancherel
formula (2.18)), we have

Iz < Whea fllz + 1F = hoxa fllz
< A fllz + 100 =€) @A) E AP Fa ()2 3.7)

Suppose that r < 2. Then the function u — (1 — e™)u"7 is bounded for all u > 0, and
therefore

1z < £ 3P fllz + 2 AT Za(Hlz. (3.8)
The minimum value of the right hand-side of (3.8)) (as a function of # > 0) is, up to a
constant,

I 11 A ?A(f)llg”.
This finishes the proof in the case where ys < @ + 1 and r < 2.
Suppose that » > 2. Consider a real number 7’ so that 0 < ¥ < 2 < r. Obviously
u” < 1+u forall u > 0. In particular, for u = |1|/+/e with &£ > 0, we have

2. N
(&)2 £1+(&)2.

£ £
It follows that

HA" Za(Ollz < 2N FalDllz + &7 A Fa(Hlz
= &2 \|flz +e = A Falhll. (3.9)
Optimizing (3.9) in £ we get
r l_r_r, r é
HA™ ZaPllz S U1, ™ 1A Fa (Ol (3.10)
Since r’ < 2, the inequality (3.10) implies
Az < P A WA Za I
,r’ l_é r/ic r r_r, ﬁ
< W AIZ A 77 nar 2.

That is . .
If 1z < Il f”Zz: I Iﬂl’ﬁA(f)H;{“.

This finishes the proof when ys < a + 1 and r > 2.
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Next we discuss the remaining case ys > @+ 1. Let s* > O such that ys’ < a+1 < ys.
Since ys’ < ys it follows that

ys’ s
(m) <1+ (m) , Ve > 0.
& &

Now the statement can be proven in a fashion similar to what was used in the case
ys<a+1landr>2. O

4. A LOCAL UNCERTAINTY INEQUALITY FOR .%4

In this section we will establish a local uncertainty inequality for the Fourier trans-
form .%,. We will prove that if f is highly localized, then .%,(f) cannot be concentrated
in a small neighborhood of two or more widely separated points.

The following lemma is needed for later use.

Lemma 4.1. Assume that 1 € R. Forall x € R, |Y(4, x)| = 1 if and only if 1 = 0.

Proof. From (2.9) we have W(0,x) = 1 for all x € R. Now let us prove the opposite
direction. Since W(A4, -) is a solution to (2.8)), it follows that

AI
0, Y4, x)=—- () (WA, x) =¥, —x)) + id1P(4, x).
2A(x)
Using the oddness of the function A’, we deduce that
A/
D1 —0)) =~ (1, o)~ (A, ) — AL 0,
2A(x)

and by consequence

0¥, —x)} = —1241;(();)) (W2, —x) = ¥(4, x)) + iA¥(4, —x).
Therefore
R AW
0¥, —x)|" = A0

{(‘I’(/l, —x) = (L, X)) P, —x) + (P2, —x) - P, )P4, —x)}.
Similarly we have
Ax)
2A(x)
{(‘P(/l, x) = P(1, —0)) P x) + (P, x) - P —0) ¥, x)}.

0.4, ) = -

Hence, for every x € R, we get

A’(x)
A(x)
Assume that there exists a 4y € R such that [Y(A, x)| = 1 for all x € R. From (4.1) it
follows that [¥(Ay, —x) — ¥(4o, x)| = 0. That is (4o, x) = ¥(4y, —x) for every x € R.

AP, 0P + (4, -’} = — [P(4, —x) = (4, x). 4.1
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By the expression (2.9) of ¥(4, x) we deduce that ¢, (x) = O for all x € R, where ,u(% =
A5 —0”. In view of the definition (2.2) of the Laplacian A, saying @, (x) = 0is equivalent
to Ag,,(x) = 0. Thus, knowing that Ag,(x) = =45 ¢@,,(x), we have 13 ¢, (x) = 0 for all
x € R. Since ¢,,(0) = 1, we deduce that 1y = 0. |

We now come to the main result of this section.

Theorem 4.2. (Local uncertainty inequality) Let s be a positive constant so that s <
a+ 1, and let E C R\] — o, 0[ be a measurable set such that 0 < E(E) < oo. Then, for all
nonzero function f € L*(R, A(x)dx), we have

s
1f *a wellz £ cop lwell 5" T f1l2,
where wg 1= Z;yr € I*(R, A(x)dx).

