N

N

Laguerre semigroup and Dunkl operators
Salem Ben Said, Toshiyuki Kobayashi, Bent Orsted

» To cite this version:

Salem Ben Said, Toshiyuki Kobayashi, Bent Orsted. Laguerre semigroup and Dunkl operators. Com-
positio Mathematica, 2012. hal-01282470

HAL Id: hal-01282470
https://hal.science/hal-01282470v1
Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01282470v1
https://hal.archives-ouvertes.fr

1

1.1.
1.2.
1.3.
1.4.

2

2.1.
2.2.

3

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

2000 Mathematics Subject Classification. Primary 33C52p8dary 22E46, 43A32, 44A15, 47D03.

LAGUERRE SEMIGROUP AND DUNKL OPERATORS
SALEM BEN SAID, TOSHIYUKI KOBAYASHI, AND BENT @RSTED

AsstracT. We construct a two-parameter family of actiang, of the Lie algebral(2, R) by
differential-diterence operators d&M \ {0}. Here,k is a multiplicity-function for the Dunkl
operators, an@ > 0 arises from the interpolation of the twf(2, R) actions on the Weil
representation o1 p(N, R) and the minimal unitary representation@fN + 1, 2). We prove
that this actionwy 4 lifts to a unitary representation of the universal coveoh& L(2, R), and
can even be extended to a holomorphic semigr@up In thek = 0 case, our semigroup
generalizes the Hermite semigroup studied by R. Have @) and the Laguerre semigroup
by the second author with G. Mana £ 1). One boundary value of our semigroQp, pro-
vides us with k, a)-generalized Fourier transform&y ,, which includes the Dunkl transform
% (a = 2) and a new unitary operato#i (a = 1), namely a Dunkl-Hankel transform. We
establish the inversion formula, and a generalization efRkancherel theorem, the Hecke
identity, the Bochner identity, and a Heisenberg uncetyaielation for #¢,. We also find
kernel functions foiQy o and %, for a = 1,2 in terms of Bessel functions and the Dunkl
intertwining operator.
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1. INTRODUCTION

The classical Fourier transform is one of the most basicabbjm analysis; it may be
understood as belonging to a one-parameter group of urogagators or.?(RN), and this
group may even be extended holomorphically to a semigrdwgHermite semigroupl (2)
generated by the self-adjoint operator ||x||?. This is a holomorphic semigroup of bounded
operators depending on a complex variabie the complex right half-plane, vid(z + w) =
[(2)1(w). The structure of this semigroup and its properties may beeagpgied without any
reference to representation theory, whereas the linK iselch as was revealed beautifully
by R. Howe [31] in connection with the Schrodinger modelra Weil representation.

Our primary aim of this article is to give a foundation of tref@rmation theory of the clas-
sical situation, by constructing a generalizati#, of the Fourier transform, and the holo-
morphic semigroup? »(2) with infinitesimal generatafx||>-2Ax — ||X||?, acting on a concrete
Hilbert space deformingi?(RN). HereA, is the Dunkl Laplacian (a ierential-diference
operator). We analyze these operatéig, and.%,(2) in the context of integral operators as
well as representation theory.

The deformation parameters in our setting consist of a @r@petea coming from the in-
terpolation of the minimal unitary representations of twfbetent reductive groups by keep-
ing smaller symmetries (seeidaram 1.4), and a parametércoming from Dunkl’s theory
of differential-diference operators associated to a finite Coxeter group;restirnensionN
and the complex variablemay be considered as a parameter of the theory.

We point out, that already deformations wkh= 0 are new and interpolate the minimal
representations of two reductive groupgn+ 1, 2)~ andMp(n, R). Notice that these unitary
representations are generated by the ‘unitary inversienatpr’ (= .%o, witha= 1,2, uptoa
scalar multiplication) together with an elementary actbthe maximal parabolic subgroups
(see40, Introduction]).
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This article establishes the foundation of these new opesatOur theorems ork(a)-
generalized Fourier transfornig , include:

— Plancherel and inversion formula (Theorems 5.1/and 5.3),
— Bochner-type theorem (Theorem 5.21),

— Heisenberg’s uncertainty relation (Theorem 5.29),

— exchange of multiplication andféirentiation (Theorem 5.6).

We think of the results and the methods here as opening jpatgiriteresting studies such
as:

— characterization of ‘Schwartz space’ and Paley—Wienaz thieorem,
— Strichartz estimates for Schrodinger and wave equations

— Brownian motions in a Weyl chamber (cf. [22]),

— analogues of Cfiiord analysis for the Dirac operator (cf. [50]),

working with deformations of classical operators.

In the diagram below we have summarized some of the defowmptioperties by indicat-
ing the limit behaviour of the holomorphic semigrof.(2); it is seen how various previous
integral transforms fit in our picture. In particular we dhtas special cases the Dunkl trans-
form 2 [12] (a = 2,z = ”7' andk arbitrary), the Hermite semigrougz) [20,[31] @ = 2,

k = 0 andz arbitrary), and the Laguerre semigroupl[38, 3 1, k = 0 andz arbitrary).
Our framework gives a new treatment even on the theory of thekDtransform.

The ‘boundary value’ of the holomorphic semigrag,(z) from Rez > 0 to the imaginary
axis gives rise to a one-parameter subgroup of unitary tqatarhe underlying idea may be
interpreted as a descendent of Sato’s hyperfunction tHedhand also that of the Gelfand—
Gindikin program|[23, 29, 48, 56] for unitary representai®f real reductive groups. The
specializationﬁk,a(%i) will be our (k, a)-generalized Fourier transfor#, , (up to a phase
factor), which reduces to the Fourier transforan= 2 andk = 0), the Dunkl transforny
(a = 2 andk arbitrary), and the Hankel transform € 1 andk = 0).

Yet another specialization is to také = 1. This very special case contains (after some
change of variables) the results on tifemodel of the highest weight representations of the
universal covering group @& L(2, R), which was obtained by B. Kostant [42] and R. Rad [49]
by lettingsl, act as diferential operators on the half-line (see Remark/3.32).

The secondary aim of this article is to contribute to the thebdspecial functions, in partic-
ular orthogonal polynomials; indeed we derive several ramiities, for example, thé(a)-
deformation of the classical Hecke identity (Corollary®.#&here the Gaussian function and
harmonic polynomials in the classical setting are replaesgectively with exp{%“xlla) and
polynomials annihilated by the Dunkl Laplacian. Anotheample is the identity (4.41),
which expresses an infinite sum of products of Bessel funstamd Gegenbauer functions as
a single Bessel function.

In the rest of the Introduction we describe a little more tbetents of this article.

In Sections 1.1 and 1.2, without any reference to representtheory, we discuss our
holomorphic semigrouf »(2) and k, a)-generalized Fourier transforn#g, , as a two-parameter
deformation of the classical objects, i.e. the Hermite geoip and the Euclidean Fourier
transform.
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In Section 1.3, we introduce the basic machinery of the prtess#icle, namely, to construct
triples of diferential-diference operators generating the Lie algebi@ld2, R), and see how
they are integrated to unitary representations of the usale€overing group.

One further aspect of our constructions is the link to midiomatary representations. For
the specific two parametera, k) = (1,0) and (20), we are really working with represen-
tations of much larger semisimple groups, and our defoonas interpolating the repre-
sentation spaces for the minimal representations of tfferéint groups. We highlight these
hidden symmetries in Section 1.4.

Let us also note that there is in our theory a natural appearahsome symmetries of
the double degeneration of the doubféree Hecke algebra (sometimes called thgonal
Cherednik algebrp see Section 5.6. Hege= 2 andk arbitrary, and in particular, we recover
the Dunkl transform.

(k, a)-generalized Fourier transfori# ,

[Z—» ”7'

(k, @)-generalized Laguerre semigroufa (2

a—1l

H2(2) H1(2
Z—>”7i/ N—@ k—:y X 2
Dunkl transform% | |Hermite semigroup(z)| | Laguerre semigroup i
[10] [20,/31] [39] (seel(5.1))
k—:\‘ \/Z—»%' Z—»%i\‘ \/k—»O
| Fourier transform | Hankel transfornh

< ‘unitary inversion operator=

the Weil representation of the minimal representation of
the metaplectic grouM p(N, R) the conformal grou®(N + 1, 2)

Diagram 1. Special values of holomorphic semigro#a(2)

1.1. Holomorphic semigroup % a(2) with two parameters k and a.
Dunkl operators are ferential-diference operators associated to a finite reflection group on
the Euclidean space. They were introduced by C. Dunkl [1@lis Bubject was motivated
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partly from harmonic analysis on the tangent space of thenRimian symmetric spaces, and
resulted in a new theory of non-commutative harmonic amaflygthout Lie groups’. The
Dunkl operators are also used as a tool for investigatindgabeaic integrability property
for the Calogero—Moser quantum problem related to rooesysi25]. We refer td [15] for
the up-to-date survey on various applications of Dunk| afues.

Our holomorphic semigroup»(2) is built on Dunkl operators. To fix notation, €t
be the Coxeter group associated with a root syst&ém RN. For aG-invariant real function
k = (k,) (multiplicity functior) onZ, we write A, for the Dunkl Laplacian oM (see/(2.10)).

We takea > 0 to be a deformation parameter, and introduce the followdifigrential-
difference operator

Aa = IXIP2 A = (1M, (1.1)
Here,||x|| is the norm of the coordinatec RN, and||x||? in the right-hand side of the formula
stands for the multiplication operator fj)||*. Then, Ay, iS a symmetric operator on the
Hilbert spacel2(RN, 9y o(X)dX) consisting of square integrable functions &t against the
measure o(X)dx, where the density functiofy o(X) onRN is given by

Bca() = X172 | | Ke, 1% (1.2)
€A
Thendya(X) has a degree of homogened#ty- 2 + 2(k), where(k) := % > eez Ko 1S the index
of k = (k,) (seel(2.3)).
The K, a)-generalized Laguerre semigroupy.(2) is defined to be the semigroup with
infinitesimal generatogAk,a, that is,

Ha(2 = exg(g Ak,a), (1.3)

forze Csuchthat Re > 0. (Later, we shall use the notatiofy »(2) = Qka(yz), in connection
with the Gelfand—Gindikin program.)

In the casea = 2 andk = 0, the densitydy ,(X) reduces tady»(x) = 1 and we recover the
classical setting where

N
82
Aop= ) —~—
; ox; 4
H0.2(2) = the Hermite semigroup(z) ([20,31]).
In this article, we shall deal with a positiaeand a non-negative multiplicity functidofor

simplicity, though some of our results still hold for “sligyrnegative” multiplicity functions
(see Remark 2.3). We begin with:

2
X

N
, the Hermite operator ob?(R"),
=1

Theorem A (see Corollary 3.22)Suppose & 0 and a non-negative multiplicity function k
satisfy a+ 2(k) + N — 2 > 0. Then,

1) Aa extends to a self-adjoint operator 0R(RN, 9y a(X)dX).
2) There is no continuous spectrum/Af,.
3) All the discrete spectra are negative.

We also find all the discrete spectra explicitly in Coroll8r22.
Turning to the k, a)-generalized Laguerre semigroufa»(2) (see!(1.3)), we shall prove:
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Theorem B (see Theorem 3.39Retain the assumptions of Theorem A.
1) Aa(2) is a holomorphic semigroup in the complex right-half pldgne C : Rez > 0} in
the sense tha¥i ,(2) is a Hilbert—Schmidt operator on?(RN, 9, o(X)dx) satisfying
Hka(a) 0 Halz) = Halza + ), (Rez,Rez > 0),
and that the scalar produdt#(2)f, g) is a holomorphic function of z fdrez > O, for
any f ge L2(RN, 9 a(X)dX).
2) 4a(2) is a one-parameter group of unitary operators on the imagjrexisRez = 0.

In Section 4.3, we shall introduce a real analytic functié(b, v; w; cosy) in four variables
defined or{(b, v,w, ¢) €e R, xRxCxR/27Z : 1+ bv > 0}. The special values &at= 1,2 are
given by

I (Lv;w;t) = e", (1.4)

o 1—  w(l+t)?
/(Z,V, W, t) = F(V + E)IV_%(T)
Here,ﬂ(z) = (g)‘ilﬁ(z) is the (normalized) modified Bessel function of the firstk{simply,
I-Bessel function). We notice that these are positive-\cafuactions oft if w € R.

We then define the following continuous functiontafn the interval £1, 1] with parame-
tersr,s>0andze {ze C| Rez> 0} \ inZ by

exp( - 3(r* + s*) coth?)) (g 20 +N-2_ 2(rs)f )
Sinh(z)72<k>+';‘+a_2 a’ 2 "asinh@)’ )’

where(k) = 3 3. k. (seel(2.3)).

For a functionh(t) of one variable, let\(ch)(x,y) be ak-deformation of the function
h({x,y)) on RN x RN. (This k-deformation is defined by using the Dunkl intertwining op-
eratorVy, seel(2.6)).

In the polar coordinates = rw andy = sy, we set

Axa(% ¥; 2) = Vidhia(r, S, Z ), 7).
Fora > 0 and a non-negative multiplicity functidq we introduce the following normal-
ization constant

(1.5)

hea(r, sz t) =

= ([ | exp(—gnxna) Bia(9d9) (L6)

The constanty , can be expressed in terms of the gamma function owing to thike yoSel-
berg, Macdonald, Heckman, Opdam|[47], and others (see i8] for a uniform proof).
Here is an integration formula of the holomorphic semigrotp(2).

Theorem C(see Theorem 4.235uppose & 0and k is a non-negative multiplicity function.
Supposdrez > 0 and z¢ inZ. Then,.#%4(2) = expEAka) is given by

A1) = Gea [ | TOMAa06Y: Dal)ly. 1.7)

The formulal(1.7) generalizes the= O case; see Kobayashi—-Mano|[39] fard) = (0, 1),
and the Mehler kernel formula in Folland [20] or Howe [31] {era) = (O, 2).
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1.2. K a)-generalized Fourier transforms %y ,.

As we mentioned in Theorem B 2), the ‘boundary value’ of the)-generalized Laguerre
semigroup#a(2) on the imaginary axis gives a one-parameter family of upitgperators.
The case = 0 gives the identity operator, namelyi ,(0) = id. The particularly interesting
case is whez = 7, and we set

Fra = cfka(”—i) = cexr(%(||x||2—aAk L)

2(ky+N+a-2

by multiplying the phase factar = €2 a ) (see((5.2)). Then, the unitary operaty ,
for general andk satisfies the following significant properties:

Theorem D (see Proposition 3.35 and Theorem 5.8yppose & 0 and k is a non-negative
multiplicity function such that a 2(k) + N - 2 > 0.
1) Zais a unitary operator on (RN, 9y o(X)dX).
2) FaoE=—-(E+N+2(K)+a-2)o Fa.
Here, E= YL, x;0;.
3) Fkao X = =X *Ax © Fya,
Fa o (IXP2AK) = =X o Fia.
4) Zais of finite order if and only if & Q. Its order is2p if a is of the form a= ‘—; where p
and g are positive integers that are relatively prime.

We call %, a (k, a)-generalized Fourier transformn RN. We note that%, , reduces to
the Euclidean Fourier transfor# if k = 0 anda = 2; to the Hankel transform K = 0 and
a = 1; to the Dunkl transforn¥ introduced by C. Dunkl himself in [12] i > 0 anda = 2.

Fora = 2, our expressions o¥#; , amount to:

pusl I .
F =e% expﬂz(A — IXI%) (Fourier transform)

i +N)

De=€ * exp%l(Ak — IXI) (Dunkl transform)

Fora =1 andk = 0, the unitary operator
7i(N-1) 7l
For=e€"% exp(5IMI(A - 1))
arises as thanitary inversion operatoof the Schrodinger model of the minimal representa-
tion of the conformal grou@(N+1, 2) (seel|38, 39]). Its Dunkl analogue, namely, the unitary
operator% , for a = 1 andk > 0 seems also interesting, however, it has never appeared in t
literature, to the best of our knowledge. The integral repn¢ation of this unitary operator,

i i i
Z7) = A5(&K+N-1) - _
5) = €X D exp ZIIXI(A - 1),

is given in terms of the Dunkl intertwining operator and thesBel function due to the closed
formula of # (b, v; w; t) atb = 2 (seel(1.5)).

On the other hand, our methods can be applied to gekexatla in finding some basic
properties of thel(, a)-generalized Fourier transfort#, , such as the inversion formula,
the Plancherel theorem, the Hecke identity (Corollary .2 Bochner identity (Theorem
5.21), and the following Heisenberg inequality (Theore@b.

I = Fra = ei7_2r(2<k>+'\‘_1)fk1(
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Theorem E (Heisenberg type inequality).et|| |x denote by the norm on the Hilbert space
L2(RN, 9 a(X)dx). Then,

M et Zeat )] = ZONERZ2Z g0
| Il I >

for any f € L2(RN, 9 a(X)dX). The equality holds if and only if f is a scalar multiple of
exp(c||x||?) for some ¢ 0.

This inequality was previously proved by Rosler|[52] andn&mo [55] for thea = 2
case (i.e. the Dunkl transforiy). In physics terms we may think of the function where the
equality holds in Theorem!/E as a ground state; indeed ahero = 1,N = 3, andk =0 itis
exactly the wave function for the Hydrogen atom with the lstxenergy.

1.3. sl,-triple of di fferential-difference operators.
Over the last several decades, various works have beerspabllthat develop applications
of the representation theory of the special linear gi8WfP, R). We mention particularly the
books of Langl[48] and Howe—Tan [32], and the research pagevergne [60] and Howe
[30]. These and other contributions show how the symmetries can dfer new perspec-
tives on familiar topics from inside and outside represwmatheory (character formulas,
ergodic theory, Fourier analysis, the Laplace equatian).et
The basic tool for the present article is also 8k theory. We construct asl,-triple of
differential-diference operators with two parametkranda, and then apply representation
theory ofS (2, R), the universal covering group &L(2, R). The resulting representation is
a discretely decomposable unitary representation in theesef [36], which depends contin-
uously on parameteesandk.
To be more precise, we introduce the followingeiential-diference operators @ \ {0}
by
+ . i a - . i 2-a . N
Biat= NP Egai= IXPA Heas 21]

N+2(k)+a 2

With these operators, we have

alAya = i (B, — B
The main point here is that our operattw, can be interpreted in the framework of the
(infinite dimensional) representation of the Lie algedi(a, R):

Lemma F (see Theorern 3.2)The dfferential-dfference operator§tya, E; ,, E, .} form an
slo-triple for any multiplicity-function k and any non-zerormaplex number a.

In other words, taking a basis (2, R) as

e+_01 e__OO h_10
~\0 0)° ~\1 0) —\0 -1)°
we get a Lie algebra representatiop, of g = sl(2,R) with continuous parameteksanda

on functions orRN by mapping

hi- Hea, € —E;,, € —=E..
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The main result of Sectian 3 is to prove that the represamtaij , of sl(2, R) lifts to the
universal covering group (2, R):

Theorem G (see Theorem 3.30)f a > 0 and k is a non-negative multiplicity function
such that a+ 2(k) + N — 2 > 0, thenwya, lifts to a unitary representation o L(2,R) on
L2(RN, 9 o(X)d X).

Theorem G fits nicely into the framework of discretely decosgble unitary represen-
tations [36,37]. In fact, we see in Theorem 3.31 that the éttlispace (RN, ¥ o(X)dX)
decomposes discretely as a direct sum of unitary repressmgaf the direct product group
€ x SUZR):

2m+ 2(k) + N —2)

. (1.8)

LR, a9y = D7 ANEY) g, @
m=0
where,™(RN) stands for the representation of the Coxeter gi®op the eigenspace of the
Dunkl Laplacian (the space of spherigaharmonics of degrem) andn(v) is an irreducible
unitary lowest weight representation®L(Z, R) of weighty + 1 (see Fact 3.27). The unitary
isomorphism((1.8) is constructed explicitly by using Lagagolynomials.

For generalN > 2, the right-hand side of (1.8) is an infinite sum. Féor= 1, (1.8) is
reduced to the sum of two terms & 0, 1).

