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Credit-Card Fraud Profiling Using a Hybrid
Incremental Clustering Methodology

Marie-Jeanne Lesot and Adrien Revault d’Allonnes

LIP6, Université Pierre et Marie Curie-Paris 6, UMR7606
4 place Jussieu
Paris cedex 05, 75252, France

Abstract. This paper addresses the task of helping investigators iden-
tify characteristics in credit-card frauds, so as to establish fraud profiles.
To do this, a clustering methodology based on the combination of an
incremental variant of the linearised fuzzy c-medoids and a hierarchical
clustering is proposed. This algorithm can process very large sets of het-
erogeneous data, i.e. described by both categorical and numeric features.
The relevance of the proposed approach is illustrated on a real dataset
containing next to one million fraudulent transactions.

Keywords: Incremental clustering; Hybrid Clustering; Bank Fraud; Credit Card
Security.

1 Introduction

With the generalisation of credit and debit cards as modes of payment, credit-
card frauds in e-commerce and other mail-order or distant transactions have
become a major issue for all banks and card-issuers. For instance, according to
the 2011 annual Banque de France report [1], whereas the overall 2010 fraud rate
in France is as low as 0.074%, corresponding to an amount of € 368.9 million, the
frauds in domestic card-not-present payments (i.e. made online, over the phone
or by post) represent 0.26% of this type of transaction, about three and a half
times more. These frauds represent 62% of all fraud cases in terms of value.

As a consequence, the analysis and automatic detection of fraudulent transac-
tions has become a largely studied field in the machine learning community [2-4],
in particular in the case of e-commerce. This task is both essential from an appli-
cation point of view, as mentioned above, and scientifically highly challenging,
because of its difficulty, part of which is due to the quantity of data that must
be processed and the extreme class imbalance.

From a machine-learning standpoint two problems should be separated, namely
fraud detection and fraud characterisation. The former aims at predicting whether
or not a given transaction should be accepted, so as to decline tentative frauds
as they take place. Its objective is, therefore, to differentiate fraudulent and gen-
uine transactions and it is, thus, part of the supervised-learning framework. As
such, it should be formulated as a discrimination task in a highly imbalanced



two-class setting. This particular problem can use the card history to identify
frauds as transactions that differ from the card-holder habits.

The second machine-learning problem, fraud characterisation, endeavours to
identify distinct fraudster profiles which can then be conceived as operational
procedures and used as investigative tools in the apprehension of fraudsters or
to assist in fraud detection. The objective is, therefore, to identify, in a set of
frauds, distinct subtypes of frauds exhibiting similar properties. It is part of the
unsupervised-learning framework and is essentially a clustering task applied to
the set of all fraudulent transactions. It should be noted that, in this case, card
history is of no use, since fraudster profiles are independent from card-holder
habits and, therefore, frauds need only be compared to other frauds and not to
legitimate transactions.

In this paper, we consider the latter type of approach and propose a hybrid
incremental clustering methodology to address this task. This method exhibits
the following characteristics: first, it ensures a rich description of the identified
fraudster profiles and allows a multi-level analysis, through the hierarchical struc-
ture of the extracted clusters it yields. Second, the method allows the processing
of large datasets. Indeed, even if frauds represent a small minority of all transac-
tions, they are still very numerous. This is the reason why we propose to combine
a hierarchical clustering step, to organise the identified clusters in a dendrogram
but with a very high computational cost, to a preliminary data-decomposition
step, through an efficient partitioning step. For the partitioning step, we propose
an incremental approach which processes the dataset in smaller subsets. Third,
the method can deal with heterogeneous data, i.e. data whose features can be
either categorical or numeric. Indeed, apart from the amount which is a number,
transactions are, for instance, described by the country where they take place
or the general category of transacted product. Finally, on a more general level,
the method is robust, that is, it does not suffer from its random initialisation.

In the next section, we describe the methodology proposed to address this
task. Section 3 then presents the experimental results obtained on real data.