Proof. For r > 0, let y, be the characteristic function of the interval I, =] — r, r[ and let
X, =1 - x,. By Minkowski’s inequality and the Plancherel formula (2.18)), we have

||9;1(]C))(E||L/2l < ||9>1(f)(r))(E||L§"‘||ch(f)(;))(E||L/21

< NEBEIZa(f x)lles + 1 Fa(f X2
< NEE) I xrlle + 11 xll 2. (4.2)
By Holder’s inequality, it is clear that
r 1
|mes@fV*MWMWWﬂm. (4.3)
0

The above integral between parentheses converges, since s < @ + 1. Further, we have

W xlz < 1 xollee T £z
< P Sl 4.4)
In view of (4.3) and (4.4), the inequality (4.2) becomes
I Za(N) xEllz < Oup(r) [lxI f1I,2 4.5)

for every r > 0, where

®a,E(r)

r 4 VEE) (2 f r foA(z)dz)%
0

a+1

< (e VBB s B0))

Above we have used the fact that A(x) = [x[***' B(x), where @ > —1 and B is an even,

positive and smooth function on R. Let us choose r = ry := E(E )‘ﬁ. Thus, the inequal-
ity (4.5) reduces to

! ) s
N B E 2a+2 s . 4.6
———( swp BO SO Sl 40

124 xellz < (1+
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Next we will prove that the inequality (4.6) is strict. To do so, let us assume that there
exists a nonzero function f € L*(R, A(x)dx) for which

1 ! , .
[ — B E 2a+2 s ). 4 ) 7
1+a_sﬁﬁﬁ]0ﬂ)i<> Il A2 4.7)

Using (4.7), one can check the following identities:

1Za(P xellz = (1+

IZaC X)) XE iz = VEE) 1Falf Xl (4.8)
I Xl = 1 x)lls (4.9)
I xrallzy = ™ xeglliz 111 fl 2. (4.10)

The strategy is to use the identities (4.9) and (4.10) to identify the function £, and then
to employ the identity (4.8) to derive a contradiction.
First, by Cauchy-Schwarz, the identity (4.10) holds true if and only if

FOl = ¢ ™ x (),

for some constant ¢ > 0. That is, there exists a complex valued function ¢ on R satisfy-
ing |¢(x)| = 1 and such that

F() = ¢ d(x) x> xry (). 4.11)
In view of (4.11), the identity (4.9) becomes

1Al = 1 Za(Plles.
Then, there exists Ao € R such that

1Al = 1 Za(D (o), (4.12)
which implies _
1Al = e Za(F) (o), (4.13)
for some 6, € R. By the expression (4.11) of £, the identity (4.13) is explicitly given by:
¢ f X () (1 = €7 () P( o, —x)) A(x)dx = 0. (4.14)
R
In particular we get
f (1) (1 = Re {e™™ ¢(x) W( Ao, —x)}) A(x)dx = 0. (4.15)
R

Since |e™™ ¢(x) W(Ay, —x)| < 1, which is essentially due to the fact that |[¥(1y, —x)| < 1, it
follows that | Re {e™® ¢(x) ¥(4y, —x)}| < 1. By this elementary observation, the identity
(4.15) implies
1 —Re {e ™ ¢(x) ¥(d, —x)} = 0

for almost every x € R. Using again the fact that |e™™® ¢(x) ¥(1y, —x)| < 1, we conclude
that

e p(x) Py, —x) = 1 (4.16)
for almost every x € R. By a standard argument, the identity (4.16) holds true for all
x € R. Since |¢p(x)| = 1, we deduce from (4.16) that [¥(1y,—x)| = 1 for all x € R. In
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view of Lemma 4.1, this is true if and only if 4y = 0. Consequently, the identity (4.16)
becomes

P(x) = ™,
and therefore (see (4.11))
F0) = e x™ x, (x). (4.17)

We claim that the function f found above is not accommodate in the identity (4.8).
Indeed, substituting (4.17) back in (4.8)) we see that

174 xellz = EEVIZa(DILs
That is
f (7Dl = 1Z4(DOP) E)dA = 0. (4.18)
. :

Since by assumption E(E) > 0, it follows that the integrand in (4.18) vanishes for almost
every A € E, i.e.