The unitary representation 8fL(2, R) on L2(RN, 9, .(X)dX) extends furthermore to a holo-
morphic semigroup of a complex three dimensional semig(seg Section 3.8). Basic prop-
erties of the holomorphic semigroufx o(2) defined in/(1.3) and the unitary operat@g , can
be read from the ‘dictionary’ ofl(2, R) as follows:

0 1 1
_1 “— aAKa

0
-1

_ z
expiz «— Fka(?) = exp( Aca)

= O O

Wo = expg 2 | e« Za (up to the phase factor)

o

Ad(Wo)e" = & «— Fia o IXI = —lIXI**AcFia
Ad(Wo)e™ = € «— Fia o IXIF2Ak = —IIXIP Fica.

1.4. Hidden symmetries fora = 1 and 2.
As we have seen in Section 1.1, one of the reasons that we fiedpdicit formula for the
holomorphic semigroup? .(2) (and for the unitary operato#y,) (see Section 1.1) is that
there are large ‘*hidden symmetries’ on the Hilbert spacenvehe 1 or 2.

We recall that our analysis is based on the fact that the Hitpacel (RN, 9y a(X)dX) has
a symmetry of the direct product gro@px S (2, R) for all k anda. It turns out that this
symmetry becomes larger for special valuek ahda. In this subsection, we discuss these
hidden symmetries.

First, in the casé&k = 0, the Dunkl Laplaciamy becomes the Euclidean Laplacian
and consequently, not only the Coxeter gréuput also the whole orthogonal gro@(N)
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commutes with\, = A. Therefore, the Hilbert spatg(RN, 9 4(X)dx) is acted on byD(N) x
SL(Z,R). Namely, it has a larger symmetry
€xSLZR) c O(N) x SLZR).
Next, we observe that the Lie algebra of the direct produstigO(N) x S [(2,R) may be

seen as a subalgebra of twdtdrent reductive Lie algebras(N, R) ando(N + 1, 2):

o(N) @ sl(2,R) ~ o(N) ®0(1,2) c o(N + 1,2)

o(N) @ sl(2,R) ~ o(N) & sp(1,R) c sp(N, R)
It turns out that they are the hidden symmetries of the HilbpaceL?(RN, ¥a(X)dx) for
a = 1,2, respectively. To be more precise, the conformal gro(ig + 1, 2), (or its double
covering group ifN is even) acts om?(RN, 991 (X)dX) = L2(RN, |[x||"tdx) as an irreducible
unitary representation, while the metaplectic gratip(N, R) (the double covering group of
the symplectic group(N, R)) acts onL2(RN, ¥5,(X)dX) = L(RN, dX) as a unitary represen-
tation.

In summary, we are dealing with the symmetries of the Hillspacel2(RN, 9y a(X)dX)
described below:

O(N + 1,2)
/i‘—> 1
k—0

€x SLZR)| — |O(N) x SLZ,R)

(k, a: general) \;‘1—> 2

Diacram 1.4. Hidden symmetries in?(RN, 9y a(X)dX)

Fora = 2, this unitary representation is nothing but the Weil reprgation, sometimes
referred to as the Segal-Shale—Weil representation, thapheetic representation, or the
oscillator representation, and its realizationld(R") is called the Schrodinger model.

Fora = 1, the unitary representation of the conformal groupLé(RN, ||x/|1dX) is irre-
ducible and has a similar nature to the Weil representafidre similarity is illustrated by
the fact that both of these unitary representations areimahrepresentations’, i.e., their an-
nihilator of the infinitesimal representations are the pbddeal of the universal enveloping
algebras, and in particular, they attain the minimum ofrtaglfand—Kirillov dimensions.

In this sense, our continuous parameter O interpolates two minimal representations of
different reductive groups by keeping smaller symmetriestfieerepresentations @i(N) x
SLZR)). The k, a)-generalized Fourier transfort#, , plays a special role in the global
formula of theL?-model of minimal representations. In fact, the conformalugp O(N +
1,2) is generated by a maximal parabolic subgroup (essentib# dine conformal group
for the Minkowski spac&k™?) and the inversion elemeni,,;», = diag(1...,1,-1,-1).
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Likewise, the metaplectic grouM p(N,R) is generated by the Siegel parabolic subgroup
and the conformal inversion element. Since the maximalqudi@subgroup acts on tHe-
model on the minimal representation, we can obtain the ¢fiobanula of the whole group
if we determine the action of the inversion element. For thesl Vépresentation, this crucial
action is nothing but the Euclidean Fourier transform (upht® phase factor), and it is the
Hankel transform for the minimal representation of the comfal groupO(N+1, 2) (seell[33],
see alsd [40, Introduction] for some perspectives of thisddiion in a more general setting).
A part of the results here has been announced in [3] withadfpr

Notation N ={0,1,2,...}, N, ={1,2,3,...}, R, = {x€e R | x> 0}, andR,g = {t e R :
t>0}.

2. PRELIMINARY RESULTS ON DUNKL OPERATORS

2.1. Dunkl operators.
Let (-,-) be the standard Euclidean scalar produ@t We shall use the same notation for
its bilinear extension t&N x CN. For x € RN, denote by|x|| = (x, X)/2.

Fora € RN\ {0}, we writer,, for the reflection with respect to the hyperplang* orthog-
onal toa defined by
(@, X)
a2
We say a finite se#Z in RN \ {0} is a (reducedjoot systenif:

(R1) r (%) = % for all @ € #,
(R2) ZNRa = {zxa}forall a € Z.

In this article, we do not impose crystallographic condii@n the roots, and do not require
thatZ spansRN. However, we shall assuni is reduced, namely, (R2) is satisfied.

The subgroupf ¢ O(N,R) generated by the reflectiofs, | @ € #} is called the finite
Coxeter group associated with. The Weyl groups such as the symmetric gragypfor the
type Ay_1 root system and the hyperoctahedral group for the Bpeoot system are typical
examples. In additiorls, H, (icosahedral groups) arig(n) (symmetry group of the regular
n-gon) are also the Coxeter groups. We refer to [27] for motaildeon the theory of Coxeter
groups.

ro(X) := x—2 x e RN.

Definition 2.1. A multiplicity function for€ is a function k: % — C which is constant on
C-orbits.

Settingk, := k(a) for a € #Z, we havek,, = k, for all h € € from definition. We sax is
non-negative ik, > 0 for all « € #. TheC-vector space of multiplicity functions off is
denoted by#". The dimension of#” is equal to the number @-orbits in%.

For¢é € CN andk € ., Dunkl [10] introduced a family of first order fierential-diference
operatorsT¢(k) (Dunkl’'s operator$ by

Te(Rf () 1= 0509+ > ki, &)

acRt

Hered, denotes the directional derivative corresponding.t®hanks to thet-invariance of
the multiplicity function, this definition is independerittbe choice of the positive subsystem

f(X) = f(ryx)

1 N
o e 2.1)
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Z*. The operatorsT,(k) are homogeneous of degred. Moreover, the Dunkl operators
satisfy the following properties (see [10]):
(D1) L(h) o T¢(k) o L(h)™ = Tre(K) forall h € €,
(D2) TAK)T,(K) = T,(K)T:(K) for all &, € RN,
(D3) TAK)[fg] = gT«K)f + fT(kgif f andg are inC*(R") and at least one of them is
C-invariant.

Here, we denote bl(h) the left regular action dfi € € on the function space diV:
(L(h)f)(x) := f(h™t- x).

Remark 2.2. The Dunkl operators arise as the radial part of the Laplac@nthe tangent
space of a Riemannian symmetric spacesglbet a real semisimple Lie algebra with Cartan
decompositiony = t & p. We take a maximal abelian subspacm p, and letZ(g, a) be the
set of restricted roots, and jithe multiplicity ofa € X(g, a). We may considekE(g, a) to
be a subset of by means of the Killing form of. The Killing form endows with a flat
Riemannian symmetric space structure, and we wjtéor the (Euclidean) Laplacian op.
PutZ = 2X(g,a) and k, := % 2 pesnra M. We note that the root systesis not necessarily
reduced. Then the radial part @f,, denoted by R&@d,), (se€26, Proposition 3.13]is given
by

RadA,)f = Agf
for everyC-invariant function fe C*(a), whereAy is the Dunkl Laplacian which will be
defined in(2.10)

Remark 2.3. Some of our results still hold for “slightly-negative” migticity functions. For
instance, when k= k for all @ € #, we may relax the assumptionXk 0 by k > —dnfax
where @ is the largest fundamental degree of the Coxeter gfdgee[18, Theorem 3.1)]
However, for simplicity, we will restrict ourselves to noagative multiplicity functions k

(Ke)aez-

Let 9 be the weight function oRN defined by
I(X) = ]—[ Ka, )%,  xeRM, (2.2)
aER*

It is C-invariant and homogeneous of degre&)2where the indexk) of the multiplicity

functionk is defined as 1
Ky .= == . 2.
(k) Z/; k=5 Z; Ky (2:3)
Letdxbe the Lebesgue measureRMwith respect to the inner product ). Then the Dunkl
operators are skew-symmetric with respect to the meatyrdx (see [10]). In particular,
if f andg are diferentiable and one of them has compact support, then

[ T n0a098x= - [ 109(T090092 e (2.9

It is shown in [11] that for any non-negative root multipticfunctionk there is a unique
linear isomorphisnV, (Dunkl’s intertwining operatoy on the space?(RN) of polynomial
functions onRN such that:
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(11) Vi(Zn(RN)) = Z,(RN) for allme N,

(12) Vigzy@yy = id,

(13) T(K)Vk = Vi, for all ¢ € RN,
Here, Z,(RN) denotes the space of homogeneous polynomials of degriés known that
V, induces a homeomorphism 6{RN) and also that o€=(RN) (cf. [59]). See alsa [17] for
more results oV for C-valued multiplicity functions oiiz.

For arbitrary finite reflection grou, and for any non-negative multiplicity functidk
Rosler [51] proved that there exists a unique positive Rggimbability-measurgX on RN
such that

Wi = [ i) (2.5)

The measurgX depends orx € RN and its support is contained in the b&{|x|) := {¢ €
RN | |€]] < [IXI]}. Moreover, for any Borel s€8 c RN, g € € andr > 0, the following invariant
property holds:

:ul)(((s) = /Jléx(gs) = /Jll,(x(l’S),
In view of the Laplace type representation (2.5), Dunkl®ertwining operatoN, can be
extended to a larger class of spaces. For exampld tinote the closed unit ball RN,
Then the support property pf leads us to the following:

Lemma 2.4. For any R> 0, V induces a continuous endomorphism ¢B(R)).

Proof. Let f € C(B(R)). We extendf to be a continuous functiofi onRN. Then,Vif is
given by the integral

V() = f O,

Suppose now € B(R). Then SuppX ¢ B(|IX[) ¢ B(R). Hence, (/kf)|B(R) is determined by
the restrictionf = f|B(R) Thus, the correspondende— (ka)lg(R) is well-defined, and we
get an induced linear may: C(B(R)) — C(B(R)), by using the same letter.

Next, suppose a sequentec C(B(R)) converges uniformly td € C(B(R)) aSJ — 00.

Then we can exten] to a continuous functlorh onRN such thatf converges td on every
compact set oiRN. Hencerf converges tc)/kf, and so doe¥, f; to Vi f. O

For a continuous functioh(t) of one variable, we set

hy() :=h(¢.y) (yeR"Y),
and define

W) = ()09 = [ hieyausce) 26)

Then, ¥kh)(x,y) is a continuous function orx(y) € RN x RN.
We note that ik = 0 then

(Voh)(x.y) = h((x. y)).
If h(t) is defined only near the origin, we can still get a continutinstion (/ch)(x, y) as

far as|(x,y)| is suficiently small. To be more precise, we prepare the followirgppsition
for later purpose. For simplicity, we writ@ for the unit ballB(1) in RN.
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Proposition 2.5. Suppose (t) is a continuous function on the closed inter{ral, 1]. Then,
(Vkh)(x, y) is a continuous function on B B. Further,Vh satisfies

IVihllLe@x) < IhllLe-11) (2.7)
Vi) (%, y) = (Vi) (¥, X). (2.8)

Proof. Vl/e~extendh to a continuous functioh on R. It follows from Lemma 2.4£hat the
values Yih)(x, y) for (x,y) satisfyingl(x, y)| < 1 are determined by the restrictibnr= hj_ 1.
Hence,

Vh)(xy) == (Vih)(xy), (xy)€BxB
is well-defined.

SinceuX is a probability measure, we get an upper estimate (2.7) fhenintegral expres-
sion (2.6).

By the Weierstrass theorem, we can find a sequence of polg®mit) (j = 1,2,...)
such thah;(t) converges tdi(t) uniformly on any compact set &. Then,Vh; converges to
Vih uniformly onB x B. Thanks tol[11, Proposition 3.2], we haw&lg;)(x, y) = (Vih;)(y. X).
Taking the limit asj tends to infinity, we get the equation (2.8). Hence, Propmsi2.5 is
proved. O

Aside from the development of the general theory of the Durddsform, we note that
explicit formulas forVi have been known for only a few cases:= Z), € = S;, and the
equal parameter case for the Weyl grouBefsee [15] for the recent survey by C. Dunkl).

2.2. The Dunkl Laplacian.

Let{&, ..., &n) be an orthonormal basis d&¥, (-, -)). For thej-th basis vectog;, we will use
the abbreviatiof,, (k) = T;(k). The Dunkl-Laplace operator, or simply, the Dunkl Laplagian
is defined as

N
Ay = Z T;(K)?. (2.9)
=1
The definition ofA, is independent of the choice of an orthonormal basighofIn fact, it is
proved in [10] thatAy is expressed as

(2.10)

AF(X) = AF(X) + Z ka{w _ ||6¥|IZM},
aER*

(@, %) (@, X)?
whereV denotes the usual gradient operator.
Fork = 0, the Dunkl-Laplace operata reduces to the Euclidean Laplacianwhich

commutes with the action dD(N). For generak, it follows from (D1) and [(2.9) than
commutes with the action of the Coxeter graup.e.

L(h) o Ago L(h)™ = A,, Vhe G, (2.11)

Definition 2.6. A k-harmonic polynomial of degree (m € N) is a homogeneous polynomial
p onRN of degree m such that,p = O.
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Denote by "(R") the space ok-harmonic polynomials of degre®. It is naturally a
representation space of the Coxeter gr@up
Let do be the standard measure 81, 9, the density given in (212), and} the normal-
izing constant defined by
-1
dh = ( f H(w)do(w)) .
SN-1
We write L2(SN-1, 9 (w)do(w)) for the Hilbert space with the following inner product Y
given by

(2.12)

(oni= [ T o)
Sh-

Fork = 0, d.* is the volume of the unit sphere, namely,
_Ie)

22
Thanks to Selberg, Mehta, Macdonald![44], Heckman, Opdaffy ghd others, there is a
closed form ofd, in terms of Gamma functions whérs a non-negative multiplicity function
(see also[18]).

As in the classical spherical harmonics (i.e. khe 0 case), we have (s€€ [9, page 37]):
Fact 2.7.

1) " (RN)lsv1 (M= 0,1,2,...) are orthogonal to each other with respectto ).
2) The Hilbert space #(SN1, ¢ (w)do(w)) decomposes as a direct Hilbert sum:

do (2.13)

L2(SNL, dh(w)do(w)) = Z@ SN (RN)[gh-r. (2.14)
meN
We pin down some basic formulae &f. We write the Euler operator as
N
E = X0 (2.15)
j=1
Lemma 2.8. 1) The Dunkl Laplacian\y is of degree-2, namely,
[E, Ay] = —2A¢ (2.16)
2)
N
DTOGTHR) + Tik)x;) = N+ 2(k) + 2E. (2.17)

j=1
3) Suppose(r) is a C* function of one variable. Then we have
[Ai w(IXIM] = @%IXIP 297 (I417) + allXI* 2y (1PN + (k) + a~2) + 2E).  (2.18)

Proof. See[25, Theorem 3.3] for 1) and 2).
3) Take an arbitrarZ™ function f onRN. We recall from the definition (2.1) and (D3) that

Ti(Kg = 9,9, (2.19)
Ti(k(fg) = (T;(Kf)g+ f(9;9).



16 SALEM BEN SAD, TOSHIYUKI KOBAYASHI, AND BENT GRSTED

if gis aC-invariant function orRN. In particular,
T; () (IXI%) = axlIXI* 2y (IXI7),
Ti(R)(F OO IXI)) = (T30 T IXNIE) + ax; f (RIXE2 (1.
Using (D3) again, we get
Ti(Q2(FOuIXIP)) = (T;(K)*F (1N
+allX* 2y (I OG (TR F () + T ()(x; (X))
+af )X Ti(R)(IIXI*2 (I1X7)).-
Taking the summation ovgr we arrive at
A(FOIU (X)) = (A O IXIR) + allXIP 2y’ (IXIF)(2E + N + 2(k) £(X)
+af(YE(IXIP 2y (I1X%)-
Here, we have used the expression/(2.92\gf(2.17), and (2.19). Now, (2.18) follows from
the following observation: in the polar coordinate= rw, the Euler operatoE amounts to
r, andr(rd-2y/(r?)) = (a— 2)r* 2/ (r?) + ar®-2y”(r). O
To end this section, we consider &,‘4)-deformation’ of the classical formula
& o Ao e ™ = A+ 4)|X2 - 2N - 4E.
Lemma 2.9. For anyv € C and a# 0, we have
edlM o X177 3Ax 0 € a1 = |IX|Z2Ak + VAIXIR = v((N + (k) + a — 2) + 2E). (2.20)

Proof. The proof parallels to that of Lemma 2.8 3). By the propertB)Df the Dunkl
operators, we get

T;(K(e™"h(x)) = (T;(K)e"™"h(x) + ™" T, (kK)h(x).
Then, substituting the formula
T;(K)e™" = 9,e!M" = pax||x|>2eX",
we have
e X" 6 T;(K) o e h(x) = daxi|IXI[F2h(x) + T;(K)h(x). (2.21)
Iterating (2.21) and using
Ti(KIXI2 = (@~ 2)x;lIX[*,
we get
e—/l||X||a o TJ(k)Z o e(1||X||a — (/lan”XHa_z + TJ(k))Z
= P2a¢|IXIP 2 + AalXIF2(x Ty (K) + Tj(K)x;)
+ Aa(@— 2)x¢(IX** + T;(K)2.
Summing them up ovey, we have
N
e 0 Ao @M = A+ 2N + AaXP 2@ -2+ ) (G Ti(k) + Ti(k)x)  (2.22)

j=1
The substitution of (2.17) antl= -2 to (2.22) shows Lemma. |
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3. THE INFINITESIMAL REPRESENTATION Wy 5 OF sl(2, R)

3.1. sl, triple of di fferential-difference operators.
In this subsection, we construct a family of Lie algebraschtare isomorphic tel(2, R) in
the space of dierential-diference operators diN. This family is parametrized by a non-
zero complex numbex and a multiplicity functiork for the Coxeter group.

We take a basis for the Lie algebsi@2, R) as

.. (01 . (0 0 . (1 O
] 6
The triple{e’, ", h} satisfies the commutation relations

[e",e] =h, [h, e] = 2e", [h,e] = -2¢". (3.2)

Definition 3.1. An s, triple is a triple of non-zero elements in a Lie algebra sfyiisg the
same relation with{3.2).

We recall from Section 2 thaky is the Dunkl Laplacian associated with a multiplicity
function k on the root system, and thét) is the index defined in (2.3). For a non-zero
complex parametea, we introduce the following dierential-diference operators dii:

N+2<k>+a 2 ZZX@ (3.3)

i B i
By, = allxlla, Epa = allxll &, Hya =

The point of the definition is:

Theorem 3.2. The operatorEy , E, , andHya form ansl; triple for any complex number
a # 0 and any multiplicity function k.