2 Proposed Methodology

Clustering data that are both in vast amounts and of a hybrid nature imposes
constraints on candidate algorithms. In this section, we outline the main ap-
proaches dealing with these issues and we describe in more detail the linearised
Fuzzy ¢-Medoids [5] on which the proposed methodology relies. We then detail
the proposed methodology.

2.1 Related Work

Clustering Large Data Sets Very large datasets, having become more and
more common, have given rise to a large diversity of scalable clustering algo-
rithms.



One way to tackle the problem is to make existing algorithms go faster with
specific optimisations. For instance, acceleration of the k-means method and
its variants can be achieved using improved initialisation methods to reduce
the number of iterations [6, 7]. For the Partitioning Around Medoids (PAM [8])
approach, CLARANS [9] or the linearised fuzzy c-medoids algorithm [5], detailed
below, alleviate computational costs by updating medoids in their vicinity.

Another approach, incremental clustering, iteratively applies a clustering al-
gorithm on data subsamples which are processed individually. The samples are
extracted from the dataset (e.g. randomly) or they can be imposed by a tempo-
ral constraint, when the data is available as time goes by. One variant proposes
to build a single sample, guaranteeing its representativeness, so that the results
of a single application of a clustering algorithm can be considered as meaningful
for the entire dataset [10].

In the general case, however, each sample is clustered and these partial results
are then merged into the final partition of the dataset [11]. This fusion can be
performed progressively by including in the clustering step of a given sample the
results from the previous steps: a sample is summarised by the extracted clus-
ters and this summary is processed together with the next sample [12-14]. The
incremental variant of DBSCAN [15] proposes an efficient strategy to determine
the region of space where the cluster structure identified in the previous samples
should be updated and then locally applies the DBSCAN algorithm. Alternatively,
the fusion can be performed at the end, when all samples have been processed,
for instance by applying an additional clustering step to the centres obtained
from each sample. BIRCH [16], for example, incrementally performs a precluster-
ing step to build a compact representation of the dataset, based on structured
summaries that optimise memory usage along user-specified requirements. The
centres obtained after scanning the whole dataset then undergo a clustering pro-
cess. CURE offers a compromise between hierarchical and partitioning clustering,
by both using cluster representative points and applying cluster fusion [17]. Both
approaches, progressive and closing fusions, can also be combined [18].

Clustering Heterogeneous Data Hybrid data, data described by both nu-
meric and categorical attributes, define another case where specific clustering al-
gorithms are required. Such data rule out the usage of all mean-centred clustering
techniques, in particular the very commonly applied k-means and its variants.

Two main approaches can be distinguished for this problem: so-called rela-
tional methods which rely on the pairwise dissimilarity matrix (e.g. based on
the pairwise distances) and not on vector descriptions of the data. This type of
approach includes, in particular, hierarchical clustering methods, density-based
methods [19] as well as relational variants of classic algorithms [20, 21].

On the other hand, medoid-based methods [8,5] constitute variants of the
mean-centered methods that do not define the cluster representative as the av-
erage of its members, but as its medoid, that is, the data point that minimises
the possibly weighted distance to cluster members.



Linearised Fuzzy c-Medoids The linearised fuzzy c-medoids algorithm, de-
noted [-fcmed in the following, combines several properties of the previously
listed algorithms: it can process data that are both in vast amounts and of a
hybrid nature [5]. Indeed, it belongs to both accelerated techniques and medoid-
based methods. Moreover, being a fuzzy variant of such algorithms, it offers
properties of robustness and independence from random initialisation.

More formally, if z;, ¢ = 1,...,n are the data points, ¢ the desired number
of clusters, v,., r = 1,...,c the cluster centres and u;- the membership degree
of datum z; to cluster r, the algorithm alternatively updates the membership
degrees and the cluster centres using the following equations:

-1
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where m is the so-called fuzzifier, d a suitable metric and N (v,.) the neighbour-
hood of centre v,.. The latter is defined as the p data maximising membership
to cluster 7.

The membership degrees are, thus, updated as in the fuzzy c-means and the
cluster centres as the data points that minimise the weighted distance to clus-
ter members. To reduce the computational cost, [-fcmed searches for a suitable
medoid update close to each current medoid, in N(v,), instead of computing
the minimum over the whole dataset. Both updates are iterated until medoid
positions stabilise.