1 ZA(DD] = 1 Za(Dlles (4.19)
for almost every A € E. Recall from above that | Z4(f)lls = [Za(/)(0)]. Thus, (4.19)

reads |.Z4(f)()| = |.Z4(f)(0)] for almost every A € E. Hence, there exists a measurable
function x such that

FAD) = K(A) F4())0), (4.20)

with [1c(1)| = 1. In view of the expression (4.17) of f, we may rewrite the above identity
as

ce f 720 () (k) = WA, =) A(x)dx = 0. “.21)
R

In a similar fashion to what was used in the previous integral (4.14), we deduce that for
almost every A € E and for every x € R

K(A) = ¥(4,—x) =0.

Since |k(A1)| = 1, we obtain [¥(4, —x)| = 1 for almost every A € E (whichis € R\]—p, o[).

(i) If o > 0, then, by Lemma 4.1, this cannot be true. It follows that the identity
(4.18) does not hold. That is our assumption (4.7) cannot operate.

(ii) If o = 0, then Lemma 4.1/ reduces the set of A’s to {0}. That is E(E) = 0, which
contradicts the hypothesis on the set E. Thus, (4.18) does not remain true. In
other words, our assumption (4.7) cannot last.

In conclusion, the inequality in (4.6)) is strict. O

5. A BEURLING TYPE THEOREM

In this section we establish the analogue of Beurling’s theorem for the Fourier trans-
form .%,4. In the limit case &« = —1/2, with B(x) = 1 for all x € R, our theorem coincides
with the Bonami-Demange-Jaming result in one dimension [3]], which generalizes the
original Beurling’s theorem.
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Theorem 5.1. Let f € L*(R, A(x)dx) satisfy
f [f I Z ()] MM

rJr  (L+ X+ [ADY
for some nonnegative integer N. Then f is of the form

. N -Qa+2)

fO)= Y aADhEx)  n< = (5.2)
k=0

A(x)dx E(A)dA < oo, 5.1

where c; are complex constants, and the subscript in Aif,)xh(t, x) denotes the relevant
variable in the k-th power of the operator A, applied to the heat kernel h(t, x) for some
t > 0. In particular, if N < 2a + 2 then f = 0.

We will first prove the following statement.

Proposition 5.2. Under the same assumptions as in Theorem 5.1, we have:

1) The function f belongs to the space L' (R, A(x)dx).
2) The function'V f belongs to the space L’ (R) for 1 < p < oo.

Proof. 1) On one hand, since f € L*(R, A(x)dx) then f is locally integrable on R with
respect to the measure A(x)dx. On the other hand, from the master condition (5.1)) it
follows that
|f () e
r (L+ XDV
for almost every A € R\]—p, o[ so that .Z,(f)(1) # 0. We pin down that if .%,(f)(1) = 0
for almost every 4 € R\] — o, o[, then by the Plancherel Theorem 2.4.3 we get f = 0
almost everywhere.
Let 1y € R\[—o,0] such that .Z,(f)(1y) # 0, and rewrite the inequality (5.3) for
A = A. Since MMl /(1 + [x)Y > 1 for |x] large enough, and since f € Llloc(R,A(x)dx),
we deduce that f € L'(R, A(x)dx).
2) By assumption and the first statement, we have f € L' N L*(R, A(x)dx). We claim
that

A(x)dx < o0 (5.3)

W f e L'(R) N L™(R). (5.4)
Indeed,

IA

f f K(x, ) ()] AG)dxdy
R Jx|>yl

f £l f K(x, y)dy) A(x)dx
R [yl<lx]

= [Ifllzr < oo. (5.5)
Above we have used the fact that K is positive and that

f K(x,y)dy =¥(0,x) =1,
[yl<[x]

f VFG)Idy
R

IA

(see (2.12) and (2.11)). Thus 'V f € L'(R).



UNCERTAINTY PRINCIPLES 19

Next we will prove that 'V f € L¥(R). By the master condition (5.1) we deduce that
there exists xo € R* such that

| Z4(f)(D)] ol
g (L+ADY
Since ™M /(1 + |A|)¥ > 1 for | 4| large enough (say || > R), it follows that

f| | | Za()DIE(DdA < 0. (5.6)
A>R

E(A)dA < oo.