Proof of Theorem 312The operatoig, , is homogeneous of degree andE, , is of degree
(2-a)—-2=-abylLemma2.31l). LeE = ZjN:l X;0; be the Euler operator as in (2/15).
SinceH is of the formZE + constant, the identityH o, Ef ] = +2E;, is now clear.

To see By, E, ] = Hka, We apply Lemma 2/8 3) to the functigrfr) = r. Then we get

Ao [IXI[2 = [IXI*Ak = a(N + (k) + a— 2)[IX|** + 2al|x||*"*E. (3.4)
Composing the multiplication operatix||>-3, we have
X272 A o [IXII2 = [IXI[?PAk = a(N + 2(k) + a— 2) + 2aE.

In view of the definition|(3.3), this meang],, E, ] = Ha.
Hence, Theorem 3.2 is proved. |

Remark 3.3. Theorem 3.2 for particular cases was previously known.

(1) Fora=2andk=0, {E;,a’ ke Hial is the classical harmonigl; triple {5 L11XI[2, 'A >+
3. %d;}. Thissl, triple was used in the analysis of the Schrodinger modeﬂlof\/t/ell
representation of the metaplectic group fNpR) (see Howd31]], Howe—Tar{32]).

(2) Fora= 2and k> 0, Theorem 3.2 was proved in Heckn2sl, Theorem 3.3]
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(3) Fora = 1and k= 0, {E{, E,,, Hya} is thesl; triple introduced in Kobayashi and
Mano[38,/39]where the authors studied thé-model of the minimal representation
of the double covering group of S + 1, 2). (To be more precise, the formulas in
[39] are given for thel, triple for {2E; %Ega, Hy o} in our notation.)

(4) For k = 0, the deformation parameter a was also considered in Md&j.
The diferential-diference operators (3.3) stabili@® (RN \ {0}), the space of (complex
valued) smooth functions dR \ {0}. Thus, for each non-zero complex numhbend each
multiplicity functionk on the root system, we can definetinear map

wia - SI(2,R) — EndC=(RN \ {0})) (3.5)

by setting
a)k,a(h) = Hya, wKa(e+) = E;,a’ wKa(e‘) = EE,a' (36)
Then, Theorern 3.2 implies tha , is a Lie algebra homomorphism.

We denote byJ(sl(2, C)) the universal enveloping algebra of the complex Lie atgeb
sl(2,C) =~ sl(2,R) ® C. Then, we can extend (3.5) toGalgebra homomorphism (by the
same symbol)

Wia : U(sI(2,C)) — EndC (RN \ {0})).

We use the letteL to denote by the left regular representation of the Coxataume on

C=(RN\ {0}).

Lemma 3.4. The two actions L of the Coxeter grolipand wy 5 of the Lie algebrasi(2,R)
commute.

Proof. Obviously,L(h) commutes with the multiplication operatf, = g||x||a. As we saw
in (2.11), L(h) commutes with the Dunkl Laplacian. Hence, it commutes algh E,_.

Finally, the commutation relatioff ,, E, ] = Hxa impliesL(h) o Hya = Hia o L(h). O
We consider the following unitary matrix
1 (- -1
C'_Tz(l i)‘ (3.7)

We set

0 -1/ \0 -1
another real form otl(2,C). Then, Ad€) induces a Lie algebra isomorphism (the Cayley
transform)

su(1,1) = {X € sl(2,C) : x*(l 0)+(1 O)X:O},

Ad(c) : sl(2,R) — su(l, 1).

We set
K :=Ad©h =i ((1) ‘01) - i—l(e+ _e), (3.8 a)
n* := Ad(c)e" = %(_‘1 __Il) = %(—h + Tle+ + Tle‘), (3.8 b)

n~ :=Ad(c)e = %(__'1 —Il) - i,(h + .—1e+ + i—le‘). (3.8¢)



LAGUERRE SEMIGROUP AND DUNKL OPERATORS 19

Correspondingly ta (3.8 a — c¢), the Cayley transform of therafors/(3.6) amounts to:

IXIP =X A 1

Hia 1= walk) = —— ——— = ~—Aca (3.92)
= 2E+ (N + 2(k —2) = IXIIP A — lIXI

Ef, = wa(n’) =i + (N + 2k + aza ) = IXIIF A — 11X ’ (3.9b)
~ — 2-a a

B, = wxaln) = -1 2E + (N + 2(k) + a2a2) + [IXIIT2AK + [IX] . (3.9¢)

Here,E = ZiN=1 X d; is the Euler operator.

Since Ad¢) gives a Lie algebra isomorphisifg; ,. E . Hca} also forms arel, triple of
differential-diference operators. Putting= +1 in Lemme. 2.9, we get another expression of
the triple{E; ,, By ,, Hya} as follows:

Lemma 3.5. LetE; ,, E,,, andHy, be as in(3.9 a, b, ¢) Then, we have:

foneg | X2 x|&

Bla= wia(N) = —5z€ % o [P Acoe =, (3.10 a)
—~ | >(al xa

Ba= wialN) = —5-€ + o[NP Ao e, (3.10b)
o X X 2—aA x|@

Bl = a) = &% o [fiy - o o (3.10¢)

1 e X2

=Zew o ((N+2() +a—2)+2E - X" 2Ac) o e .

3.2. Differential-difference operators in the polar coordinate.
In this subsection, we rewrite theffilirential-diference operators introduced in Section 3.1
by means of the polar coordinate.
We set
2m+ 2(ky + N — 2
a

We begin with the following lemma.

Lemma 3.6. Retain the notation of Section 2.2. For gdle C*(R,) and pe %m(RN), we
have

Hica( POQW X)) = {(kam + DX + 21XPy (X1} p(x), (3.12)
A PO IXIT)) = {8°(Akam + DIXIE2w (IMIF) + a2lXIP 2y (IXP) (). (3.13)

Proof. The first statement is straightforward because the EuleratqreE is of the formra‘—’r
in the polar coordinates = rw. To see the second statement, we apply (2.18)xp Since
Ep=mpandA¢p = 0, we get the desired formula (3/13). O

We consider the following linear operator:

Tka : C°(RY) ® C®(R,) = C¥(RN\ {0)), (p,%) —~ p(Yw(lIxI?) (3.14)
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Lemma 3.7. Via the linear map 1[5, the operatorsHy,, E;,, andE,, (see(3.3)) take the
following forms on/,"(R") ® C*(R.):

: d
Hyao Tka = Tkao© (Id ®(2ra + (Akam + 1))) (3.15 a)
Elao Tea = Tkao (id ®ér) (3.15 b)
o o
Eia © Tia = Tica © (id ®ai(r 55 + (kam + 15 )) (3.15¢c)
Proof. Clear from Lemma 3.6 and the definition (3.3)if,, Ey ,, andE, .. m

The point of Lemma 3/7 is that the operatélis, Ey,, andE, , act only on the radial part
¥ when applied to those functiomgxX)y ([|x||?) for p € J4™(RN).
Fora > 0, we define an endomorphism®©f(R.) by

U C*(R.) 5 C(R), o(t) = (Ua0)() 1= exp{—r)a(or).

Clearly, U, is invertible. Composing witi, (see ((3.14)), we define the following linear
operatorSy , by

Sk,a = Tk,a o (Ua ® Id)
Thatis,Sy, : C*(RN) ® C*(R,) — C*(RN \ {0}) is given by

Ska(P® 9)() = P(¥) exp(—guxna)g(gnxna). (3.16)

We set 5 g
Pia = dt2 + (Akam+ 1 - t)a. (3.17)
Here, A stands forly o m. Then Lemma 3.7 can be formulated as follows:

Lemma 3.8. Via the map R,, the operatordy,, E Ka, andE‘ take the following forms on
HIRN) @ C7(R,):

Hk,a o Sk,a = Ska id ®( + (/lKa,m +1- )))

°
°

Eica © Ska = Ska o (id®i(2P,, + % ~ Akam— 1)).

E;’a o SKa = Ska |d® t)

Proof. Immediate from Lemma 3.7 and the following relations:
U—loioua:g(g_l),

& dr aldt 2
a1 a
Ui oroU, :Et'

O

Similarly, by using (3.8 a—c), the actionslﬁpa, Ey o andE . (seel(3.9 a—c)) are given as
follows:
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Lemma 3.9. Let R, be as in(3.17) Then, through the linear map$ (see(3.16), ﬁ[k,a,
andE‘ take the following forms o, "(RN) ® C*(R.):

ka'

ﬁk,a o Sk’a = Sk’a ] (|d ®( - 2Pt,/1 + ﬂk’&m + 1)),

Eya© Ska = Skao (ide( —i(P, - tdﬂt +t= Aeam— 1))).

EE,a 0 Sya = Ska0 (id ®( (P” + t%)))

3.3. Laguerre polynomials revisited.
In this subsection, after a brief summary on the (classicadjuerre polynomials we give a
‘non- standard’ representation of them in terms of the omarpater group with infinitesimal
generatotOltz + A+ 1)dﬂt (see Proposition 3.11).

For a complex numbet € C such that Ra > -1, we WriteLy) for the Laguerre polyno-
mial defined by

W A+ (-0 (-1)T(A+¢+1) t
WO = LT Z( NINCESESNIA

Here, @) ;= a(@+1)---(a+ m-1) is the Pochhammer symbol.
We list some standard properties of Laguerre polynomiaswie shall use in this article.

Fact 3.10(see([1,86.5]). Suppos&en > —1.
1) Lgﬂ)(t) is the unique polynomial of degréesatisfying the Laguerre glerential equation

2
(t% +(a+1—t)dﬂt+f)f(t) =0 (3.18)
and
fO0) = (-1). (3.19)
2) (recurrence relation)
(¢ + tdﬂt —t+ 2+ LY = (¢ + LY (), (3.20 a)
d
(¢ - td—t)Lg”(t) = (¢ + YL (0. (3.20 b)
3) (orthogonality relation)
« _ rA+¢+1)
@ (1) D (H)tietdt =
fo L7 (L (Ht'e ™ dt = 6y 1) (3.21)
4) (generating function)
(L-r)y* lexp Z LO@re,  (rl < 1). (3.22)

5) {LE,”)(t) . ¢ € N} form an orthogonal basis in4(R,, t‘e™'dt) if A is real andA > —1.

Finally, we give a new representation of the Laguerre patyiah
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Theorem 3.11.For any c# 0Oand{ € N,
exp(—c(to'—2 +(1+ 1)5))#’ = (—¢)‘ 0! L“’(f). (3.23)
dt? dt ‘¢

Since the dierential operator
d? d
By '_t@+(ﬂ+1)d_t
is homogeneous of degred,, namely,B;, = cBy if X = ct, it is suficient to prove Theorem
3.11 in the case = 1. We shall give two dterent proofs for this.

Proof 1. We set

d d? d
A=t— - Bi=t— 1)—.
T ge T D
It follows from [A, B] = —B that
AB" = B"A-nB"

for all n € N by induction. Then, by the Taylor expansier? = 3>, QB”, we get

n:
Ae® =e®A+Be®.
Since At = 0, we get B — A)(e BtY) = 0, namely,e Bt’ solves the Laguerre fierential
equation/(3.18). On the other hamd®t’ is clearly a polynomial of with top termt’. In view
of (3.19), we have8t’ = (1)L (). O
Proof 2. A direct computation shows
Bt' = (4 + Ot
Therefore Bit = 0 for j > ¢ and

4

B = Z (-1t -1)---(€-j+ 1) J;'f)(/l+€— D@+ l-j+1)
j=0 '

Lo (LT + £+ 1)
N ng ((-KITA+k+1) k

= (:1)% LO().

Hence, Theorem 3.11 has been proved. O

3.4. Construction of an orthonormal basis in L2(RN, 9 a(X)dX).
We recall from[(1.2) and (2.2) that the weight functifp, onRN satisfies

Bca(¥) = INF2 | | Kew 0% = IXIF28(%).

acRt

Therefore, in the polar coordinatgs- rw (r > 0, w € SN-1), we have
Pa(X)dx = rZ0Na3g, (,)drdo(w), (3.24)
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wheredo(w) is the standard measure on the unit sphere. Accordinglyhave a unitary
isomorphism:
L2(SNL, 9y (w)dor(w)) ® LA(R,, rZ0+N+a=3dr) S L2(RN, 9y 2(X)dX), (3.25)
where® stands for the Hilbert completion of the tensor product spzfdawo Hilbert spaces.
Combining (3.25) with Fact 2.7, we get a direct sum decontjposof the Hilbert space:

Z®(%m(RN)|SN4) ® LA(R,, r20N+a3gr) 5 L2(RN, 9y 2(x)dX). (3.26)
meN
In this subsection, we demonstrate the irreducible decaitipo theorem of thel, repre-
sentation on (a dense subspacd 8RN, 9 o(X)dx) by using (3.25) and finding an orthogonal
basis for.2(R,, r&k+N+a-3qr),
For¢,me N andp € #™(R"), we introduce the following functions di":
P (p, ) = Scalp® L"), (3.27)

Here,Ska : C*(RN) ® C*(R,) — C*(RN\ {0}) is a linear operator defined in (3/1@).m =
L2m+2(ky+N - 2) (see((3.11)), ant!"(t) is the Laguerre polynomial. Hence, foE rw e
RN (r > 0, w € SNY), we have

2 1
@) _ (Akam)
O (p.X) = pOJL, " (ZIMF) exp~~IIXF) (3.28)

2 1
_ m (/ik,a.m) “ra _"ra
= p(w)r"L; (ar )ex;( ar )
We define the following vector space of functionskhby
Wia(RV) := C-spart®@@(p,) | € € N,me N, p e Z4"RY)). (3.29)

Proposition 3.12. Suppose k is a non-negative multiplicity function on the systeny? and
a > 0 such that

a+2ky+N-2>0. (3.30)
Let,smneN, pe "RY) and ge S (RN).

1) ®®(p,x) € CRN) N L2(RN, Sy a(X)dX).

2)
——— a%eml(Aam + € + 1)
0@ (p, X)OD (g, X) 9k a(X)AX = Smnd, =
J R O e eyl A9

3) Wia(RN) is a dense subspace of(RN, # o(X)d X).

P(w)q(w)dk(w)do ().

Remark 3.13. The special values of our functiod”(p, X) have been used in various set-
tings including:

a=2 see[l5, §3],

k=0, N=1 see[42],

k=0, a=1 see[39, §3.2].

Remark 3.14. The condition(3.30)is automatically satisfied for & 0 and a non-negative
multiplicity k if N > 2.
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Proof. Our assumption (3.30) implies
Akam > -1 foranyme N,

and thusd®(p, x) is continuous ak = 0. Therefore, it is a continuous function are RN
of exponential decay. On the other hand, we see from (3.24fhle measuré, ,(xX)dxis lo-
cally integrable under our assumptionsabandk. Therefore,CDE,a)(p, X) € L2(RN, ¥y a(X)dX).
Hence the first statement is proved.

To see the second and third statements, we rewrite thedefi-kide of the integral as

© 2 2 2 _
(Aam) (Aan) 2(ky+N+a-3
(fo Lk (ara)LsK (ara)exp(—ara)rmm* +N-+a dr)(fSNl P(w)A(@)d(w)do(w))

in the polar coordinatex = rw. Sincek-harmonic polynomials of dierent degrees are
orthogonal to each other (see Fact 2.7), the integration®Ve vanishes iim # n.
Suppose tham = n. By changing the variable := gra, we see that the first integration

amounts to
a/ik,a.m

f Liam) ) LEkam) (1) thame . (3.31)
0

21+ Akam
By the orthogonality relation (3.21), we get
atan(Agam+ € + 1)
2 am (€ + 1)

Hence, the second statement is proved. The third statemoows$ from the completeness
of the Laguerre polynomials (see Fact 3.10 4)). |

(3.31)= 6/s

We pin down the following proposition which is already ingalin the proof of Proposition
3.12:
Proposition 3.15. We fix me N, a > 0, and a multiplicity function k satisfying
2m+2ky+ N+a-2> 0.

We set
f(a)(r) — ( 2/1k,a.m+1r(€ + 1)
&m atkam[(Agqm + € + 1)
Then{f(r) : ¢ € N} forms an orthonormal basis ir?(R.,, rZk+N+a-3dr),

2 2 1
)1/ rmLyk’a*”‘)(ara) exp(—ar"") for £ € N. (3.32)

Remark 3.16. Let G, Cy, ... be a sequence of positive real numbers. Fix a parameter
0. Dunkl[14] proves that the only possible orthogonal sﬁl?’(cgr) exp(—%cgr)};‘;o for the
measure t*#dr onR,, withu > 0O, are the two cases () =0, ¢, = ¢coforall ¢; (2) u = 1,

_ a+l
Cr = Cogiorra-

For eachm € N, we take an orthonormal bagis™} ;, of the space’4™(RN)|sw-1. Propo-
sition'3.12 immediately yields the following statement.

Corollary 3.17. Suppose that & 0 and that the non-negative multiplicity function k satisfies
the inequality(3.30) For £,me N and je Jn,, we set

X
@ (%) := hgm)(M)fé?%(HxH).
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@) i is oR(RN
Then, the se{td)mj | € e N,meN, j € Jn forms an orthonormal basis of(R", J a(X)dX).

Remark 3.18. A basis ofs,"(R") is constructed iff16, Corollary 5.1.13]

3.5. s, representation onL2(RN, 9y 4(X)dX).

Now we are ready to exhibit the action of tke triple {k,n*,n"} on the basisi)ﬁ,a)(p, )
(see (3.8 a—c) and (3.28) for the definitions). We recall f(88 a—c) thaﬁ[Ka = wyal(k),
Ey ., = wka(n), andE, , = wya(N).

Theorem 3.19.Let W ,(RN) be the dense subspace GH{RN, Jy ,(X)dX) defined in(3.29)
Then, W,(RN) is stable under the action ofi(2, C). More precisely, for each fixed p
J6M(RN), the actionwy, (see(3.S a—c) is given as follows:

wka(K)PP (P, X) = (20 + Aam + D)OP(p, %), (3.33a)
wka(NMOP(p, x) = i(¢ + 1)0P (p, X), (3.33b)
wka()PP(P, X) = i(€ + Aam) @, (p, X), (3.33¢)

whered®(p, x) is defined in(3.28)and Axam = (2m+ 2(k) + N — 2)/a (see(3.11). We have
used the conventioh® = 0.

Theorem 3.19 may be visualized by the diagram below. We sgéaheach fixed, a, and
p € A, "(RN), the operatorsy,(n*) andwy 2(n") act asraisinglowering operators

Diagram 3.5.

Here, the dots representy,(k) eigenvectorsbga)(p, X) arranged by increasingya(k)
eigenvalues, from left to right.

Proof of Theorem 3.1.9For simplicity, we use the notatid? , = tg—tzz + (Aam+1- t)dﬂt asin

(3.17), wherel stands forly 5 . By the formulad®@(p, ) = Sia(p® LYY) (see(3.27)) and by
Lemma 3.9, it is sfiicient to prove

(2P + (A + DLW = 20+ 2+ 1LY, (3.34a)
(-i(P,y - tdﬂt +t=-A- D)LY =i+ LY, (3.34 b)
— (P + tdgt)LEf) =i+ LY. (3.34¢)

Since the Laguerre polynomihjf)(t) satisfies the Laguerreftierential equation
Pu L?’ (t) =t L?) (t)

(see ((3.18B)), the assertion (3.34 a) is now clear. The &ser{3.34 b) and (3.34 c) are
reduced to the recurrence relations (3.20 a) and (3.204pectively. |
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Remark 3.20. An alternative proof 0{3.33 a)will be given in Section 5.4 (see Remark 5.17).
By using the orthonormal basi$(r)} (see (3.32)), we normalize®(p, x) as

P (p, %) = £2(r)p(w) (3.35)

24 (0 + 1) \b )
_ ®
(aﬁmmr(ak@m I 1)) ¢ (P-X)

for x=rw (r > 0, w € SN-1). Then, Theorem 3.19 is reformulated as follows:

Theorem 3.21.For any pe 4"(R"), we have

wia()PP (p, %) = (20 + Acam + 1O (p, X), (3.36 a)
wka(MOP(P, ) = i V(€ + D)(kam + € + 1) D (p, X), (3.36 b)
wka(M)@P(P,X) = i Vdam + O DX, (p, ¥). (3.36 ¢)

We recall that an operatdr densely defined on a Hilbert space is called essentially self
adjoint, if it is symmetric and its closure is a self-adjobpierator.