The I-fcmed parameters are ¢, the number of clusters, m, the fuzzifier, and p,
the neighbourhood size. The algorithm also depends on the chosen metric d.

2.2 Global Architecture

To cluster fraudulent transactions, we propose a two-step methodology, illus-
trated in Figure 1, inspired from the existing approaches described above: before
performing a hierarchical clustering, because of its high computational cost, we
operate a segmentation using a partitioning algorithm. Because of its advantages,
listed in the previous section, we choose to use the linearised fuzzy c-medoids,
or rather we propose an incremental extension to further limit computational
strains, which we describe in the following.

The second step then uses a hierarchical clustering method to generalise the
obtained clusters. Its output dendrogram allows the data analyst to choose the
desired level of compromise between homogeneity and generality.

2.3 Incremental Partitioning Step

Following the classic incremental methodology, instead of performing the parti-
tioning clustering on the whole dataset, we operate [-fcmed iteratively on ran-
domly selected samples of size n;. As detailed below, we propose to introduce two
substeps to improve its efficiency in the considered global architecture: medoid
selection and unaffected fraud allocation.
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Fig. 1. Global architecture of the proposed methodology

Medoid selection The aim of the partitioning step is to purposefully build an
over-segmentation to summarise the data while minimising the loss of informa-
tion, as it is a preliminary step to the hierarchical clustering step. We thus force
a compactness constraint on the over-segmented clusters, in order to keep only
the most homogeneous, discarding the rest.

To select the clusters C,., r = 1,..., ¢, whose medoids are highly represen-
tative of their assigned data, we propose to keep those of sufficient size and
exhibiting a very high homogeneity level. The latter is evaluated by a measure
of the dispersion of members of C). that could, for instance, be relative to the
cluster diameter, diam(C,) = max,, »,cc, d(x;, ;). The selection criterion can
thus be formalised as:

size(Cr) = |Cr| > T and disp(C) < ¢ (2)

where 7 is the minimal acceptable size and £ a user-set compactness threshold.

All data in the discarded clusters is then put back into the general pool
of transactions to be clustered. They thus become candidates for the random
sample selection of following iterations of the partitioning step.

Unaffected Fraud Allocation Before iterating to the next sample, we scan the
data that are yet to be clustered, so as to add unaffected frauds to the identified
clusters. This cluster augmentation has a double advantage: first, it avoids the
discovery in subsequent iterations of clusters similar to the selected ones, i.e.
it avoids cluster duplication or redundancy. It therefore simplifies the posterior
fusion step. Moreover, it further alleviates computational costs by reducing the
size of the frauds to cluster in following iterations.

This is done by selecting, from the pool of unclustered data, those frauds
which can be allocated to the selected clusters without degrading their quality,



that is, frauds which are sufficiently close to the medoid and are in the allowed
dispersion. Formally an unaffected fraud z is assigned to cluster C, if:

d(x,v) < disp(Cy) (3)

This step can be seen as similar to the extension step performed by [10] but,
in our case, it remains a tentative extension, that is, only performed under the
condition that it does not deteriorate cluster dispersion.

Having built a compact and homogeneous partition of a subset of the data
through over-segmentation, medoid selection and cluster augmentation, the pro-
cess is repeated until no further cluster meets the required standards.

2.4 Hierarchical Step

Once all homogeneous clusters satisfying the constraints have been created, a hi-
erarchical clustering with complete linkage is operated on the resulting medoids.
Because we have heavily reduced the volume of data with our partitioning, this
step is computationally acceptable. The resulting hierarchy offers a progressive
agglomeration of clusters and allows for the selection of a suitable compromise
between cluster density and number of clusters. The selection of this compromise
is made by the visual examination of the hierarchy dendrogram.

3 Experimental Results

3.1 Data and Experimental Setup

We applied the proposed hybrid incremental clustering methodology to a dataset
made of 958 828 fraudulent transactions. These correspond to transactions that
were rejected by the actual card-holders who, in this way, label the data and
identify the transactions to be considered as frauds.