On the other hand, as f € L' n L*(R, A(x)dx), by the Plancherel Theorem 2.4.2, we
deduce that .Z,(f) € L*(R,E(1)dA). Hence .Z4(f) € L' (R,E(1)dA). In conclusion,

loc

Fa(f) € LN(R, E(1)dA). This conclusion leads to .Z4(f) € L'(R). In fact, let us split

LI%(J‘)M)W =L+hL+15h

T A
R [A<p+1 p+1<|A<L [A>L

Here L > 0 is chosen large enough so that E(1) > 1 for [4] > L.
Since .Z4(f) € L'(R, E(1)dA), we deduce that

I < fu | Z4(FIDIE(D)dA < 0.
A|>L

according to

4]

Va-pe(\2-php

p+1 <A £ L. Thus, there exist a, b > O such thata < §(1) < bforp+1 < |1 < L, and
therefore

is continuous and bounded for

For I,, observe that the function A —

1
L < - f | Z4(FIDIE(DA < 0.
p+1<AI<L

a

Before studying the finiteness of the integral I;, we point down that .Z,(f) € L®(R).
The latter fact is due to the identity .Z4(f) = Feue © 'V f (since f € L' N L*(R, A(x)dx))
and that 'V f € L'(R). Hence

I <200 + D Fa()lli=g) < 0.

In conclusion,
f \ZA(PDA =1 + 1 + 5 < oo,
R

ie. ZAu(f) € L'(R).

Since 'Vf € L'(R) and Zo. o 'Vf = Z4(f) € L'(R), by the inversion formula for
Euclidean Fourier transform we deduce that 'V f € L*(R). This finishes the proof of our
claim (5.4).

In the light of (5.4), the second statement of Proposition 5.2/ follows from Lyapunov
inequality. O

Now we turn our attention to Beurling’s Theorem 5.1.
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Proof of Theorem5.1. We will show that the master condition (5.1) implies
'V FQULZa(D] e
dxE(1)dA < oo. (5.7)
LfR (1 + |x| + |ADN

Choose a nonzero Ay € R\[—p, o] such that .%,(f)(1y) # 0, and write the integral (5.7)
as the superposition of

‘ b 1A
I::ff 'ViZa() Dl e E()dd dx
B Juii|

(1 + Ixd + |ADY

and

- V@A
. fR fuwm (1 + | + DY Edadx.

Obviously we have
ty x| 1ol
I< f e ., (5.8)
r o (1+x)
We write the integral on the right hand-side of (5.8) as the superposition of /; and I,

where
ty [0l ty [0l
L :=f —| f(x)leN dx, I, :=f —l f(X)leN dx
e (14 [x]) > 2L (I + |x])

[0]

Recall from Proposition 5.2/ that ||'V fl|1g) < co. Then

s [ IV < 1Vl < o
W< g
ls
For ¢ > 0, the function ¢,(s) = ———— is monotonically increasing for s > % Thus,

(1+s)
by (5.3) one concludes

o Lol
b= A+ Y K(y, A(y)dy)d
$ e L>% (1+ ) (f|y|>|xl 0: 01O AQy Jdx

£ ()] bl f
A+ )Y K(y, x)dx) A(y)d
fly»i T pp7 L, O 0dx) Ay

Mol

| f(y)l eM ol
r (L+PDY

To show that J is finite, let us assume first that [1g| < N, and let us write the integral
JasJ =J, +J, +J; where

'V FQOZa(H ()] MM
= DdAdx,
1 ﬁfléi fuol<u|szv (1 + x| + APV &) X

A(y)dy < co.

[p!