Corollary 3.22. Let a> 0 and k be a non-negative multiplicity function satisfy{8c30)

1) The djferential-djference operaton, = [|X[>2Ax — ||X|? is an essentially self-adjoint
operator on B(RN, ¥y a(X)dX).

2) There is no continuous spectrum/Af,.

3) The set of discrete spectra-ef\, is given by

{al +2m+ 2k)y + N—-2+a:{,me N} (N > 2),
{2af + 2(ky +a+ 1 :{ € N} (N =1).

Proof. In light of the formula(3.9 a)
Ak,a = _awk,a(k)’

the eigenvalues af, , are read from Theorem 3.19. Sindk,(RN) is dense in2(RN, t 4(X)dX)
(see Proposition 3.12), the remaining statement of Caxo8&22 is straightforward from the
following fact. O

Fact 3.23.Let T be a symmetric operator on a Hilbert spagé with domainD(T), and let
{f.}n be a complete orthogonal set.i#’. If each f € D(T) and there existg, € R such that
T f, = unfo, for every nthen T is essentially self-adjoint.

Remark 3.24. We shall see in Theorem 3.30 that the actiorsi¢2, R) in Theorem 3.21 lifts
to a unitary representation of the universal covering gr&i(Z, R) and that Corollary 3.22
1) is a special case of the general theory of discretely dgos@ble(ac, K)-modules (see
[36,137).
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3.6. Discretely decomposable representations.

Theorem 3.19 asserts thal ,(RN) is ansi(2, C)-invariant, dense subspacelif(RN, 9y a(X)d ).
ForN > 1, this is a ‘huge’ representation in the sense that it costan infinitely many in-
equivalent irreducible representationsst§2, C).

By a theorem of Harish-Chandra, Lepowsky and Rader, angunible, infinitesimally
unitary @c, K)-module is the underlyingg¢, K)-module of a (unique) irreducible unitary
representation oG (see [35, Theorem 0.6]). This result was generalized to eretisly
decomposablegf, K)-modules by the second-named author (5ee [37, Theorem 2.7]

In this section, we discuss the meaning of Theorem!3.19 florpbint of view of dis-
cretely decomposable representations.

We begin with a general setting. L& be a semisimple Lie group, arl a maximal
compact subgroup d& (modulo the center oB). We writeg for the Lie algebra o5, and
ac for its complexification. The following notion singles out algebraic property of unitary
representations that split into irreducible represenstivithout continuous spectra.

Definition 3.25. Let (w, X) be a(gc, K)-module.

(1) ([36, Part 1§1]) We sayw is K-admissible ifdim Hom (r, @) < oo for anyr € K.
(2) ([36, Part lll, Definition 1.1])We sayw is a discretely decomposable if there exist a
sequence ofgc, K)-modules Xsuch that

O =XoCc Xy CXpCnov\ x:Ux,-,
j=0
Xj/ X1 is of finite length as &gc, K)-module for j=1,2,....

(3) We sayw is infinitesimally unitarizable if there exists a Hermitiamer product(, ) on
X such that

(w(Y)u,v) = —(u,w(Y)v) forany Ye g, and any uv e X.
We collect some basic results on discretely decomposahl&}-modules:

Fact 3.26(see[36, 37]) Let (w, X) be a(gc, K)-module.

1) If w is K-admissible, thew is discretely decomposable ag@, K)-modules.

2) Supposeo is discretely decomposable ag@, K)-module. Ifw is infinitesimally unita-
rizable, thenw is isomorphic to an algebraic direct sum of irreducilfée, K)-modules.

3) Any discretely decomposable, infinitesimally unitégy, K)-module is the underlying
(ac, K)-module of a unitary representation of G. Furthermore, saahitary representa-
tion is unique.

We shall apply this concept to the specific situation whetesl(2, R) andG is the univer-
sal covering grou L(Z, R) of S L(2, R).
We recall from (3.8 ) that

k=i (2 ‘01) —i(e — e esl(2,0).
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Lett := R(e” —e*) = i Rk andK be the subgroup d& with Lie algebrat. SinceG is taken to
be simply connected, the exponential map

R — K, t— Exp(tk)
is a difeomorphism.
ForzeiR, we set

¥, 1= Exp(-zk) = Exp(_ci)z 'g) e K. (3.37)

Since{k, n*, n"} forms ansl, triple, we have
Ad(y)n* = e#n*, Ad(y)n” =€“n".
Then it is easy to see that the subgroup
CG):={ymi:neZ}=2 (3.38)

coincides with the center @.
Next, we give a parametrization of one-dimensional reprieg®ns ofK ~ R as

—

K=C, x,eu (3.39)

by the formulay,(y,) = €** or equivalentlydy,(k) = u.

We shall cally, simply as theK-type .

Let (@, X) be a ¢, K)-module. A non-zero vector € X is alowest weight vectoof
weightu € C if v satisfies

w(h”)v=0, and w(k)v=puv.

We say (, V) is alowest weight modulef weightu if V is generated by such For each
A € C, there exists a unique irreducible lowest weight K)-module, to be denoted i (1),
of weighta + 1.

With this normalization, we pin down the following well-kwn properties of theg(, K)-
modulerny (1) for g = sl(2, R):

Fact 3.27.

1) For areal 2 with A > —1, there exists a unique unitary representation, denotea(hy; of
G = SL(Z,R) such that its underlyinyc, K)-module is isomorphic ta ().

2) n(-1) is the trivial one-dimensional representation.

3) For A > 0, n(2) is a relative discrete series representation, namely, &srix cogficients
are square integrable over G modulo its cent).

4) 71(%) ® n(—%) is the Weil representation of Mh R), the two fold covering group of
SL(2,R).

5) v, (see(3.37) acts onr(1) as scalar em(++1),

6) n(1) is well-defined as a unitary representation of (R) if 1 € %Z, of S2,R)if A € Z,
and of PSI2,R) if 1 € 2Z + 1.

7) For 2 # -1,-3,-5,..., ¢ (1) is an infinite dimensional representation. For> -1, we
fix a G-invariant inner product on the representation spate(@). Then we can find an
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orthonormal basigv, : ¢ € N} such that
ac(A)KWV, =26+ 2+ L)v,
(Ve = i€+ DA+ L+ 1) Ve,

(DN, =i+ O V_y.
Here, we set v = {0}. In particular, (1) has the K-typdd + 1,2+ 3,1+ 5,...} with
respect to the parametrizatidB.39)
8 Fora = -m(m = 1,2,...), nx(1) is an m-dimensional irreducible representation of
sl(2,C).

By using Fact 3.27, we can read from the formulas in Theoretti the following state-
ment:

Theorem 3.28.Suppose a is a non-zero complex number and k is a non-negadieulti-

plicity function satisfying the inequali(3.30) i.e. a+ 2(k) + N -2 > 0.

1) (wka Wka®N)) is @€ x (ac, K)-module.

2) As a(ac, K)-modulewy 4 is K-admissible and hence discretely decomposable (seriDefi
tion3.25).

3) (wka Wka(RN)) is decomposed into the direct sumtok (ac, K)-modules as follows:

Wea(®) = () AR, , @ 7(Acam) (3.40)
m=0
Here, Aam = 22902 (see(3.11). The Coxeter grougt acts on the first factor, and the

Lie algebrasl(2, R) acts on the second factor of each summan(8id0)

Proof of Theorem 3.28M\e fix a non-zergp € 4™(RN). Then, it follows from Theorem 3.19
and Fact 3.27 that fa#l(2, R) acts on the vector space

C-spart®P(p,) : £ € N

as an irreducible lowest weight modutg(Axam)- By (3.26), we get the isomorphism (3.40)
as @c, K)-modules.

On the other hand, the Coxeter grdtifeavess#,™(R") invariant. Furthermore, as we saw
in Lemmal 3.4, the action df andsl(2, R) commute with each other. Hence, the first and
third statements are proved.

It follows from the decomposition formula (3.40) thaf , is K-admissible because the
K-type of an individualk () is of the form{ad + 1,2 + 3,...} by Fact 3.27 A o m increases
asmincreases, and din?,"(R") < co. Hence, the second statement is also proved. O

For f,g € L2(RN, 9 a(X)dX), we write its inner product as

(hon:= [ FO9T0 sl 341)

Proposition 3.29. Suppose that & 0 and that k is a non-negative multiplicity function such
that a+2(k)+N—-2 > 0. Then, the representatian, , of sl(2, R) on W, o(RN) is infinitesimally
unitary with respect to the inner produgt, »x, namely,

«wk,a(x) f’ g»k = _« f’ wk,a(x)g»k
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for any Xe sl(2,R) and f,g € Wi a(RN).

Proof. As we saw in((2.4) that the Dunkl operators are skew-symmetith respect to the
measured(x)dx. In view of the definitions ofA« (see (2.9)) and&, , = g||x||2‘aAk (see
(3.3)), we see tha, , is a skew-symmetric operator with respect to the inner progu- ).
Likewise forE;’a. Further, the commutation relatidy , = [E;,a, E;,a] shows thatty, is also
skew-symmetric. Thus, for aK € sl(2, R), wya(X) is skew-symmetric. |

3.7. The integrability of the representation wy.

Applying the general result on discretely decomposableesgmtations (see Fact 3.26) to our
specific setting wher@ is the universal covering group 8fL(2, R), we get the following two
theorems:

Theorem 3.30.Suppose & 0 and k is a non-negative multiplicity function satisfying
a+2k)+N-2>0. (3.42)

Then the infinitesimal representation 4 of sl(2, R) lifts to a unique unitary representation,
to be denoted b 5, of G on the Hilbert space3dRN, ¥y 2(X)dX). In particular, we have

d
wka(X) = a’t:OQk,a(EXp(tx)), X € g,

on W.(RN), the dense subspa¢g.29)of L2(RN, 9 a(X)dX). Here, we have writtexp for
the exponential map of the Lie algeb:#2, R) into G.

Theorem 3.31.Retain the assumption of Theorem 3.30. Then, as a repregentd the di-
rect product grouptt x G, the unitary representatior?(RN, 9y ,(X)dX) decomposes discretely
as

LAEN, a9 = 3 (A0 EIsw1) @ 1Ak (3.43)
m=0
Here, we recall thattf is the Coxeter group of the root system, G is the universa¢rcov
ing group of SK2,R), and Axam = 22202 (see(3.11). The decompositio(B.43) of
the Hilbert space E(RN, 9y a(X)dX) is given by the formulg3.26)and 7(1) (1 > —1) is the
irreducible unitary representation & L(2, R) described in Fact 3.27. In particular, the sum-
mands are mutually orthogonal with respect to the inner pai¢3.41)on L2(RN, 9y a(X)d X).

Remark 3.32(The N = 1 case) In [42] Kostant exhibits a family of representations with
continuous parameter ai(2, R) by second order dierential operators or{0, ). He uses
Nelson’s resulf46] to study the exponentiation of such representations. Sed44)].

In the N = 1 case, the decomposition in Theorem 3.28 (and hence in Tine8i&l) is
reduced to a finite sum becaus&€™R") = 0if m > 2and N = 1. Indeed, there are
two summands according to even @0) and odd (m= 1) functions. We observe that
the djference operator ir{2.10) vanishes on even functions of one variable, so the Dunkl
Laplacian Ay collapses to the dierential operatord"—;2 + %‘%( Thus, our generator§3.3)
acting on even functions d, o) take the form

2 d 2k+a-1

[ [
Hia = =X + ——, a= 2 =Xt
ka ka ™ 4 ka ™ 4 (

d_2 2kd)
a dx a )

dx2 +7$<
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We may compare these with the generators in Kostant’s pf@@&rwhere his generators
on (0, o) are
. d 2 d r?
1y, 2yd—y YW + ay ~ @),
which by the substitution ¥ %x"" ande(y) = xk‘%gp(x) become our operatordy s, E; . E, ,}
with r = &;1 Note that our generators acting on odd functions do not appe&ostant’s
picture.

+1, i(

Remark 3.33. The assumption @& 2(k) + N — 2 > Oimplies
Akam > -1 forany me N,

whence there exists an irreducible, infinite dimensionatieuy representationt(Ay am) of G
such that its underlyinyc, K)-module is isomorphic tay (A« am) by Fact 3.27 (1).

By the explicit construction of the direct summand in The@o@& 19, we have

Corollary 3.34. As a representation d8 L(2, R), minimal K-types of the irreducible sum-
mands in(3.43)are given by

h(x) exp(—%llxna), h e J4MRN).

As we have seen thaiy, lifts to the unitary representatidiy , of the universal covering
groupG = S (2, R) for anyk anda with certain positivity (3.42). On the other handkiénd
a satisfies a certain rational condition (see below), thepis well-defined for some finite
covering groups oPS L(2,R). This representation theoretic observation gives ani@kpl
formula of the order of thek(a)-generalized Fourier transfor#, , (see Section'5). We pin
down a precise statement here.

Proposition 3.35. Retain the notation of Theorem 3.30, and recall the defimitibthe index
(k) from (2.3). Then the unitary representatidy, of the universal covering group G of
S L(2,R) is well-defined also as a representation of some finite cogegroup of PS (2, R)

if and only if both a andk) are rational numbers.

Proof. It follows from Fact 3.27 5) that the central elemegt € C(G) acts ont(Axam) by

the scalar N + 2(K) )
. n + +a-—
e Nkam*D) — exp—— . 27mi) exp(— i ).

This equals 1 for alinif and only if
2Z.

DeZ and n(2(k)+N—2+a)E
a a

It is easy to see that there exists a non-zero integatisfying these two conditions if and
only if botha and(k) are rational numbers. For sunhQ, , is well-defined foiG/nZ. Hence,
Proposition 3.35 is proved. O

We recall from((3.38) that we have identified the cel@é®) of the simply-connected Lie
groupG = S (2, R) with the integer grou@. Then, we have

PSL2,R) ~G/Z, SL2R)=~G/2Z, Mp(L,R)=G/4Z.
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As a special case of Proposition 3.35 and its proof, we have:

Remark 3.36. LetQy ; be the unitary representation of the universal coveringugr.
(1) Suppose & 2.
(@) Qx> descends to S(B,R) if and only if2(k) + N is an even integer.
(b) Q, descends to M@, R) if and only if2(k) + N is an integer.
This compares well with the Schrodinger model (RIY) of the Weil representa-
tion Qg of the metaplectic group MPI, R) and its restriction to a subgroup locally
isomorphic to S 2, R) (cf. [62] and[32]).
(2) Suppose & 1.
(@) Q1 descends to PSR R) if and only if2(k) + N is an odd integer.
(b) Qx; descends to S, R) if and only if2(k) is an integer.
(c) Q1 descends to M, R) if and only if4(k) is an integer.
The case k= 0 corresponds to the Schrodinger model oigRY, |(|j7)|(|) of the minimal
representatior(); of the conformal group and its restriction to a subgroup libca
isomorphic to S (2, R) (cf. [41]).

Remark 3.37. C. Dunkl reminded us of that the parity condition2gk) + N appeared also
in a different context, i.e., ifil7, Lemma 5.1]) where the authors investigated affstient
condition on k for the existence and uniqueness of exparalimgmogenous polynomial in
terms of k-harmonics.

3.8. Connection with the Gelfand—Gindikin program.
We consider the following closed conedr= sI(2, R) defined by

_J{a b). 2
W= {(C _a).a +bc< O, bzc}.
Then,W is S L(2, R)-invariant and is expressed as
W =i Ad(S L(2, R))R. oK.

We write exp. : gc — S L(2, C) for the exponential map. Its restrictioniWy is an injective

map, and we define the following sub&§WV) of S L(2, C) by
(W) := SL(2, R) exp-(iW).

SinceW is S (2, R)-invariant, I'(W) becomes a semigroup, sometimes referred to as the
Olshanski semigroup

Denote byl (W) the universal covering semigroupefW), and write

Exp : g+ iW — [(W)

for the lifting of exp. .w : ¢ + iIW — [(W). Then[(W) = SL(2,R) Exp(W) and the polar
map
SLZR) x W — (W), (g, X) - gEXp(iX)
is a homeomorphism.
SinceW is an AdS L(2, R))-invariant conel (W) is invariant under the action &L(2, R)
from the left and right. Thus, the semigroLipV) is written also as

T(W) = S L(2, R) exp.(~Rsok)S L(2, R).
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Its interior is given by

I'(W° = SL(2,R) exp(R.k)S L(2, R).
See|[28, Theorem 7.25]. Accordingly, we have

(W) = SUZR) exp.(-R=0k)S UZ R).

By Theoremi 3.19¢), is a discretely decomposable unitary representaticdhig®, R) on
L2(RN, 9 o(¥)dx). It has a lowest weight (R) + N + a — 2)/a. It then follows from [29,
Theorem B] that), , extends to a representation of the Olshanski semigh¢f), denoted
by the same symbddy 5, such that:

(P1) Q. : T(W) — 2(L?) is strongly continuous semigroup homomorphism.

(P2) For allf € L2(RN, 9a(X)dX), the mapy — (Qa(y)f, f)« is holomorphic in the
interior of [(W).

(P3) Qua(y)" = Qua(y*), wherey* = Exp(IX)g for y = g EXp(iX).

Here, we have denoted 3§(L?) the space of bounded operatorsléRN, ¥y 4(X)dX).

Remark 3.38. The Gelfand—Gindikin prograif23] seeks for the understanding of a ‘family
of irreducible representations’ by using complex geonsatrethods. This program has been
particularly developed for lowest weight representatibglIshanskj48] and Stantoif56],
Hilgert, Neeb[28], and some others. The study of our holomorphic semigfayby using
the Olshanski semigrouf(W) may be regarded as a descendant of this program.

Henceforth we will use the notatidit := {z€ C | Re) > 0} andC** ;= {ze C | Re) >
0}.
Forz e C*, we extend the one-parameter subgreu(z € R) (seel(3.37)) holomorphically
as

. O 1 oo~
vz := EXp(=2K) = Exp(iz (_1 0)) e I'(W). (3.44)

Then, the operatoiQ ,(y,) have the following property:

Qk,a()’zl) Qk,a()’zz) = Qk,a(721+zz), V21,2, € C*,
Qralys)" = Qy2), zeC',
Qialyo) =id.

Following the formulation of [39, Proposition 3.6.1] (thasek = 0, a = 1), we summarize
basic properties of the holomorphic representa€ipg of the semigroufy’ (W).

Theorem 3.39.Suppose & 0and k is a non-negative multiplicity function on the rootteys
satisfying(3.30) i.e. a+ 2(k) + N - 2> 0.

(1) The map
W) x L2(RM, dha(¥)dX) — LARN, a()dX), (7, f) = Qua(y)f

iS continuous.
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(2) Forany pe j‘lj((m)(RN) and? € N, (Dﬁ,a)(p, ) (see(3.28) is an eigenfunction of the
operatorQa(y;) = expwka(-z)):

Qk,a(')/z) cDE}a) ( p, X) — e_z(/lka,m+1+2'f) cDE}a) ( p, X),

wheredam = 1(2m+ 2(ky + N — 2) (see(3.11).
(3) The operator norni€y a(y2)llop IS exp(—§(2<k> + N + a-2)Rez).
(4) If Re(@ > 0, thenQy 4(y-) is a Hilbert—Schmidt operator.
(5) If Ref = 0, thenQy 4(y-) is a unitary operator.
(6) The representatiof , is faithful onl" (W) if at least one of a otk) is irrational, and

on(W)/D for some discrete abelian kernel D if both a athl are rational.