' VFQILZa()D)] MM
i dA dx,
2 fb‘fbi fl;ol<u|sN (1 + |x| + |V E(DdAdx

[p!
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and

VI LZa (D]
fs = dAdx.
3 fRLPN (1 + [x] + [ADY S()dadx

Clearly we have
J1 S f 'V f(x)|ldx < oo.
IXISMNW
For ¢ > 0, the function
ls

e
= 5.9
VS = T e (5.9)
is monotonically increasing for s > % Therefore, by the master condition (5.1) one
concludes
nos [z
[dol<|AI<N

el
0+ 3 + )Y KO, A(y)dy) dx) E(DdA
(Lpi (1+|x|+“|)N{f|y|>|x| 0 D1 I AWy} dx) §()

[0]

1Al
£ A 1+ vl + NN A(y)d A)da
fuo|<u|szv ZaUX )|(»|[y|>i (1 + Iyl +1aD¥ FONAG) y) 8

o]

IA

il

e
Fa(H)D)|————=A()dy E(DdA < oo.
fRlef(y)l |- a(f)X( )|(1+|y|+|ﬂ|)N (dy E(DdA <

IA

Let ¢, be as in (5.9). For £ > N, the function ¥, is monotonically increasing for all
s > 0. Hence, using again the master condition (5.1)) to deduce that

J3

IA

oI
AN | e K(y, AG)dyldx) E)dA
fww Fa )|(fR<1 +IXI+|/1I)N{f|y|>|x| 029 [F O AG)dy)dx) &)

IA

il
ZANWDI( | = mm F I AG)Y) §(DdA
| o [ o) g

il

e
Za(HA — _A()dyE(dA < oo,
L N fR DO s AGMY S <

IA

In conclusion, the integral J is finite when |1y] < N. Now we consider the case when
|1o| > N. However, in this case

_ VEZa (D] M
' fR:f|/;|>|/10|>N (1 + |x| + |2V E(dAdx < J3 < co.

This finishes the proof of the claim (5.7).
Next we will prove that in (5.7) the measure £(1)dA can be replaced by d4, i.e.

'V £ Fa(f)()] eI
fRfR (1 + [x| + [PV dAdx < co. (5.10)
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By the asymptotic behavior of |c(1)|™ near infinity (see Subsection 2.1), we can
choose a suitable large R > 0 such that §(1) > 1 for [1] > R. Hence we have

f VL LZ A )]
R (1 + |x] + ]V

¢ o Il t 7 |x 14l
p f fl VI@UTZNHDIE f fH WVIONTAGN DT 10 .
<R A>R

dAdx

(1 + |x| + [ADN (1 + |x| +1aDN

The inequality (5.7) implies that the second integral on the right hand-side is finite. To
prove the finiteness of the first integral on the right hand-side, one can follow the same
approach we used above for the finiteness of the integral 7 (see (5.8)).

The final step in the proof is to use the fact that .74 = Z.,. o 'V, see (2.15). In order
to use the Euclidean version of Beurling’s theorem, recall from Proposition 5.2/ that
W(f) € L*(R).

Now, in view of (5.10), the Euclidean version of Beurling’s theorem implies

W f(x) = P(x) e_%, Vx €R, (5.11)

where r > 0 and P is a polynomial of degree n < N‘l (see [5, Theorem 1.1]). In
particular, if N < 1 then f =0 almost everywhere. Usmg the well known fact that the

2,2
Euclidean Fourier transform of e 2a2 is given by ae -5 , we deduce from (5.11) that

FA(PIA) = Foge 0 V(D) = Q)M (5.12)

where Q is a polynomial of the same degree of P.
Substituting (5.11) and (5.12) back in (5.7) we see that the integrand in (5.7) is

|P(x)| |Q(/l)| _(zl%l/;—\/;lﬂl)z E(/l)

T+l + 1Y G149

Using the asymptotic behavior of |c(1)|% for |1| large (see Subsection 2.1), it is easy
to check that deg(P) (= deg(Q)) < w as otherwise the integrand in (5.13) is not
N-1

integrable in the neighborhood of the lines |x| = 2r|/l| Hence, the condition n < =5

should be replaced by n < 2= (2‘”2) (which is < & ) In particular, if N < 2a + 2, then
f = 0 almost everywhere.

For N > 2a+2, the injectivity of the Fourier transform .%, together with (5.12)) imply
that f is of the form

f0 =Y ahPhrix)  n< N-Qat+2) (5.14)

k=0 2

where ¢; are complex constants, and the subscript in A(k) (1, x) denotes the relevant
variable in the k-th power of the operator A4 applied to the heat kernel A(r, x) for some
r>0. m|
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6. APPLICATIONS OF BEURLING’S TYPE THEOREM

In this section we will show that Beurling’s type Theorem 5.1 has several interesting
consequences. More precisely, we will prove how theorems of Gelfand-Shilov, Mor-
gan’s, Hardy’s, and Cowling-Price type all follow from Theorem 5.1.