Proof. The second statement follows from (3.33 a). The fifth stateérisea special case of
Theorem 3.30. The proof of the other statements is paralldlet of [39, Proposition 3.6.1],
and we omit it. ]

4. THE INTEGRAL REPRESENTATION OF THE HOLOMORPHIC SEMIGROUP Q 4('y7)

We have seen in Theorem 3.39 thxt,(y,) is a Hilbert—Schmidt operator for Re> 0 and
is a unitary operator for Re= 0. By the Schwartz kernel theorem, the oper&gx(y,) can
be expressed by means of a distribution kerel(x, y; 2). If we adopt Gelfand’s notation
on a generalized functions, we may write the oper&ps(y,) on L?(RN, 9 a(X)dX) as an
‘integral transform’ against the meastutig,(X)dx

Q) 09 = 0 [ s yi 2 FOal)ly: @)

Here, we have normalized the kerngl,(X,y; z) by the constangy , that will be defined in
(4.47). In light of the unitary isomorphism

L2(RN, 9a()d¥) = L2RN, dX), F(X) — f(X)Tca(X)2.

We see that\a(X, V; 2)%a(X) 29 a(y)? is a tempered distribution ok(y) € RN x RN,
The goal of this section is to find the kermel (X, y; 2). The main result of this section is
Theorem 4.23.

4.1. Integral representation for the radial part of Qya(y,).

By Lemma 3.7, thel,-actionwy, on C*(RN \ {0}) (see(3.5) for definition) can be described
in a simple form on eack-spherical componen#,"(R"), namely, it can be expressed as
the action only on the radial direction. Accordingly, we aiefine the ‘radial part’ of the

holomorphic semigroup{")(y,) (see (4.4) below for definition) o?(R., r2¥*N+a-3dr). The

main result of this subsection is the integral formula sflfjf;)(yz), which will be given in
Theorems 4/4 and 4.5.

4.1.1. Radial part of holomorphic semigroup.
Recall that’#™(R") is the space df-harmonic polynomials of degrem € N. Let

ajy + AR sns @ LE(R,, 120 3dr) — LR, 9ca(3)dX)
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be a linear map defined by

X
M(p® f)(x) = p(M)f(uxn) for p e Z™RN)|sv1 and f € L2(R,, r20+N+a-3qr),

Summing umﬂ, we get a direct sum decomposition of the Hilbert space:
L2(RN, 9y a(X)dx) = Z@ RN sv1 ® LA(R,, r20FN+=3qr), (4.2)
meN

It follows from Theorem 3.31 that the unitary representafiy , of SE(\ZfR) on the Hilbert
space_?(RN, 9y o(X)dX) induces a family of unitary representations, to be denb;eai”g(yz)
(me N), onL?(R,, rX0+N+a-3dr) such that

oM(p@ QM H)(F)) = Ualy)(a(p e 1)). .3)

As is Theorem 3.39 fof2¢(y,), the unitary operatof2” (y,) extends to a holomorphic
semigroup of Hilbert—Schmidt operators bt(R .., r>®+N+2-3dr) for Re@) > 0. Further, there
exists a unique kermne\{"(r, s; ) for eachzandm € N such that

QN (y)f(r) = f f(ALR(r, 5,20 N23d 5 (4.4)
0

holds for anyf € L?(R,, r2X0+N+a=3qp),
According to the direct sum (4.2), the semigrap,(y-) is decomposed as follows:

e,
Qualys) = ) idymen) © QN (). (4.5)

meN
Comparing the integral expressions (4.1) and (4.4uqi(y-) andQ(k’jz(yz) respectively, we

see that the kernelsy 4(X, y; 2) andA(kf';)(r, s, Z) satisfy the following identities:

. l - i ” (m) . (k)+N+a-3
Cka fR ) Axa(X.Y; Z)D(”y”)f(llyll)ﬂk,a(y)dy p(”X”) fo f(IAL(, 5 2)S° ds (4.6)

foranyp e Z™(RN) and f € LA(R,, rZ¥+N+a-3qr)
In light of the following formula for the measures

Faly)dy = F(7) SN 3dor(n)ds
with respect to polar coordinatgs= s, we see that (4.6) is equivalent to

Cka jS\N—l Ak,a(l’a), SR Z) p(n)ﬂk(n)dﬂ'(l]) = p(w)A&?(r, S Z). (47)

Therefore, the distributiom, is determined by the set of functions) (m € N) as
follows:

Proposition 4.1. Fix z € C with Rez > 0. Then, the distributio\,4(X, y; 2) onRN x RN is
characterized by the conditiqd.7)for any pe 4™(R") and any me N.

The relation between,, andA{" (m e N) will be discussed again in Theorem 4.20 by
means of the ‘Poisson kernel'.
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4.1.2. The casdre) > 0.

Suppose Rej > 0. Then,Q{"(y,) is a Hilbert—Schmidt operator arP(R,, r2¥+N+a-3dr),

and consequently, the kernﬁt”g(-,- ; Z) is square integrable function with respect to the
measurers)*¥+N+a-3drds
We shall find a closed formula fox{"(r, s; 2). Let us fixm € N (as well ask anda) once

and for all. We have given in Proposition 3.15 an explicihogonal baS|$f[(f1)q(r) : { € N} of

L2(R., r¥0*N+a-3dr) . On the other hand, it follows from Theorem 3.39 (2) théf(p, X) =
f[(f%(r)p(w) (see((3.3b)) is an eigenfunction of the Hilbert—SchmidtraporQy a(y2):

Qk,a(’)/z)aga)(p, X) — e—Z(2€+/1k,a‘m+1)62a)(p, X).
Using the identity/(4.3), we deduce that
QM (y) 12(r) = e ham D@ (1), (4.8)

where the constanty ., is defined inl(3.11). Hence, the kern'q([g)(r, S;2)in (4.4) is given
by the following series expansion:

AD(r, 52 = Z £ ) 2 (5)g A amt1e20),

In view of the definition(3.32) of (a)(r) A(m)(r s; Z) amounts to

e—Z(/lk.a,m"'l)(rs)me_elx(ra"'sa) = F(f + 1) e_ngL(/lk’a’m)(zra) L(/lk,a,m)(zsa)
atkam2-(amt) LA T(leam + € + 1) £ a /Tt lat s

In order to compute this series expansion, we recall some lgmtities of Bessel func-
tions. Letl, be thel-Bessel function defined by

L,(w) 1= €217, (e?'w).
It is also convenient to introduce the normalizeBessel function by

— W -1 > w2
W) 1= (5) 1w = ;; 20T+ € + 1) (.9)
o f ' eM(1 — )t zdit (4.10)
S VAT + 1Y) Ja ’ '
We note that () is an entire function ofv € C satisfying
— 1
,(0) = ——.
O= o 1)

Now, we can use the following Hille—Hardy identity

I'k+1) 1 1 (u+vw ] 2+/uvw.
Zr(m T LW = g exp( - ) e L (T

(u +V)W)E(2WW).

:(1—W)ﬂ+1ex (_ 1-w 1-w
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Hence, we get a closed formula fm@(r, S, 2):

rs)~0-%+1 . 2 (rs)?
A(m) .S7) = ( : ~5(r +sa)coth(z)| -2 4.11
ca (1 S sinh@) © 2"\ asinh@) (4.11)

- (rs)” o tesycomar (2.9
atan(sinh(g))am+1 “m\asinh@))

Next, let us give an upper estimate of the kernel funcﬂéﬁ(r, s; 2). For this, we recall
from [39, §4.2] the following elementary lemma.

Lemma 4.2. For z= x + iy, we set

. sinh(2)
a(2) = cosh() — cos(3)’
. cosf)
p2) = cosh§)’
Then, we have
1)
Re cothg) = a(2), (4.12)
1
ReSinh 3 = a(2)B(2). (4.13)

2) If ze C*\ inZ, then we haveosh() — cos(3/) > 0, and
a(2 >0 and |3(2| < 1L
3) If Rez> 0, thena(z) > 0.

We set
1

C(k, 1 2) = . :
R A ST

(4.14)
With these notations, we have:

Lemma 4.3. For z € C* \ inZ, the kernel functiom\(k,’?(r, S, 2) has the following upper esti-
mate:

AR (. s:2)| < Clk.am z)(rs)'"exp(—g(ra + (91 - B()) (4.15)

Proof. By the following upper estimate of tHeBessel function (seé [39, Lemma 8.5.1])

IL(wW)| < T(v + 1) Re® for y > —% andw e C (4.16)

that we get
1 1
(m) . . m _T(ra _

IALa (. s DI < C(k, a,m; 2)(rs) ex;( a(r + s"")(Re cothg) 'Resinh(z)’))' (4.17)
Here, we have uset® + 2 > 2(rs)2. Then, the substitution of (4.12) and (4.13) shows

Lemma. O

We are ready to complete the proof of the following:
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Theorem 4.4. Lety, = Exp(iz (_1 O)) be an element df(W) (see(3.44), andA{Y(r, s; 2)
the function defined b{é.11) Assume ne N and a> 0O satisfy

2m+2ky+ N+a—-2> 0. (4.18)
Then, for ze C**, the Hilbert-Schmidt operata®{")(y,) on L2(R,., r2©*N+a-3dr) is given by

QR0 = f A, 5,2 F (950N ds (4.19)
0

The integral in(4.19)converges absolutely for & L2(R.,, S®0+N+a-3(g),

Proof. We have already proved the formula (4.11) mik{';)(r, s;2). The convergence of
the integral [(4.19) is deduced from the Cauchy—Schwarzualiy because\("(r, ;2) €
L?(R,, SX+N+a-3dg) for all ze C** if (4.18) is fulfilled. i

4.1.3. The casdRkeg) =0
The operato{")(y;) is unitary if Reg) = 0. In this subsection, we discuss its distribution
kernel.

We note that the substitution of= iu into (4.11) makes sense as fanag nZ, and we get
the following formula

(r ) -3 2(rs)?

A(m)(r S ip) = exF( (/lk,a,m 1)) asinu

exp( (r*+ %) cot(u)) ﬂkam( ) (4.20)

Here, we have used the relatibif?) = e ¢ J,(2).
In this subsection, we shall prove:
Theorem 4.5. Retain the notation and the assumpti@nl€) as in Theorem 414, Foui €
R \ nZ, the unitary operato™ (y;,) on LX(R,, r2¥+N*a-3dr) is given by
A () (1) = fo FOAD(, s i) 20 Na3d s (4.21)
The integral in the right-hand sidd.21)converges absolutely for all f in the dense subspace,
in L2(R,, r¥¥+*Nva-3dr), spanned by the function§>},.,; (see(3.32)for definition).

Proof. Lete > 0 andu € R \ #nZ. By Theorem 4.4 we have
O (Yeri) T (1) = f F(AL(r, s € + i) SWNa3dg (4.22)

As € — 0 the left-hand side convergesﬂzﬁg(m) by Theorem 3.39 (1).
On the other hand, the addition formula

cschg)csch(u)
coth() + coth(u)

csche +iu) =

gives
lcschg + iu)| < |csch{u)l. (4.23)
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Hence, it follows from Lemma 4.3 that we have
AT, s, € + )] < C(k, @, m;ip)(rs)™ < c— 9"
g g et

for some constar@. In view of (3.32), we get
rmexp(1s?) 2
(m) . ; (@ ’ a m|y (Aam)
IAKa(r, S €+ |/,t) fg’m(5)| <C Wsz ’Lg (asa)'

Now, we can use the dominated convergence theorem to delaicthé right-hand side of
(4.22) goes to

f (AT, s;ip) S0 Na3d s
ase — 0. Hence, Theorem has been proved. O

As a corollary of Theorem 4.5, we obtain representationriteoproofs of the following
two classical integral formulas of Bessel functions:

Corollary 4.6.
(1) (Weber's second exponential integri@4, 6.615).

f &7 3,22 VT)J, (2,3\/_)dT—— 3@ (Zgﬁ)
0

where|arg@)| < 5 andv > 0.
(2) (Se€d24, 7.421.4).

[ emoenuevnriar= GO ek 0 ) @z
0

2v5v+€+1

for Re@) > 0 andRe() > 0.
Proof (Sketch)(1) The semigroup 1a@{" (v, ) (v2,) = Q7 (v2.2,) Yields

fo AD(r, s 2)AT(s 17 ) 290N Sds = AL 1 2, + 29). (4.25)

Using the expression (4.20) af, we get the identity (1).
(2) The identity (4.8) (in terms of group theory, this comesni the K-type formula
(3.34 a)) can be restated as

L A(m)(r s Z) f (a)(S) s2(k)+N+a—3d S= e—z(2€+/1k,am+1) f[(,?r)](r)’

in terms of the integral kernels by Theorem!4.4. After somepsifications and by putting
constants together, we get the identity (4.24). O

Remark 4.7. 1) The operatorr(Axam)(y2) acts on the irreducible representati@ly o m) of
SL(Z,R) as a scalar multiplication if z inZ i.e. if y, belongs to the center (see Fact 3.27).
Correspondingly, the kernel functim;ﬂj(r, S, € + ix) approaches to a scalar multiple of
Dirac’s delta function ag goes ta0 if u € nZ.
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2) Of particular interest is another case wheres 7(Z + %). For simplicity, letu = 3. Then,
the formula(4.20)collapses to

A, —) = exp( (ﬂk&m+ D)(rs)” <">‘?+1J}kam( (rs)?).

Fora= 1,2, Wehave

_iz - —(ky-N
(m)(r S| _) ) i7(2m+22k+N 1)(rs) (k) 2+lJ2m+2<k>+N—2(2 \/E) (a — 1),
A(k,r?(r, S, E) = e_iLzr(m+<k>+%)(rs)_<k>_%+l~]w<k>+%—1(r5) (a=2)

We shall discuss the unitary opera.(@(y%i) =limo Q(y%m) in full detail, which we call
the K, a)-generalized Fourier transforn¥, , (up to a phase factor) in Section 5.

4.2. Gegenbauer transform.
In this section, we summarize some basic properties of tlyge@®uer polynomials and the
corresponding integral transforms.

4.2.1. The Gegenbauer polynomial.
The Gegenbauer polynomi@},(t) of degreemis defined by the generating function

(1—2rt +r?)” der (4.26)

To be more explicit, it is given as

1

Ch(0) = (= "2

If we putt = cos, and expand
1-2rcost +r? = (1-re’)(1-re)
by the binomial theorem, then we have

(1- ﬁwwwlﬂmi (4.27)

Cr(cos) = Z % cosfm— 2k)o. (4.28)
< k! !

Then, the following fact is readily seen.

Fact 4.8.1) C;(t) is a polynomial of t of degree m, and is also a polynomial ingoaetery.
2) CO(t) =0 for any m> 1.
3) Cy(t) = 1, Ci(t) = 2.
F(m + 2v)
4 Cx(1) = mir(2v)
In this subsection, we prove:

Lemma 4.9. Fix v € R. Then there exists a constanp> 0 such that

sup |
-1<t<1

(t)’ < B()m? ! forany meN,. (4.29)
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Remark 4.10. 1) For v > 0, it is known that the upper bound (&} (t)| is attained at t= 1,
namely, ( )
I'(m+ 2v
()] = CH(1) = ==
o] Ch(0] = Cr() miT(2v)
This can be verified easily [§4.28) or alternatively, by the following integral expression
forv > 0:

I'(v+ %)I‘(m + 2v)

\VrmT(v)['(2v)

2) For v = 0, the left-hand side o{4.29)is interpreted as the £-norm of lim,_,o %C,Vn(t),
which is a polynomial of t by Fact 4.8 2).

3) Our proof below works also for ailt € C.

Cu(t) = fo n(t + V2 — 1 cost)" sir® 6 de. (4.30)

Before proving Lemma 4.9, we prepare the following estimate
Claim 4.11. Let A € R. Then there exists a constant?) > 0 such that
‘F(/l +K)
(k!
Proof. We recall Stirling’s asymptotic formula of the Gamma funati

< Ak*t  forany ke N.

I'(X) ~To(X) asx— oo,
wherely(x) := V2rx*te. In light of the following ratio:

k+3 _
To(k + 1) _ k’l_l(l-l_ ﬁ) 2(1+ /1)1 191—/1,

Tok+1) ~ \1+1 K
we get
. TA+Kk
O ket —
Thus, Claim follows. O

Proof of Lemma 4.9By (4.28), we have

m

sup [Cr(H)] < )

~1st<1 e

I(v+ k) T(M=k+v)
KT() (m-KTe)|

We note that there is no pole in the Gamma factors in the hgind side. We now use Claim
4.11, and get

< Zm: AR Hm -k
k=0

< AWM+ 1)(g)zv_2.

Hence, (4.29) is proved for# O.
Forv = 0, we use (4.28), and get

1 1
Ilrrg) —C/ (cosh) = p (cosf — 2m)6 + cosnd). (4.31)
y—0 vy
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Hence, the inequality (4.29) also holds foe 0. Thus, we have proved Lemma4.9. O

4.2.2. The Gegenbauer transform.

We summarizé.?-properties of Gegenbauer polynomials in a way that we sisalllater.
Fact 4.12(see[[1], [8, Chapter 15])Suppose > —3.

1) C(n(t) m € N} is an orthogonal basis in the Hilbert spagé, := L%((~1, 1), (L-t?)"~zdt).

, -l ge al'(2v + m)
2) f Cr (L =)t e DM+ TR
3) We set a normalized constant,pby

22-10(m + LGN (v + 1)

Oyam = al(m+ 2v) (4.32)
Then, the Gegenbauer transform defined by
1
%,m(h) :=b,m f h(t)Cr(t)(1 - tz)”‘%dt, forhe 77, (4.33)
-1
has the following inversion formula.
1 [ee)
h=-— D M+ )Em(CH). (4.34)

m=0

The orthonality relation in Fact 4.12 can be restated in $avfrthe Gegenbauer transform
as follows:

\4
(n=m),
€,m(Cr) = Mm+v (4.35)
{O (n# m).
The Gegenbauer transfor, ,, arises also in a Dunkl analogue of the classical Funk—
Hecke formula for spherical harmonics as follows.

Fact 4.13 (see [64, Theorem 2.1])Let h be a continuous function da-1,1] and p €
"(RN). Then, we have

[, @@ DPIIDI) = CroznP), weS™E (430

Here, d is the constant defined i(2.12) and Vih is defined in(2.6) by using the Dunkl
intertwining operator Y. For k = 0, (Vkh)(n, w) = h({(n, w)) and ¥(y) = 1, so that the
identity (4.36)collapses to the original Funk—Hecke formula.

4.2.3. Explicit formulas of Gegenbauer transforms.

In this subsection, we present two explicit formulas of Géggier transform&,,, (see
(4.33)). These results will be used in describing the kethistributionsAya(X,y; 2) for
a=1,2 (see Theorem 4.24).

Lemma 4.14.

1) Gun(l,-3 (@1 +2)) = 22" "n 20 + Dlamea (V2) = G2 Tz (V20).

2) C,m(€) = 27" (v + DI, m(@).
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This lemma is an immediate consequence of the followingnaieformulas and the dupli-
cation formula of the Gamma function:

I(2v) = 22 ST ()0(v + %). (4.37)

Lemma 4.15. For , v € C such thatRe({) > 0, the following two integral formulas hold:

(1)

1

T :_2L v _ 32 v—% _ Zﬁr(m-i_zv) i 2m—

[ 1 l,-3(a(L+ 92)CrO(1 - ) 2dt= == 7 D) ( ﬁ) lomear( V22).  (4.38)

2)

2722y +m) |~
Fm+ 10 a"l, m(a@). (4.39)

Proof of Lemma 4.15(1) This identity was proved in [39, Lemma 8.5.2].