Theorem 6.1 (Gelfand-Shilov type). Let f € L*(R,A(x)dx) and N be a nonnegative
integer. Assume that

@9 e
fR %A(x)dx < oo, (GS1)
@nd
FA(H)) e T
R' A((J;)J(r |)A|I§N E(D)dA < oo, (GS2)

where 1 < p < oo, % + é = 1, and s, t are positive constants.

1) If st > zlt then f = 0 almost everywhere.
2) If st = i and p # 2 (hence q + 2) then f = 0 almost everywhere.
3) If st = iandp:q:Z, then
f(x) = Z APh@P,x)  n<N-Qa+2), (6.1)
k=0

where c; are complex constants, and the subscript in AXi)xh(th, X) denotes the rele-
vant variable in the k-th power of the operator A, applied to the heat kernel h(2t*, x).
In particular,
(1) If N < 2a + 2 then f = 0 almost everywhere.
(i) If2a+2 < N < 2a+3 then f(x) = co h(2t*, x), where c is an arbitrary constant
foro =20, and cy =0 for o > 0.

25)P 2t
( s) |x|” + S ——14}%, the conditions (GS1) and (GS2) imply
q

() %(f)u» o
ff (1 + |x| + [ADN A(x)dx E(1)dA

< [ [T 200
= Jede T T Ay

As 4st > 1, it follows that f satisfies Beurling’s master condition (5.1) with 2N instead
of N. Thus, f € L'(R, A(x)dx) and we have

Proof. Since 4st|x||4] <

A(x)dx E(A)dA < oo. (6.2)

Vi) = P(x) e, 6.3)
FA(F)) = Q) e, (6.4)

where a > 0, and P and Q are two polynomials of the same degree n < N — (a + 1).
Further, by same arguments as in the proof of Theorem 5.1, the inequality (6.2) implies
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that f satisfies
dxdA < co. (6.5)

ffWWm%mmww
R JR (1 + |x| + |2
Furthermore, we claim that

t B
1% P
f Vf@le 7~ ) < ol 6.6)
R
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Indeed,
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Choose a suitable large R > 0 for which the function u —» ——— is increasing for

(1 + u)N
u > R. Thus

@9P

VAl f e r f
< —_— K@, A(y)dy)d
f (1 + )Y s |x|<R(1+|x|)N( il 0D OIACIy) dx

vww¥w‘[
- K(y, x)dx)A(y)dy.
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By the condition (GS1), the second integral on the right hand-side is finite, while the
first one is bounded (up to a constant) by

LKR ( fly - Ky, )l f0)IAY)dy) dx

which is < f IO AWy < oo,
R

since f € L'(R, A(x)dx). This finishes the proof of the claim (6.6).
Substituting (6.3) and (6.4)) in (6.5) we see that the integrand is

[P(x)| Q)| o - valy? CESVERT
(1 + |x| + [N

Hence, if st > % then the integrand grows exponentially in the neighborhood of the lines

|x| = 2al4| and the integral in (6.5) diverges. Now we assume that st = %. By replacing

(6.3) and (6.4) in (6.6) and (GS2) respectively, we obtain

le Q5P | xl P

|P(x)|e e
ST ©7
1 —alaP? %W‘I
fR o 2|16+ w)eN E(DdA < oo. (6.8)

However, when p > 2 (and hence g < 2), respectively ¢ > 2 (and hence p < 2), the
relation (6.7), respectively (6.8), does not hold true unless P = 0, respectively Q = 0.

Thus, we are left with the case p = ¢ = 2. Recall that we are assuming here st = }L.
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In these circumstances, the finiteness of the integrals (6.7) and (6.8) imply that a = 2%
Moreover, the inequality (6.8) implies that the degree n of Q should satisfy n < N —
(2a + 2) (which is < N — (a + 1)). Now the injectivity of the Fourier transform .%, and
the fact that .Z,(f)(1) = Qe (see (6.4)), gives

=D aAPhCR ) n<N-Qa+2), (6.9)

k=0

where ¢ are complex constants and the subscript in Ag‘;h(th, x) denotes the relevant
variable in the k-th power of the operator A, applied to the heat kernel 2(2#2, x).