(2) The integral formula (4.39) is well known (see for ingtan61, page 570]). However,
for the convenience of the readers, we give a simple proahdJg.27), we have

1
f e'Cr (t)(1 - 13 2dt =
-1

! ; T(v+3)  T(m+2v) Lgm ;
el ()(1-t?)2dt = 2 —(e")(1 - tB)™"2dt
[ eeoa-v T Ty 7D . a0

I(v+3 1 .
_ (V 2) F(m + 2V) - amf eat(l _ tZ)m-\‘-V—§ dt
['(2v) 2"miC(m+v + 3) -1

Now, (4.39) follows from the integral representation (4.a0l, (w). O

Remark 4.16(expansion formula)Applying the inversion formula of the Gegenbauer trans-
form (see Fact 4.12), we get the following expansion forsfritam Lemma 4.14:

e =T() > (v + m)("E")mT;m(w)cvm(t), Re¢) > 0 (4.40)
m=0

. 1/2 2y v *© M
lv_l/z(w(lg) >:25;>§)(v+m><g>2 2 WCHD,  Re()>0  (441)

or equivalently,

w(l +t)Y 2) _2YT()
vz " m

The first formulg4.40)is Gegenbauer’s expansion (see for instajé3: 7.13(14)], whereas
the second expansion formy41)was proved in Kobayashi—Mati89, Proposition 5.7.1]

W3, 1o D 1M+ M) am(WICH (D).
m=0

4.3. Integral representation for Qi (y.).
In this section, we find the integral kernel ,(X, y; 2) of the operatof)y 4(y,) for ze C* \ in’Z.
The main result is Theorem 4.23.
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4.3.1. The functions (b, v; w; t).
In this subsection, we introduce a functigf(b, v; w; t) of four variables, and study its basic
properties.

Let T,(w) = (3)'1.(w) be the normalized-Bessel function (see (4.9)), ar@(t) the
Gegenbauer polynomial. Consider the following infinite sum

v o bm__
S viwt) = TS ) (B) Ty 0. (4.42)
m=0

We note that’ = 0 is not a singularity in the summand becaG§gt) = 0 form > 1 (see Fact
4.8 2); see also (4.31)). In this subsection, we prove:

Lemma 4.17.1) The summatio4.42)converges absolutely and uniformly on any compact
subset of
U:={b,vwt)e R, xRxCx[-1,1]:1+bv>0} (4.43)
In particular, . (b, v; w; t) is a continuous function on U.
2) (Special value at w= 0)
F(b,v;0;t) = 1. (4.44)
3) (Gegenbauer transform) For> -3,

bm __
(7 (0, v: W, ) = T(L + b) ("5") o), forme N,

Proof. 1) It is suficient to show that for a shiciently largemy the summation oven (> my)
converges absolutely and uniformly on any compact sefl.ofWe recall from (4.16) and
(4.29) that

Rew|

T+
< B()m?t foranym> 1.

1w <

‘ Cx(t)

Then,
Wbmé Rew| m2v 1
25"C(bm+ by + 1)

i (LR qwpoym
= B(v)eR" n;h F(blm++ by + 1)(‘W )

Sinceb > 0,I'(bm+ by + 1) grows faster than any other term in each summand gses to
infinity, and consequently, the last sum converges. Furtbeg, the convergence is uniform
on any compact set of parameteosi( w). Hence, we have proved the first assertion.

2) Sinceb > 0, the summand in (4.42) vanishesxat 0 for anym > 0, and therefore

M -y Ty(0) - CI(D)

( > )b Togmny (W)C, (t)|

S (b,v;0;t) =
=1
Thus, the second assertion is proved.
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3) This is an immediate consequence of Fact'4.12 on the Gagentransforn®,,. O
Example 4.18.The special values atb 1, 2 are given by
F(Lv;w;t) = e, (4.45)

1 w(l+ t)%)

I viwt) =T(v+ —)TV_%( 3 (4.46)

2
Proof of Examplée 4.18First, let us prove the identity (4.45). By Lemma 4.17 3), \egé

(7 (b, viW: ) = T(L + by) ("Ev)me;(W,(w), for all me N,
By Lemma 4.14 2), we have
Cun(@) =T+ ) (3) (W)
This shows that

%, m(left-hand side) %, n(right-hand side) for aline N

with regard to the identity (4.45). Since the Gegenbaueyrmohials form a complete or-
thogonal basis in the Hilbert spaté((-1, 1), (1 - tZ)V‘%dt) (see Fact 4.12), we have proved

(4.45).
The proof for the identity (4.46) goes similarly by using e 4.14 1). Thus, Example
4.18 has been shown. |

4.3.2. The normalization constant.
Fora > 0 and a multiplicity functiork on the root systen%, we introduce the following
normalization constant

. 1 a -1
Cia := (fRN ex;( a||x|| )ﬁka(x)dx) (4.47)
wheredy 4 is the density defined in (1.2). Using the polar coordinaieshave

Gt = f f exp( 2)r 20 N3, (w)dor(w)dr
SN-1

:dglf —t( 1:)N 2<k>2
0

Here, d. ! is the k-deformation of the volume of the unit sphere (see (2.12)r & non-
negative multiplicity functiork, the integral converges if(R) + N + a— 2 > 0, and we
get

2m:n-2y 2(K)y + N -2
Ga = a3 AT 25y, (4.48)
Fork = 0, we haved;! = F( ] (see (2.13)), and in particular,
r) 1 1
Co1 = = Co2 = N

2rfT(N-1) (4m)™r(%h)’ 7 (2nF
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4.3.3. Definition of 4(r, s,z t) and Axa(X, Y; 2).
We now introduce the following continuous functiontadn the interval {1, 1] with param-
etersr,s> 0, andze C* \ inZ:

. exp—i(rf+ )coth@) (2 2ky+N-2 2(rs)?
hea(r, s,z 1) = Sinhg) e 5 (a > ' asinh®)’ t) (4.49)
We observe that, fqr € R \ 7Z, the substitutiorz = iy into (4.49) yields:
o expl(r+ cotw) (2 2 +N-2 2(s)i
hk,a(r, S, Il't’ t) = ez<k>+N+a 2 (u) 2<l<>+N+a— (5’ 2 ' ai Sin(u)' ) (450)

We recall from/(4.3) thar("(r, s, 2) is the integral kernel of the operat@f?) (y,) onL?(R ., r¥¥+N+a=3qp),
Up to a constant factor (independentmf, the Gegenbauer transform faf, coincides with
A", s 2):

Ka »

Lemma 4.19. Suppos(k) + N > 1. Then, for every i N, we have

de
Crors-1m(hkalr, $,2 7)) = —A‘”‘)(r 5, 2) (4.51)

A1, s 2).

az(k);Nzr(Z(lO + |\;+ a-— 2)

Proof. We observe

2k N-2 7
1+by= <>+aa+ and dcam = S(+)

if b= 2 andy = 22 Then, Lemma 4.19 follows from Lemma 4117 3) and the definitio
(4.11) of AL(r, 5, 2). O

We are ready to define the following function BN x RN x (C* \ inZ) by
Axa(rw, s7;2) := (Viha(r, S, Z ) (w, 1), (4.52)
whereV, is introduced in[(2.6) by using the Dunkl intertwining opterav, and hea(r, s, z t)
is defined in((4.49).

4.3.4. Expansion formula.
Fora > 0, we will derive a series representation for the kerkg] in terms ofA(k,'Q and the
Poisson kernel of the spac&™RN).

In light of the definitions of# (b, v; w; t) (see (4.42)) and{"(r, s, 2) (see (4.11)), we may
rewrite (4.49) as

2en-2y (2K + N+a—2 <k>+m+N__2 ky+ N2
hea(r, sz t) = & = )F( 3 )Z A(m)(r S, Z)(TN__ZZ)C&H ®).
meN 2

(4.53)
The above expansion formula (4.53) is the series expangi@egenbauer polynomials (Fact
12) corresponding to Lemma 4.19.
Now, applying the operator, to (4.53), we get
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Theorem 4.20.For a> 0and ze C* \ inZ, we have
2<k);N2)F(2<k> +N+a- 2)
a

Ara(X Y; 2) = a D AR, S DPim(w, )
meN

where x=rw, y = s, and

(k) + m+ N2
Pk,m(w’ 77) = (

TN——"‘Z)(%C?#)(M ). (4.54)
2

In Theorem 4.20, the functioRy m(w,n) on SN-1 x SN-1 is the Poisson kernelor the re-
producing kernel, of the space of spherikdiarmonic polynomials of degraw®, which is
characterized by the following proposition.

Proposition 4.21. Py m(w, ) is the kernel function of the projection from the Hilbert spa
L2(SNL, 9(n)dn) to s™(RN), namely, for any E JZ"(RN),
plw) (n=m),

di fs - Pim(w, 1) p(m)d(m)do-(n) = {0 (n#m).

Example 4.22.For N = 1, SN consists of two pointgt1), and. 7 "(RY) = 0if m > 2. In
this case, it is easy to see

1
dkzé’

1 (m=0),
sgnn) (m=1).

Proof of Proposition 4.21By the Funk—Hecke formula in the Dunkl setting (see IFacty.13
we have

Pk,m(w’ 77) = {

d [, (K7 ) . mPdertn) = Eiz (O ) Pl

(o +152 _
— I'TH-<|(>+N -2 p(w) (n - m)’
0 (N # m).

Here, we have used Fact 4.12 and (4.35) for the last equidktyce, Proposition 4.21 follows.
|

4.3.5. Integral representation iy 4(y,).

We are ready to prove the main result of this section. Reaath fTheorem 3.39 thady ,(y,)
is a holomorphic semigroup consisting of Hilbert—Schmigkti@tors or.2(RN, 9y 4(X)dX) for
Rez > 0, and is a one-parameter subgroup of unitary operatorsdoiR. Here is an integral
representation Ay ,(y,):

Theorem 4.23.Suppose & 0and k is a non-negative multiplicity function on the rootteys
Z satisfying
2(ky + N > max(1,2 - a). (4.55)
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1) SupposeRez > 0. Then, the Hilbert—Schmidt operat@ a(y,) on LA(RN, 9y a(X)dX) is
given by

s (9 = Gea [ | F0)Mvays sl (4.56)

where ¢, is the constant defined (@.47)and the kernel function a(X, y; 2) is defined
in (4.52)

2) Suppose z iu (u € R\ nZ). Then, the unitary operatd®y 4(yi,) on L2 (RN, 9y a(X)dx) is
given by

Qa1 = ua [ FOIalY: ) Pra)ey (457)

Proof. Thanks to Proposition 4.1, it fices to show the following identity:

Cka fs ., Mcalrw, sp; D p()di()do(n) = AD(r, s, 2 p(w),

for all p € J4™R") andm € N. This follows from Theorem 4.20, Proposition 4.21, and
(4.48). Hence, Theorem 4.23 is proved. O

4.4. Thea=1,2case.
As we have seen in Theorem 4.23, the kernel funcdigg(x, y; z) for the holomorphic semi-
groupQa(y,) is given as

Axalrw, s7;2) = (Viha(r, S Z ) (@, 7).

See(2.5) for the definition f,. In this section, we give a closed formulati(r, s; z t) for
a= 1,2, and discuss the convergence of the integral (4.56) in fEned.23.

4.4.1. Explicit formula for h,(r, s,z t) (a = 1, 2).
Whena = 1, 2, the series expansion in (4.53) can be expressed in termsrokeatary func-
tions as follow.

Theorem 4.24.Let(k) be defined itf2.3), andl, the normalized I-Bessel function (Jde9)).
Then, for ze C* \ inZ, we have:

expEi(r2 + s%) coth@))

a

hea(r, s,z t) =

sinh@) X5
N-1  V2(rs)? 5 (a=
T JrrstT)l<k”¥(W(l+t) ) @=D o
sinhz) @=2)

Proof. In view of the definition|(4.49) ohy 4(r, S; z t), Theorem 4.24 follows from formulas
(4.45) and/(4.46) for/ (a, v; w; t) in Example 4.18. O
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4.4.2. Absolute convergence of integral representation.
By using Theorem 4.24, we shall give an upper boundAips(x,y; z). We begin with the
following:

Lemma4.25.Forb=1,2
1.7 (b, v; w; t)] < eRew (4.59)

foranyte[-1,1],v > 0and we C.

Proof. We have seen in (4.45) and (4.46) the explicit formulas”gb, v; w; t) for b = 1, 2.
Then (4.59) is obvious fdo = 1, and follows from the upper estimate (4.16) of thBessel
function forb = 2. ]

Proposition 4.26. Suppose b is a positive number, for which the inequédity9)holds. Let
a:= % Then the functio 4(X, y; 2) (see(4.52) satisfies the following inequalities:

1) For Rez > 0, there exist positive constantsB\depending on z such that
IAka(%.Y; 2 < Aexp(-B(IXI + [Iyl%)), forany xy e R". (4.60)
2) Forz=iu+e(ueR\nZ, e>0),

. 1
[Aka(X, Y iu + €)] < —N+2<k>+a_ ) (4.61)
sin@)l™ =
Remark 4.27. By Lemma 4.25, the assumption of Proposition 4.26 is fulfiibe b = 1, 2.

We do not know if4.59)holds for b other thard and2.

Proof. Suppose the inequality (4.59) gf(b, v; w; t) holds. Then, by the definition & 4(r, S; Z t)
in (4.49), the inequality (4.59) brings us to the followirggieate:

Ihea(r, s,z 1) < | h@f“”“”“ xp(——(r + )a(2) exp( (rs)?a(2)8(2)).
sin
Here, we have used the functiom&) ands(z) defined in Lemma 412. Sineé + s* > 2(rs)z,
we have obtained:

lhea(r, s, z 1) <

1
Sz XA (7 + $)a(9(1 - 1B))).
|sin h(z)|“ = o3 )
We recall thatAy (X, y; 2) is defined by applying the operatﬁ( to hea(r, Sz ) (see(4.52)).
Then, it follows from Proposition 2.5 that

Aka(%.¥; 2| < Ihea(r, $ 2 Yl < | h(z)|“*2<k>*“ ex |a(——(||x||a + IVMPe@)(1 - BE))).
sin
Suppose now that Re> 0. Then,a(z) > 0 and|3(2)| < 1 by Lemma 4.2. Hence, we have
proved (4.60).
On the other hand, suppose- iu + € (u € R\ nZ, € > 0). Thena(2) > 0, |3(2)| < 1 by
Lemma 4.2, and as we have seen in (4.23)

| sinhz > |sing.
Hence, we have shown (4.61). |

Now we are ready to prove:



50 SALEM BEN SAD, TOSHIYUKI KOBAYASHI, AND BENT GRSTED

Corollary 4.28. Suppose we are in the setting of Theorem 4.23. lefla?.

1) For Rez > 0, the right-hand side of4.56)converges absolutely for anyef L2(RN, 9 o(X)d X).
2) For z = iu € i(R \ nZ), the right-hand side of4.57) converges absolutely for all €
(LY N L2)RN, S a(X)dX).

Proof. 1) It follows from Proposition 4.26 1) that
Aa(X.Y;2) € LZ(RN x RN, Fa(X) I aly)dx dy)

for Rez > 0. Therefore, Corollary is clear from the Cauchy—Schwaregjuality.
2) We shall substituteby € + ix in (4.56) and let goes to 0.
For the left-hand side of (4.56), we use Theorem 3.39 1), ahd g

lsl_rp) Qk,a(75+iu) = Qk,a()’iy)-
For the right-hand side of (4.56), thanks to Propositiof8£2p, we see

grg fR . Aka(X. Y i + €) f(Y)da(y)dy = fR ) Axa(X%Y; i) (V) aly)dy

for f € LY(RN, 9 a(y)dy) by the Lebesgue dominated convergence theorem. Henceawee h
shown that
@)D = [ Al i) Fa)el
R
and the right-hand side converges for dng (L1 N L2)(RN, 9 a(y)dy). Hence, Corollary 4.28
has been proved. |

4.5. The rank one case.

For the one dimensional case, the only choice of the noratneduced root syster is
Z% = {£1} in R up to scaling, corresponding to the Coxeter gréup {id, o} = Z/2Z on
R, whereo(x) = —x. Here(k) = k. In this section we give a closed form af ,(X, y; 2) for
N =1.

First of all, forN = 1 anda > 0, we note that we do not need Lemma 4.19, for which
the assumption was(® + N > 1. Hence, instead of (4.55), we simply need the following
assumption:

a>0 and X>1-a (4.62)

The goal of this section is to find a closed formula of the kefalection Axa(X,Y; 2) (see
(4.52)) for alla > 0 and for an arbitrary multiplicity function subject to (2)6

Proposition 4.29.LetN=1,a> 0,k> 0and2k > 1-a. For ze C*\ in’Z, the holomorphic
semigrouma(y,) on L2(R, |x%*32dXx) is given by

2k+a-1,-
Qualy) f(x) = 27a (2 I)F(— f f(Y)Ara(X Y; 2)ly2<22dy,

where
. O+ a— 1, S0 5 |yys Xy — 2 xy?
Axa(X.Y;2) = ( a ) Slnh(Z)2k+a 1 (asinh(z)) T3 a’ smh(z) (asmh(z)))
(4.63)

Herel,(w) denotes the normalized Bessel funci(@re).
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Proof. By Theorem 4.20, the kerndl, o(X, y; Z) can be recovered from a family of functions
A(m)(r s,2) : me NJ}. In the rank one cas&P consists of two points, and correspondingly,
Theorem 4.20 collapses to the following:

Aka(X.Y; 2)
—1
= 2((%mnﬂa+Amwuwaswww)
C L g 3(XP+lyP) coth@) 2 |xyi2 2 |xy
_ _ka —k+(1/2) <
2 snhp (Iﬂk’a"(asinh(z))JrIﬁk“(as nh(z)) sgnto))
_ CK e—‘(|X|a+|y|a)COth®( 1 —_ (g |Xy|2 )+ Xy —_ (g |XM% ))
2 sinh@ \(asinh@)*o “*°\asinh@)’/ " (asinh@)*1 “**\asinhE)
where
/1k,a,0 = T, /1k,a,1 = a ) Ckﬂ =2a a F(T)

Here, we have used Example 4.22 for the first equality, antbtineula (4.20) ofA(kiQ for the
second equality. This finishes the proof of Proposition 4.29 O

5. THE (K, @)-GENERALIZED FOURIER TRANSFORMS %} 5

The object of our study in this section is the&)-generalized Fourier transform given by

i _
x5 (XA~ 4%

This is a unitary operator on the Hilbert spaGgRN, 9y o(X)dX).

As we mentioned in Introduction, the unitary operait, includes some known trans-

forms as special cases:

e the Euclidean Fourier transforin [31]a € 2,k = 0),

e the Hankel transform [39] a=1,k=0),

e the Dunkl transformy (a=2,k>0).
In this section, we develop the theory of tHe &)-generalized Fourier transforié, , for
generala andk by using the aforementioned idea ©4-triple. The point of our approach
IS that we interprety , not as an isolated operator but as a special value of therymép-
resentatiort), , of the simply connected, simple Lie gro®l(Z R) at Yai (see [(3.37)), or
as the boundary value of the holomorphic semigroup. Thersegehat many properties of
the Euclidean Fourier transforms can be extended tokil@-feneralized Fourier transform
Zi. by using the representation theory®£(2, R). Our theorems fof , include the inver-
sion formula, and a generalization of the Plancherel foaythie Hecke formula, the Bochner
formula, and the Heisenberg inequality for the uncertaomigciple.

As in Diagrani 1.4 of Introduction, the Hilbert spac&RN, 9y o(X)dX) admits symmetries
of € xS (2, R) for general k, a), and even higher symmetries thas S L(2, R) for particular
values of k, a). In fact, if k = 0, then the Hilbert spade?(RN, 9, 2(X)dX) is a representation
space of the Schrodinger model of the Weil representatiea [20] and references therein)
of the metaplectic group p(N, R) for a = 2, and thed_2-model of the minimal representation
(see [41]) of the conformal grouPp(N + 1,2) fora = 1. The special valua = 2 has a

i ( 2(ky+N+a—2
a

rg.k’a =ez
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particular meaning also for genetaln the sense tha#,, is equal to the Dunkl transform
9. How about thea = 1 case for gener&? The unitary operator

I = Fra (5.1)

may be regarded as the Dunkl analogue of the Hankel-typsftian .%,; (see Diagram |1

in Introduction). As we have seen in Section 4.4, this ugitarerator.#; can be written by
means of the Dunkl intertwining operatdg and the classical Bessel functions (see Section
5.3).

5.1. %, as an inversion unitary element.
The k, a)-generalized Fourier transfor# , on L2(RN, 9, o(X)dx) is defined as

x ( 2(k)+N+a—2
2

Fa = €TI0 (yis). (5.2)
Here, we recall from (3.37) that

s = ex(20) =B} (0 )

is an element of the simply connected Lie gr&i(2, R), and from Theorern 3.30 th&, ,
is a unitary representation 8fL(2, R) on the Hilbert space2(RN, 9y .(X)dx).

In this subsection, we discuss basic propertie%of for generak anda, which are derived
from the fact that}/%i is a representative of the non-trivial (therefore, the kEstljelement of
the Weyl group forl,.

Theorem 5.1.Let a> 0 and k be a non-negative multiplicity function on the rooteys#

satisfying the inequality & 2(k) + N > 2 (see(3.30).

(1) (Plancherel formulaJhe(k, a)-generalized Fourier transforndy , : L2(RN, 9y o(X)dX) —
L2(RN, 9 a(X)dX) is a unitary operator. That isZ, is a bijective linear operator satis-
fying

1 Pca(lic = Ifll  forany fe LARY, $a(x)dX).

(2) We recall from(3.28)that ®?(p, ) is a function orRN defined as

(G)] _ (Aam) 2 1 N
O (p. %) = pIL " (ZIM) exp(~—INF).  x e R,

for £,me N and pe #"(RN). Then®?(p, ) is an eigenfunction off,:
Fral@2(p, ) = € DO (p, ). (5:3)

Proof. Since the phase factor in (5.2) is modulus one, the firstrsaté is an immediate
consequence of the fact th@t, is a unitary representation 8fL(2, R) (see Theorem 3.30).
To see the second statement, we recall from Proposition B.5ad Theorem 3.19 that
(Df‘)(p, -) is an eigenfunction ofu,(k). Then, the integration of (3.33 a) leads us to the
identity (5.3). |

Corollary 5.2. The(k, a)-generalized Fourier transforn#, , is of finite order if and only if
ac Q. Ifais of the form a= qﬂ where q and gare positive integers, then

(Fa)™ =id.
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Proof. We recall from Proposition 3.12 3) that
Wia(RV) = C-spart®®(p,-) | £ € N,me N, p € " (RV))

is a dense subspaceliA(RN, 9y 2(X)dX). Hence, it follows from[(5.3) that the unitary operator
Fxais of finite order if and only i € Q. If a = g, then (Fi.)* acts ond®(p, -) as a scalar
multiplication by

(e—in(£+%’))2q _1
for anym e N and anyp € J4™(RN). Thus, we have proved,)* = id. i

Corollary 5.2 implies particularly tha#; := %, (see((5.1)) is of order two, and the Dunkl
transform% = %, is of order four. We pin down these particular cases as falow

Theorem 5.3(inversion formula) Let k be a non-negative multiplicity function on the root
systen¥z.

1) Letr be any positive integer. SuppdX&)+N > 2— % Then,ﬁk,% is an involutive unitary
operator on E(RN, ﬁk%(x)dx). Namely, the inversion formula is given by

(ﬁk’%)_l = ‘gk,% (54)

2) Let r be any non-negative integer. Suppose

2ky+N>2- .
)+ N> 2r+1

Then,ﬁk,rz1 is a unitary operator of order four on 2l(JRN,ﬂk’%(x)dx). The inversion
formulais given as

(Z;% ) = (Fi 2. H(=X). (5.5)
Proof. The first statement has been already proved. In the secalethstat, we remark that
the inversion formulal (5!5) is stronger than the fact th@{)* = id for a = ;2. To see

(5.5), we use (5/3) to get
(Fia)? @2 (p, ) = expEm(2r + 1)ri)dP(p, )
= (-1)"0P(p, )

if a= T2+1 Sincep(-X) = (-1)"p(x) for p € S£™(RN), we have shown that (5.5) holds for

any f € Wia(RN). SinceW,a(RN) is dense i (RN, 9y o(X)dx), we have proved (5.5). O

Remark 5.4. Theorem 5.3 2) for r= 0 (i.e. %> = %, the Dunkl transform) was proved
in Dunkl [11], and followed by de Je[83] where the author proved the inversion formula
for C*-valued root multiplicity functions k. Our approach basedtbe S L representation
theory gives a new proof of the inversion formula and the Etinel formula for.7, 5 even
fora= 2.

Remark 5.5. We recall from Theorem 3.31 that(RN, 9% 4(X)dX) decomposes into a discrete
direct sum of irreducible unitary representations oGS L(Z, R). Hence, the squargZi..)?
acts as a scalar multiple on each summand(8#43) by Schur’'s lemma becausg is a

2(ky+N+a—2

central element of G (s€8.38) and(Fa)? = €7 @ I Qa(yxi) by (5.2). Sincey,; acts on
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the irreducible representation( ,m) as a scalar e”tam*1 by Fact 3.27 (5),#2, acts on it
as the scalar
ein(%aﬁ'z)e—ni(/lmm+l) _ e—%""
This gives us an alternative proof of Corollary 5.2.
Next, we discuss intertwining properties of thed)-generalized Fourier transfor, ,
with differential operators. L& = Zszl x;0; be the Euler operator dr" as before.

Theorem 5.6. The unitary operator% , satisfies the following intertwining relations on a
dense subspace of RN, 9y a(X)dX):

1) #acE=—-(E+N+2K)+a—-2)o Fa.
2) Prao X = =X 2Ax 0 Fia.
3) Frac NP 2Ax = ~IIX[ 0 Fia.

These identities hold in the usual sense, and also in thellisbn sense in the space of
distribution vectors of the unitary representation of G GifRN, ¢ o(X)d ).

If we use¢ (instead ofx) for the coordinates of the target space®f,, we may write
Theorem 5.6 2) and 3) as

Fralll - IF)E) = —lEI 2 AcFical F)(E), (5.6 a)
Fialll - IF2MF)(E) = ~lIEIF Fica( F)E)- (5.6 b)

Proof of Theorem 5/6We observe thay%i is a representative of the longest Weyl group ele-
ment, and satisfies the following relationssig:

Ad(%g)h = —h, Ad(’}/%i)e*' =g, Ad(),%i)e— _—
(see(3.1) for the definition ad*, e, andh). In turn, we apply the identity
Qa(@wna(X)a(@) ™ = wia(Ad(@X), (g€ G, X ).

to Ey, = wkal(€), Ey, = wka(€7), andHy s = wka(h) (see(3.5)). Then we have

gk,a o Hyq = —Hgaq 0 ﬁk,a, (5.7)
gk,a o Eza = _Ei’a o ﬁk’a,
gka o E;,a = _E;’a ] rg.k’a,

becauseZ, is a constant multiple oﬂ’zk,a(y%i) (see(5.2)). Now, Theorem 5.6 is read from
the explicit formulas oE; , E, ., andHya (see(3.3)). O
5.2. Density of (k, a)-generalized Fourier transform .7, ,.

By the Schwartz kernel theorem, the unitary operatQy can be expressed by means of a
distribution kernel. By using the normalizing constagy (see (4.47)), we write the unitary
operatorZ , on L2(RN, 9 a(X)dX) as an integral transform:

Fia O = Gn [ Brale: 0 (el 58)

R
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Comparing this with the integral expression@f,(y;) in Theorem 4.23, we see that the
distribution kerneBy 5(¢, X) in (5.8) is given by

2<k>+N+a 2

Bra(xy) = & FDNG(x yii5) (5.9)

becauseZi, = € a7 Oy a(yi3) (seel(5.2)).
Now, Theorem 5.6 is reformulated as thefeliential equations that are satisfied by the
distribution kerneBy 5(X, &) as follows:

Theorem 5.7. The distribution B,(-, -) solves the following dgierential-djference equation
onRN x RN

E*Bya(£, X) = E¥Bya(é, X), (5.10 a)
I€1172A Bya(é, X) = —IIXIPBxal(é, X), (5.10 b)
IXIP2ALBa(é, X) = —lI€PBxalé, X). (5.10 ¢)

Here, the superscript in E A}, etc indicates the relevant variable.

Remark 5.8. For a = 2, Theorem 5.7 was previously known as thgedential equation of
the Dunkl kernel (cf[10]).

Proof of Theorem 5! 7First we use the identity (5.7) as operatorsfohfor anya > 0 andk.
It is convenient to write

Hk’a = g(f + 2E),
whereE is the Euler operator anfl:= N + 2(k) + a — 2. Then, by|(5.8), the identity (5.7)
implies

fR N(({’ + 2E%) (%)) Bealé, )ha()dx = - fR Y + 2E9Balé. )Bha()dx  (5.11)

for any test functiorf () (i.e. f(x)ﬁk,a(x)% e .Z(RN)).
Now we recall that the densit§,(X) (see(1.2) for definition) is homogeneous of degree
a—2+ 2(k) (= ¢-N), we have

Exﬁka(x) = (€ = N)Jxa(x). (5.12)
On the other hand, it follows frofx L, x; ;2 ax -3 &xj = —N as operators, we have
f (E*f)(X)g(X)dx = —f f(X)(N + EX)g(x)dx (5.13)
RN RN

Combining (5.12) and (5.13), we have
the left-hand side of (5.11 — f f(X)(€Bya(é, X) + 2E By a(é, X))k a(X)d X
RN

Hence, the identity (5.1.1) implies that the distributionred B ,(¢, X) satisfies the dierential
equation

E*Bra(£, X) = E*Bya(é. X). (5.14)
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Next, the identity/(5.6/a) implies
f N Bea(&, MIXIf (X)Ta(x)dx = —[I£]*2A; f ) Bia(&, X) f (X)dha(X)dX
R R

for any test functiorf. Hence the secondftierential equation (5.10 b) follows.
Finally, by the identity/(5.6 b), we have

[ Brae (10 851 00)raldx = 1" | B 01 (i
RN RN

Sincel|x||*2AY is a symmetric operator drf (RN, 9y a(x)dX), the left-hand side is equal to

| (Bt 9) 0000
RN
Hence the third dierential equation (5.10 c) is proved. ]

We continue basic properties on the kerBgl(¢, X) of the , &) generalized Fourier trans-
form.

Theorem 5.9.

1) Byxa(AX, &) = Bxa(X, A¢) for 2 > 0.
2) Bra(hx hé) = Bya(x, &) forhe €.

3) Bk,a(f’ X) = Bk,a(x’ f)
4) Ba(0,X) = 1

Proof. 1) This statement follows from theférential equation (5.10 a) given in Theorem 5.7.
2) Since %, commutes with the action of the Coxeter gro@ipthe second statement
follows from the fact thatl ,(x)dx is aC-invariant measure.
3) Puttingu = 3 in (4.50), we get

ﬂ'i t) 2<k>+N+a 2

hea(r. s i) =¢ ’”f( (5.15)

2 2(ky+ N - 2 2(rs)? )
a’ 2 ai

In particular, we have
i i
hKa(ra Sy El t) = hk,a(S, ry 5, t)
In view of (4.52) and Proposition 2.5, we conclude that

Ara(%.¥; %i) = Axa(y. % %i).

Hence, the third statement has been proved

4) By Lemma 4.17hyo(r, 0;%; 1) = e ““%". Since the Dunkl intertwining operatvf
satisfiesvk(1) = 1 (1is the constant functlon O}RN) (see (I12) in Section'2), it follows from
(4.52) thatAa(x y; &) = &% 7. Finally use((5.9). O
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5.3. Generalized Fourier transform .%, , for special values ata = 1 and 2.
In this subsection we discuss closed formulas of the kéBgpglx, y) of the , a)-generalized
Fourier transform%, , (see (5.8)) in the case = 1,2. The k, a)-generalized Fourier trans-
form % 4 reduces to the Dunkl operat&i if a = 2, and gives rise to a new unitary operator
%, the Dunkl analogue of the Hankel transfornai& 1.

We renormalize the Bessel functidnof the first kind as

— . Wi —v _ b (_1)[W2[
IW = (3) 3w = ; 0T (v + L+ 1) (5.16)

Then, from the definitiori (419) df (2) we have
J,w) = T1,(=iw) = T,(iw).
By substitutingz = ”5' into (4.58), we get the following formula:
(K + M52 )e 20N, e (V2(r9)2(1+1)7) (a=1),
e 2K+ y)grirst (a=2).

Together with((5.9) and (4.52), we have:

i
ha(r, s, > t) = {

Proposition 5.10. In the polar coordinates x rw and y= s, the kernel B,(x,y) is given

by

F(¢k) + 552) (Vi g 2 (VZFSTT+)) . ) (2= 1),

(Vi(e™™))(w. ) (a=2).
As one can see form (5.17), the kerBgb(x, y) coincides with the Dunkl kernel ax,(-iy)

(cf. [12]).

Theorem 5.11.Let k be a non-negative root multiplicity function=al or 2, and xy € RN.
Then|Bya(X, y)l < 1.

Bra(rw, i) = { (5.17)

Proof. Theorem 5.11 follows from the special case, i.&: 7, of Proposition 4.26 2) because
IBa(X Y)I = [Aka(X, Y; i5)l by (5.9). O

Remark 5.12. For a = 2 it was shown thaiB»(x, y)| is uniformly bounded for,y € RN first
by de Je{B3] and then by Roslg61] by 1.

We note that Theorem 5.11 implies the absolute convergertbe mtegral defining# ,,
fora=1,2 on (L n L2)(RN, 9a(X)dX), as we proved in Corollary 4.28.

5.4. Generalized Fourier transform .#, , in the rank-one case.
This section examine%y , and its kerneBy a(X, y) in the rank-one case.
SupposeN = 1,a> 0,k > 0, and X > 1 — a. Then, by the explicit formula of the kernel
Axa (see Proposition 4.29), followed by the formula (5.9), we ge
2k+a-1

Bya(x y) = €273 )Ak,a(x,y;ig)
2k+a-1
(=

=I

— 2 Xy = /(2 .a
J%l(yxyp) + ) J%ﬂ(yxw)), (5.18)
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whereJ,(w) = 1,(-iw) is the normalized Bessel function given in (5.16); here lirench
of i4 is chosen so that?l= 1. Thus, fora > 0,k € R* suchthatR > 1—a andf €
L2(R, |x%*3-2dX), the integral transforn¥, , takes the form

Fiaf(y) = 27 a % 1)ff(x) (T |x34)

) sz( [xy12))Ix%r22d x

Remark 5.13. If we set

Bra(x,y) = %[Bk a(Xy) + Bra(X, —y)]
2k+a-1 a
= F(T)sz( |x342).

Then, the transforn, 5(f) of an even function f on the real line specializes to a Hankel
type transform orR,.

Let us find the formula (5.18) by an alternative approachstFior general dimensioRN,
by composing (5.9). (4.52), and (5!15), we have

Bl = (Ve (5 2O EN=2 2O )

in the polar coordinates = rw, y = 9. Furthermore, in thé& = 1 case, a closed integral
formula of the Dunkl intertwining operatm‘k is known:

(ka)(x)— r(k)r( ) f fEX)(L+ t)(1 - 2k dt, (5.19)

see[11, Theorem 5.1]. Hence, we might expect that the fa1Bul8) for the kerneby 4(X, )
could be recovered directly by using the integral formuld % of V. In fact this is the case.
To see this, we shall carry out a compution of the followinggral:
r'k+3) 1y(2 2k -1 2(rs)
T(KI(3) a 2
forx=rw,y=s(,s>0,w,n7=+1).

We notice that the summation (4.42) faf(b, v; w; t) is taken ovem = 0 and 1 ifN = 1.
Hence we have

2 2k—1 2(rs)? 2k+a-1\(=~ ,2xyZ\ (2k+ 1)txy~ 2|xyi2
7 (G 25 HE o) = (B2 3 (B2) + BR5 (20)

On the other hand, by using the integral expression of tha Beiction and the duplication
formula (4.37) of the Gamma function, we have

1 1
Hkr i) ' (1 + )1 -t)dt={ 1
L(KI(5) Jo ]

Substituting these formulas into the right-hand side c2@pwe have completed an alterna-
tive proof of (5.18).

Bea(X.Y) = (@.m)A+HA-t)dt  (5.20)

a

(m=0),
(m=1).

5.5. Master Formula and its applications.
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5.5.1. Master Formula.
We state the following two reproducing properties of thenke¢By , of basic importance.

Theorem 5.14.(Master Formulapuppose & 0and k is a non-negative multiplicity function
satisfying2(k) + N > max(1 2 — a).

1) For x,y € RN, we have

i
Ca f exp{ - IUl)Brca(x. )Bica(U, Y)Phea(u)du

2(k)+N+a 2

= D e L ¢ 1) Bua ) (5.21)

2) Let p be a homogeneous polynomial®hof degree mThen we have
1 1. o
Ca fR exp(—— i) (exp(~ o1 - 172Ak) p) (U)Brea(X, W) Pra(U)d
=™ e — L1 (ex = [ - -
= &% exp~ZIIxI)(exp(~ ol 1722 P) (9. (5.22)

Remark 5.15. For a = 2, the reproducing propertie¢5.21) and (5.22) were previously
proved in Dunk[12, Theorem 3.2 and Proposition 2.1 that case, theses properties played
a crucial role in studying Dunkl analogues of Hermite polymals (sed53, Section 3}, the
properties of the heat kernel associated with the heat egu&br the Dunkl operators (see
[53, Section 4), and in the construction of generalized Fock spaces [Ee8ection 3].

5.5.2. Proof of Theorem 5.14.
We begin with the proof of (5.21). From the semigroup law

QKa(Yzl)Qk,a(Yzz) = Qk,a(721+zz), for Yz:Yz € WV)’

the integral representation O 5(y,) (see Theorerm 4.23) yields

Cka fR . Aral(X u; i%)AKa(U, y; i%)ﬁka(u)du = Aa(X Y, ig). (5.23)
We set
u=2ky+N+a-2
In view of (4.49), a simple computation shows

hea(r, s, 4,t)
hk,a(zar Sl 2 1] t)

= 2% exr(é(ra + ).

Applying Vi, and using (4.52), we get

Ara(x u; 4) 2% exr.( (11X +||u||a))AKa(2ax,u;%i)

= (265 exp(gl(nxna + [Ull%)) Bea(24 . ). (5.24)
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In the second equality, we have used (5.9). By substitubn24) and|(5.9) into (5.23), we
get

2 : 1 Bk [
Cka fR . eXp(EIIUIIa)Bk,a(Zﬁx, U)Bya(23U, )y a(U)du = 272" exr(—a(||x||a+||y||a))BKa(x, y).

SinceBya(23x, U) = Bya(x, 2aU) (see Theorern 5.9 1)) anf.(u)duis homogeneous degree
N + 2(k) + a — 2 = u, the left-hand side equals

u i
2 aCka f exr.(gl ||u||a) Bica(X, U)Bica(U, y)dia(u)du.
RN

Hence, (5.21) is proved.

The remaining part of this subsection is devoted to the pobdfie second statement of
Theorem 5.14.

We recall from|(3.3) and (3.6) that

_ 00 _
IEk,a = Wka (1 O) = 5||X||2 aAk

are infinitesimal generators of the unitary representadgonof S L(Z,R) onL2(RN, P a(X)dX).
We set

. (0 1 i (0 O
Co .= Expl(0 O) Expz(1 0), (5.25)
and introduce the operator
e 25 Y eoerf - ) L 1o,
PBra = expl Ey,) exr(EEKa) = ex;(—allxna) ex;(—gnxll aAk). (5.26)
Then, the following identity irsl,,
Loy o\3 iyt 0 1
_ |2 2 — i _
wan( s Y AL D e
leads us to the identity of operators:
Ba 0 wk,a(h) = wk,a(k) o PBya- (5.28)

SinceHy, = wka(h) acts on homogeneous functions as scalar (see (3.3)), we &moiori
that homogeneous functions applied®y, are eigenfunctions aby 5(k). Here is an explicit
formula:

Proposition 5.16. For £, me N and pe J4"(R"),
a\?l
Ba(POIIXIT) = (=5) A0 (p. ).
Proof. We recall from Lemma 3!7 that the linear map
Tia: C*(RY) @ CO(R,) = CRN\{0), (p.y) = p()y(IIXI?)
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satisfies the following identity omZ,"(R") ® C*(R.):

. 2
eXdIEEE’a) 0Tka=Tkao (ld ®eXd—g(r% + (Aam + 1)%))) (5.29)

Applying (5.29) top® r¢, and using Theorem 3.11, we get
i - 4 _ a¢ (“ .a,m) 2
exr(EEKa) o Tra(P®r)(X) = Tka(p® (—5) oL (ar))(x)

= (—2)’55! p(¥) L?mm’(gnxna).