Assume that 2 +2 < N < 2a + 3. Then f(x) = ¢ h(2£%, x). At this stage of the proof
we will distinguish the two cases 0 > 0 and o = 0. Recall that A(x) = |x|***! B(x), where
a > —% and B is an even, positive and smooth function on R with B(0) = 1. From [16),
Theorem 3.1] there exist two real numbers w; and u, such that for t > 0 and x € R,

et e_% et? e‘%

< h(t,x) < .
29T (a + 120! +/B(x) 29T (a + 120! +/B(x)
By making use of the fact that for |x| large, A(x) ~ ¢*M for o > 0 and A(x) ~ |x|***! for
o = 0, we deduce from (6.10) that ¢y = O for o > 0, otherwise the heat kernel fails to
accommodate the inequality (GS1). For o = 0, the estimates (6.10) show that h(2¢?, x)
satisfies the condition (GS1) whenever N > 2a + 2 and no matter what value of ¢ is
used. O

(6.10)

The following uncertainty principle follows partially from the above theorem.

Theorem 6.2 (Morgan’s type). Suppose a measurable function f : R — C satisfies

—alxP ,—olx|

£ < (1 +x)” % VxeR, M1)
| ZA(HD] < e VieC, (M2)

where a, b are positive constants, M is a nonnegative integer, 1 < p < oo, and % + é =1

1) If (ap)%(bq)é > 1 then f = 0 almost everywhere.
2) If(ap)%(bq)fll = land p # 2 (hence q # 2) then f = 0 almost everywhere.
3) If(ap)%(bq)é =landp=q=2 ie ab= }L, then, for all M > 0, we have:
(1) Foro =0, f(x) is, up to a constant, the heat kernel h(b, x).
(1) For o > 0, f = 0 almost everywhere.

Proof. From the condition (M1) it follows that f € L*(R, A(x)dx). For a = % and

b = %, the function f satisfies the condition (GS1) and (GS2) in Theorem 6.1/ for

suitable N > 0. The condition (ap)%(bq)% > 1 becomes 4st > 1. Hence, the statements
1) and 2) are direct consequences of Theorem 6.1. For the statement 3), by mimicking
the proof of Theorem 6.1 one concludes that

FA(H)) = R XMW = R(1) e
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Making use of the condition (M2) we should have R(1) = const. Hence, up to a constant,
ZA(f)(A) coincides with e ?| which is nothing other than the Fourier transform of the
heat kernel A(b, -). That is

S(x) = co Wb, x),
for some constant ¢y € C. Finally, from (6.10) we deduce that, no matter what value of
M in the condition (M1) is used, for o > 0, the constant ¢y = 0 since the heat kernel

does not obey the condition (M1)), while for o = 0, the heat kernel accommodates the
inequality (M1). |

When p = g = 2, Morgan’s type theorem is nothing other than the following Hardy
type theorem.

Corollary 6.3 (Hardy’s type). Suppose a measurable function f : R — C satisfies

—alx? e—glxl
1 M____— R H1
fl < (1 + |x) NS Yx€R, (H1)
Za(HD s ™ vaec, (H2)

where a, b are positive constants, and M is a nonnegative integer.

1) Foro >0, ifab > }L, then f = 0 almost everywhere.
2) For o =0, we have:
() If ab > %, then f = 0 almost everywhere.

(1) Ifab = %, then f(x) is, up to some constant, the heat kernel h(b, x).

Remark 6.4. Foro > 0, if ab < %, then there exist infinitely many linearly independent
functions satisfying (H1) and (H2). Indeed, for any r satisfying b < r < -+, the heat

4a’
kernel h(r, x) meets the conditions (H1) and (H2).

We close this section by a generalization of the Hardy type uncertainty principle,
where the uniform conditions are replaced by integrability conditions.