Hence,
+ I - {
Ba(POIIXIY) = explEL,) exr 5 i) Tka(p® 1)
_ (. ay 1 (tcam) (2
= (~3) P09 exp~ X)L " (S IXI?)
a\¢

- (_E) 00 (p, ).

Thus, Proposition 5.16 has been proved. O

Remark 5.17. Let pe J™(R"). By (3.3), wka(h) acts on gx)[|x|[* by the multiplication of

the scalarlam + 1 + 2¢. Hencewy (k) acts ond®@(p, x) as the same scalali o, + 1 + 2¢.
This gives an alternative proof of the formy&33 a)in Theorem 3.19.

We now introduce the vector space
PARN) := C-sparip(X)|IX[* : p € Z4"(RN) for someme N, ¢ € N}. (5.30)

Fora = 2, Z,(RN) coincides with the spacg?(RN) of polynomials onRN owing to the
following algebraic direct sum decomposition (see [5, Teen5.3]):

o [3]

PRN) = (B P I AT ®Y),

m=0 ¢=0
We introduce an endomorphism &#,(RN), to be denoted bye('?)*, as
(e“g)*(p(x)llxna") = e D p())|IXI¥,  for pe #MRN) andf € N. (5.31)

Remark 5.18. The notation(e3)* stands for the ‘pull-back of functions’ on the complex
vector spac&N given by

(73) (@) = f(e'52)

However, taking branches of multi-valued functions intccamt, we should note thé&rig)* #
id fora = 3.

The next proposition is needed for later use.
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Proposition 5.19. For a > 0, the foIIowing diagram commutes

Po(RN) —— LR, 9ka(¥)dX)
(8 l lﬂk,a
Po(RY) —— LR, 9ka(¥)dx)

Proof. The identity (5.28) irsl, lifts to the identity
PBra 0 Ua(Expth) = Qa(Exptk) o Bya,
and in particular
Pa© QuaEXP ) = QuaEXPZK) © Bia

on Z,(RN) where the both-hand sides make sense. In terms oktlaggeneralized Fourier
transform%, , (see(5.2)), we get

m2ky+N+a-2 4
’%k,a o eX E a )Qka(EXth) = rg.k,a o) %Ka'
On the other hand, we recall from (3.6) that
N
N + 2<k> +a- 2
wa(h) = = Z

=1

and therefore its lift to the group representation is given b

(QealExpth) F)(x) = exp N+ 2<k;+ a- 2t)f(e% ). (5.32)

Substituting = £, we get% o ( i%)* = P a0 PBya. This completes the proof of Proposition
5.19 m]

Whenk = 0 anda = 2, %, coincides with the inverse of the Segal-Bargmann transform
restricted to22(RN) = Z,,(RN) (cf. [20, p. 40]). We may think o3, , as a k, a)-generalized
Segal-Bargmann transform. We are ready to prove the setatetnent of Theorem 5.14.

Proof of Theorem 5.14 2)n view of Propositiori 5.19, we havé, o %xa(p) = Hka ©
(e'%)*(p). Since €73)*p(x) = € = p(x) for a homogeneous polynomial of degregwe get

Fra© Bra(p) = e_i%%k,a(p)-

Hence, the reproducing property (5.22) is proved. |

5.5.3. Application of Master Formula.
As an immediate consequence of Master Formula (see Theafiel)) @e have:

Corollary 5.20. (Hecke type identity)f in addition to the assumption in Theorem 5.14 2),
the polynomial p is k-harmonic of degree m, ti{er22)reads

Fral€ T p)(E) = mer T pg), (5.33)
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Corollary 5.20 may be regarded as a Hecke type identity ®¥kja)-generalized Fourier
transform.% .. An alternative way to prove this identity would be to suhgtO for¢ in
(5.3).

The identity (5.33) is a particular case of Theorem 5.21\Wwekor this, we will denote by
H,, the classical Hankel transform of one variable defined by

Ha)(® = [ O3 (S )r s (5.34)

for a functiony defined orR,. Here,J, is the normalized Bessel functidp(w) = (%), (w)
(seel(4.9)). Then thd(a)-generalized Fourier transfor#y , satisfies the following identity:

Theorem 5.21.(Bochner type identity)f f € (L' N L2)(RN, 9 a(X)dX) is of the form {x) =
P(X)¢(lIXl) for some pe 24 ™(R") and a one-variable functiop onR,, then

2m+2<k>+N -2

Fra(£)(€) = a2 e Ep(E) H, amawenz () (I€).

In particular, if f is radial, thenz, 5(f) is also radial.

Remark 5.22. The original Bochner identity for the Euclidean Fourier tisform corre-
sponds to the case a 2and k= 0. For a = 2 and k> 0, Theorem 5.21 corresponds
to the Bochner identity for the Dunkl transform which wasy@ain[2]. Fora= 1and k=0

it is the Bochner identity for the Hankel-type transformiih(see[39)]).

Proof of Theorem 5.21lt follows from (4.20) that
Y 2, .a
A, —) = exp( (ﬂka,m + 1))(rs) fo—3+1] ka,m(g‘(rs)Z)
2, .a
— Aa—dkam _ — 2
= g (rs)mexr( 2(/1k,am+ 1))Jlmm(a(rs) ) (5.35)
We sety(r) := r™y(r). Sincep is homogeneous of degreg we have

(IIX||)¢m(I|XII) = Py (I1xl).

From the definition of the unitary operatof” (y,) (see (4.3)), we get
Qaly) F(9) = POIXI™QL (y)wrmIXI)
= p(¥)IIxI™" fo AN, S, 2ym() 29 N2 2d s

Substituting/(5.35) into the above formula with ”7' we get
Oualyy) 19 = & exi(~Z (dkam + 1))PKY) f Tian (3(||x||s)%) Y(g) AN a3

_ -akamexpl( (/lkam+1))p(X)Ha,Akam(¢)(||X||)

Now, Theorem 5.21 follows from (5.2). O
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5.6. DAHA and S Ly-action.
In this subsection we discuss some link between the repasEmQ, , of SL(Z, R) in the
a = 2 case and the (degenerate) rational DAHA (doulfim@ Hecke algebra). To be more
precise, we shall see that our representafipn of S (2, R) induces the representation of
SL(2,C) on the algebra generated by Dunkl’s operators, multipboaoperators, and the
Coxeter group (see (5.42) below). This induced action onofperators coincides essen-
tially with a special case of th® L(2, Z)-action discovered by Cherednik [6] and that of the
S (2, C)-action by Etingof and Ginzburg [19]. Note that our apptoélaut not the result) is
new in that we use our action on functions to derive the aaiiothe operators in the Hecke
algebra. The authors are grateful to E. Opdam for bringieq tttention to this link.

We begin with an observation that® is a representation of a gro@on a vector space
W then we can define an automorphism of the associative al@atat@V) by

A QQAQQ) ™Y, geG. (5.36)

We shall consider this induced action f8r= S1(2, R), Q = O, (see Theorem 3.30) =
the vector space consisting of appropriate function®%n

Remark 5.23. We do not specify the class of functions here. Instead, weusteethe formula
(5.36)to define algebraically the G-action on a certain subspac&wd{V). The point here
is that the G-action on such a subspace will be well-definet @hen the group G may not
preserve W.

We begin with a basic fact on Dunkl operatorsih For¢é € RN, we define the multipli-
cation operatoM; by

M, f(X) := (€, X F(X).

Choose an orthonormal basis, ..., &y in RN. As in Section 2.2, we will use the ab-
breviationT;(k) for Dunkl operatorsT, (k), and M; for M;,. Then we have the following
commutation relations:

(@, &), &)

lleell?

[T, Ml =65 +2 ) k,

a€R

re, foranyl1<i,j<N. (5.37)

Since the formula (5.37) is symmetric with respect é&md j, we have:
[Ti(k), M;] = [T;(k), Mi] forany1<i,j<N. (5.38)
Furthermore, we have the following formulas:

Lemma 5.24.Leté € RN and se C.

1) [Aw Mg] = 2T (K).
2) eSAk Mge_SAk = M§ + ZSTf(k)

The first statement is due to DufkD, Proposition 2.2]but we give its proof below for the
reader’s convenience.

Proof. 1) It is suficient to prove the formula faf = ¢ (j = 1,..., N).
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By using (5.37), we have
[T, Mg ] = Ti(Q[Ti(K), M;] + [Ti(k), M1 Ti(k)

=265, TR +2 Y m%m(kya +1,Ti(K):
et

Summing them up over and using the following relations:
N

D (@ ETiK) = Ta(K),
i=1

T,(Kr, +r,T,(K) =0, (see(D1)in Section?2.1)

we get
[Ak, Mg ] = 2T;(K).
2) The second statement is straightforward from the firs¢stant. O

Let us consider the induced action®fon EndV) (see Remark 5.23).

Proposition 5.25. We fix a non-zerg € RN.
1) The induced action of) ; by (5.36)preserves the two dimensional subspace

CZ := CM; + CT¢(K).
2) The resulting representation &L(2, R) on C§ descends to S2,R), and extends holo-

morphically to S 2, C).
3) Via the basigM;, T¢(K)}, the representation of S2, C) on C§ is given by

¢ SL2.C) - GL:(CD). (é S)H(i’é ‘[i)B). (5.39)

Proof. 1) SinceS (2, R) is generated by Expg") and Expte”) (t € R), it is suficient to
prove that the subspaciV; + CT(K) is stable by the induced action of these generators. In
light of the formula(3.3), we have

it
Qua(Expte’) = EXPAEL) = exp(5IIXIE).
Obviously, this action commutes with the multiplicationeogtor M;. On the other hand,
applying (2.21) witha = 2 anda = -%, we get
it it ,
exp(§||x||2) o Te(K) o exp(—§||X||2) = T.(K) - itM,..

Hence, ExpEy,) preserves the two-dimensional subspadé: + CT,(k), and its action is
given by the following matrix form

Expte’) (cl) ‘1“) (5.40)

with respect to the bas|$/,, T.(k)}.
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Next, we consider the action
_ _ it
Oy 2(Expte)) = EXp(tEr,) = exp(EAk).

Obviously, it commutes with Dunkl’s operatdg(k). On the other hand, applying Lemma
5.24 2) withs = &, we get

it it .
exp(%Ak) oMo exp(—%Ak) = Mg+ itT(K).
Hence, ExpE, ,) also preserves the subspédé, + CT.(k), and its action is given as
Exptte) — (& S) . (5.41)

Thus, we have proved the first statement.
2) The center o6 L(Z, R) consists of the elements Exptk) (n € Z) (see (3.38)). Let us
compute the action of Ex{K) on C§ = CM; + CT,(K). For this, we recall from (5.27) that

Exp(tk) = co Expth)c, forteC.

In view of the formulas/(5.40) and (5.41), the elemest= Expi (8 é) Exp‘§ (2 8) (see

(5.25)) acts orC? as
1 i\(1 0 (1
©=o Yli 1) o)
P z 1

It follows readily from the formula

N + 2(k)

(©aEXPEM) 1) (9 = exp|
(seel(5.32)) that the action on Exipl on C§ is given by

Exp(th) — (g ec_)t).

t) f(€X)

Therefore, Expk) acts onC§ by the formula:

Ioi\(¢ 0\(: i\ [coshf -isinht)
;3 1)\0 e'J\5 1 isinhg)  cosh()
In particular, ift = iz, then Expinrk) acts as1)"id onC2. Thus, the action o8 L(2 R)

descends t& (2,R)/2Z ~ SL2,R). Then, clearly, this two-dimensional representation
extends holomorphically t8 L(2, C). Hence, the second statement is proved.

3) Since a representation 8fL(2, C) is uniquely determined by the generators Egp)
and Expte’) (t € C), the third statement follows from (5.40) and (5.41). O

Let HH be the algebra generated by
(M, T, : £ e RN} UG, (5.42)
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where( is the Coxeter group. Its defining relations are given by tmutativity of the
Dunkl operatord¢(Kk) (see (D2) in Section/2), the commutativity of the multipkion oper-
atorsM,, the commutation relations (5.37), and the followix@quivariance:

hoT,(K)oh™ = Tre(k), hoM;oh™=M,, foranyhe@, ¢éeR",
seel[7] 19].

We recall from Proposition 5.25 3) that the matrix repreagan of theS L(2, C)-action on
CZ = CM; + CT,(K) does not depend ane R \ {0}. Then, a simple computation relied on
(5.38) yields

[9-Ti(K).g-Ti(K)] =0=g-[Ti(K), Tj(K)],
[9-Mi,g-Mj] =0=g-[M;, M]],
forany 1< i, j < N and for anyg € S L(2, C). Likewise, we get from (5.37)
[9-Ti(k),g- Mj] = [Ti(k), M;].

Furthermore, the representatiofn, of S (2, R) commutes with the action of the Coxeter
group€. Therefore, the action & L(2, C) on C§ (¢ € RN\ {0}) and the trivial action on the
Coxeter grougt extends to an automorphism idfi because all the defining relationste
are preserved bg L(2, C).

Hence, we have proved:

Theorem 5.26. The representatiof, of S L(2, R) induces the above action of §.C) on
the algebra HH as automorphisms.

Remark 5.27. The SI(2, C)-action on the algebra H is essentially the same with the one
given in[19, Corollary 5.3]

Remark 5.28. As we saw in the proof of Proposition 5.25, the cer(t_slr _01) of SL2,C)

acts oan, as—id. Therefore, PS(2, C) acts on HH as projective automorphisms.

In order to compare th8 L(2, Z)-action onHH defined by Cherednik [6] we consider the
following automorphism of L(2, C):

cC D iC D

and twist theS L(2, C)-action onHH (see Theorem 5.26) hy This means that the new action
takes the form

1:SL2,C) - SL2,0), (A B)H(A ‘iB), (5.43)

o1 SL2.C) - GL(CY), (é g) - (_AC ‘[f‘), (5.44)
on the generator@§ = CM; + CT,(Kk) (seel(5.39)).

We write r; andt, for the automorphisms dfH corresponding to the generat((%? 1)

and(i 2) of SL2,7Z). Then, by|(5.44)r, andt, are given by

T]_:Mgl—)Mg, Tgl—)Tg—Mg, hl—)h,
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T2:T§P—)T§, Mgi—)Mf—Tg, hf—)h,

which coincide with the one given inl[6].
Of particular importance in Cherednik [6] is the automosohi

o= 711517'1 = 1517'17'51,
: . 1 . .
which corresponds to the actlon(o_P1 0). The automorphismr is characterized by

o(T)=-M;, o(M)=T, and o(h)=h forallhe.

From our view point, these automorphismsidth can be obtained as the conjugations of
the action on the function space (see (5.36)). In view of thmtilas (see (5.43)):

1 1) (1 -i
“ 1 T\lo 1)
10 (10
“1 1) 7\ 1)

0 1) (0 -i 7
‘-1 o): i o):EXp(Eh)V%’

we may interpret that;, 7,, ando are given by the conjugations of

QolExpl-ie)) = exf 5|P),

Quo(Explie))) = exr(—%Ak),

1 1 1
T = et o ex;(EAk) o et = exr(éAk) o g2 o exr(EAk) (5.45)

i
= Qk,z(EXp > h)Qk,z(Vg),
respectively. Recalling the formulas:

(QKZ(Exp%ih)f)(x) _ exp(w) f(ix),
Cin(N +2(K)

(Qua(y5) F)(X) = exp( 7

) (F21)(X),
we have
%{Ef(x) = Fof(ix).

Hence,o- may be interpreted as an algebraic version of the Dunkl foams We notice that
the formula(5.45) fits well into Master Formula (5.22) #o& 2, which we may rewrite as

2 f e x-S A)PIBalx, W) | Ko W du = €8 p(x),

aeA
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5.7. The uncertainty inequality for the transform .7, ,.
The Heisenberg uncertainty principle may be formulated leyams of the so-called Heisen-
berg inequality for the Euclidean Fourier transform®n Loosely, the more a function is
concentrated, the more its Fourier transform is spread. aié the reader to an excellent
survey [21] for various mathematical aspects of the Heisenbncertainty principle. In this
section we extend the Heisenberg inequality to the)tgeneralized Fourier transfori#, 5
onRN,

Let|| - ||« be theL2-norm with respect to the measutg,(X)dx onRN (see!(1.2)). The goal
of this subsection is to prove the following multiplicativeequality:

Theorem 5.29.(Heisenberg type inequalit{r all f € L2(RN, 9, o(X)dX) the(k, a)-generalized
Fourier transform%, , satisfies
2ky+N+a-2

- 13 - 12 Zal )], > ( 5 NIFIEZ (5.46)

The equality holds if and only if the function f is of the for(x)f= 2 exp(c||x||?) for some
AeCandceR,.

Remark 5.30. The inequality5.46)for k = 0 and a= 2is the original Heisenberg inequality
for the Euclidean Fourier transform. The inequality for-kO and a= 2 is the Heisenberg
type inequality for the Dunkl transform, which was provedtfsy Roslef52] and then by
Shimend55]. In physics terms we can think of the functiqx)f= 1 exp(c||x||*) where the
equality holds in the above theorem as a ground state; inddezh a= c =1, N = 3, and

k = 0, it is exactly the wave function for the Hydrogen atom withltveest energy.

In order to prove Theorem 5.29 we begin with the followingitidd inequality:
Lemma 5.31.(1) For all f € L2(RN, 9y a(X)dx)
- EEE + |l 1 Zia(D]E = 2000 + N+ a - 2)1 IR, (5.47)
(2) The equality holds i(5.47)if and only if f(x) is a scalar multiple ofexp(—§||x||a).
Proof. By Theorem 5.6(3) and Theorem 5.1(1), we get
- 12 Fcaf | = CIXP-Ficaf, Fcaf M
= ~(FralllXP2AF), Ficaf Wi
= —(IIXP AT, )i
Hence, the left-hand side of (5.47) equals
KUM= IXP2AY f, T = (—Acaf, Fie (5.48)
It then follows from Corollary 3.22 that the self-adjointeyptor—Ay, has only discrete
spectra, of which the minimum iS2 + N — 2 + a. Therefore, we have proved
(5.48)> (2(k) + N — 2 + )| {12

Thus, the inequality (5.47) has been proved. Further, thaldy holds if and only iff is an
eigenfunction of-Ay , corresponding to the minimum eigenvalug?2+ N — 2 + a, namely,
f is a scalar multiple of exp(§||x||a) (i.e. by puttingf = m = 0 in the formula((3.28) of

@ .
@ (p, X)). Hence, Lemma 5.31 has been proved. O
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Proof of Theorem 5.29Now, forc > 0, we setf,(X) := f(cX). Using the fact that the density
xa IS homogeneous of degreé® + a — 2, we get

a2 —2(k)-N-2a+2 a2
- N2 £ef|, = c2*oN=222||jj - 12 £,

and
2 -2(k)-N-a+2 2
|| follf = ¢ 2907 N=22) £,

Furthermore, we lift the formula in Theorem 5.9(1) to therioita
(Faal)(9 = 20D (T, 1)),

from which we get
a 2 _ _ a 2
- 112 Zca(F)l, = 29I - 112 Fica( P
Thus, if we substitutd, for f in Lemma 5.31, we obtain

A ], + - 12 Fica(D)|; = (K + N+ a— 2)[ |2
Obviously the minimum value of the left-hand side (as a fiomcofc € R,) is

201 12 £, [l 12 Feal ),
Hence, Theorem 5.29 has been proved. |
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