Theorem 6.5 (Cowling-Price’s type). Let f € L*(R, A(x)dx) and assume that for posi-
tive real numbers a, b and nonnegative integers Ny, N,,

|f(X)| ealxlz texl(l—]—g)B(x)%(l—]—g))ﬁ
A(x)d , CP1
fR( (1 + )Y (o < e (D
|7 Q)| PLN
f ( ?l(j-?(MDNz ) E(1)dA < oo, (CP2)
R
where 1 < p,q < oo.
1) If ab > i then f(x) = 0 almost everywhere.
2) If ab = }L then
f(x) = Z AL hb,x)  n<N, - (2“; 2), 6.11)

k=0
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where ¢, are complex constants, and the subscript in AX(’)Xh(b, X) denotes the relevant
variable in the k-th power of the operator A, applied to the heat kernel h(b, x). In
particular:
(1) If N < {Q2a + 2)/g} then f = 0 almost everywhere.
1) If{Ra+2)/g} < N, < {QRa + 2)/g} + 1 then f(x) = co h(b, x), with:
(a) Forpo >0, cy=0.
(b) For o = 0, ¢y is an arbitrary constant whenever Ny > {(2a + 2)/p}, other-
wise ¢o = 0.

Remark 6.6. (1) We pin down that when p = § = oo, the Cowling-Price type theo-
rem implies the Corollary 6.3.

(2) For o > 0, ifab < %, then, for any Ny, N,, there exist infinitely many linearly

independent functions satisfying (CP1) and (CP2). Indeed, for any r satisfying

b<r< ﬁ, the heat kernel h(r, x) settles the conditions (CP1)) and (CP2) for any

Ni, N».

Proof of Theorem 6.5, Assume first that 1 < p,§ < oo. Denote by p’ and g’ the conju-
gates of p and g, respectively.

Using the condition (CP1) and the asymptotic behavior of A(x) for |x| large, we can
choose a suitable r; > 2a + 2 so that

alx?
f W™ dx
R

e
(1 + )7
1

If(x)l ealxlz e@lxl(l—%)B(x)%(l—%) P % —olx| |x|2a+1 '/B(x) =
= (fR( a + ™ ) A(x)dx) (fR a0+ ) dx) =

Similarly, by the condition (CP2) and the asymptotic behavior of §(1) for |1] large, we
can choose a suitable 1, > 2a + 2 so that

ZADI e f EAGOELRY j f I 7
DdA < A)da — E)dA
RO+ A"t =t = ( R( (1 +]aph ) S ) ( R(1+|/1|)r2§( ) )

< ©09.

For p = 1 and/or ¢ = 1 the above two inequalities are obvious.
Hence, for 1 < p,g§ < oo, the function f satisfies Gelfand-Shilov conditions (GS1)

and (GS2) with p = ¢ = 2, a = 25%, b = 2>, and N = max (Nl + }:—1,,N2 + }:—2/) Notice
p

q
that the condition ab > 1/4 becomes st > 1/4.

From Theorem 6.1, we get f = 0 almost everywhere for ab > 1/4, and when ab =
1/4,

FO) =Y aAYh(b,x)  n<N-Qa+2). (6.12)

k=0
Moreover, from the proof of Theorem 6.1/ we knew that .7, (f) is of the form .7, (f)(1) =
O(D)e " where Q is a polynomial of degree n. Thus, in view of the condition (CP2),
we get the additional condition n < N, —{(2a+2)/g}, otherwise f = 0 almost everywhere
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is the only accommodate function in the inequality (CP2). In conclusion, the integer n
in (6.12)) should satisfy n < N, — {(2a + 2)/g} (which is < N — 2a + 2)). In particular,
if {2a +2)/q} < Ny < {Qa + 2)/g} + 1 then f(x) = coh(b, x) for some ¢, € C.
By considering the asymptotic expression (6.10) of the heat kernel, it follows that for
o > 0 we should have ¢, = 0, otherwise the condition (CP1) does not hold. For o = 0,
using again the asymptotic expression of the heat kernel, we deduce that (b, x) cannot
satisfy the condition (CP1) unless the constant ; in the condition (CP1)) verify N; >

{2a +2)/p}.
Now assume that p = co and/or § = oo. Let g(x) :=

[F (0] e e /B(x)

T+ D" . The condi-

tion (CP1) with p = co implies
alx? —olx] 2a+1 B
f N o < Nl ( f L (x)dx) < o0
r (1 + [x])Nr+n R (1 + |x])m
whenever r; > 2a + 2. Similarly, the condition (CP2) with § = co implies
LZa ()]
r (L + ANzt

whenever r, > 2a + 2. The statement for p = co and/or g = co now follows in a similar
fashion to what we used above for 1 < p, g < oo. |

E(D)dA < o0
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