Each fraud in the dataset is described as a combination of numeric and cat-
egorical features. The first type of attributes includes the amount of the trans-
action in euros, a positive real number. The second type includes the country
where the transaction took place and the merchant category code of the product.

The distance d between two transactions t; and ts, represented as vectors of
their features, is defined as the average of the distances on each attribute, i.e.
d(t1,t2) = 1/¢>"L | di(t1;, t2;), where d; is the distance for attribute A;. This
is either d; = dcq, if A; is categorical, or d; = dpym if it is numeric. Each is
defined as follows:

f1lifzty _ |z =yl
dear (1Y) = {O otherwise i (2, ) = m

The distance for categorical attributes d.q4; is binary: it equals 0 if the two values
to be compared are identical, and 1 in all other cases. The distance for numeric
attributes is defined as a relative gap: the assumption behind this is that a



difference of 2€ in amount, for instance, should not have the same impact if the
compared amounts are around 5€ or if they are closer to 1 000€.

Regarding the parameters , we use the following setup: each sample contains
n; = 50000 randomly selected data. I-fcmed is initialised randomly and applied
with the high value ¢ = 4000 because we want an over-segmentation. We use
the common value m = 2 for the fuzzifier. The size of the neighbourhood around
the medoids in which the following is selected is p = [50000/4 000 ].

Medoid selection, as presented in equation 2, depends on cluster size and
dispersion. The minimal size required is set at 7 = 10. Since it bears on all
attributes, we write the dispersion metric disp(C) as the vector of its attributes’
dispersions. For categorical attributes, the number of different values repre-
sents dispersion; for numeric attributes, dispersion is best represented by their
standard-deviation normalised by their mean value. Formally supposing that for
attribute A we write its value in x as A(x), and its average value in cluster C' as
Ac =3 ,cc A(2)/|C], we may write these dispersions as:

1 TcclAl@) - Ao’

dispeat(C) = {A@) |z € CY  disppum(C) = C Ao

(4)

In this way, disp(C) is the vector of all dispersions and £ is also a vector giving
local thresholds, which we set at &..; = 1, limiting the categorical attributes to
a single value in the selected clusters, and &y, = 0.01.

The cut threshold, for the hierarchical clustering, is set to 0.5, based on
a visual inspection of the dendrogram (see Figure 4) to achieve an acceptable
compromise between the final number of clusters and their homogeneity.

3.2 Incremental Partitioning Step: Results

The evolution of the incremental partitioning step is illustrated on Figures 2
and 3. Figure 2 shows the number of frauds assigned at each iteration, before
the allocation of unaffected frauds. It should be observed that this number,
starting at 18373, represents 36.7% of the processed 50000 points. This small
proportion of selected data illustrates how the compactness constraint rejects
a large amount of clusters and data. After this initial high value, the amount
of selected fraudulent transactions decreases very rapidly. The curve presents
an obvious asymptote around 500, i.e. around less than 1% of the considered
50000 lines of data. This, in itself, is a satisfactory justification for stopping the
partitioning step after the illustrated 50 iterations.

The left graph in Figure 3 shows the cumulative number of clusters selected
at each iteration. At the first iteration, 394 clusters are selected as being qual-
ity clusters. By the end of the process 4214 have been identified. The inflexion
of the curve indicates that the number of newly discovered quality clusters de-
creases with the number of iterations, another explanation for stopping after
fifty iterations of the partitioning step.

The right graph in Figure 3 shows the cumulative number of assigned data
after reallocation at each iteration, i.e. the total number of transactions that have
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Fig. 2. Evolution of the incremental partitioning step: number of assigned transactions,
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Fig. 3. Evolution of the incremental partitioning step: (left) cumulative number of
selected clusters, at each iteration, (right) cumulative number of assigned data after
reassignment at each iteration.

been assigned to any of the created clusters. 322 115 transactions are assigned at
the very first iteration, which indicates a high redundancy in the considered data:
many transactions are identical or very close one to another in the considered
description space, and thus fulfil the strict homogeneity condition imposed on the
assignment step. At each further iteration, the number of assigned transactions
drastically decreases, the last iterations bringing very little gain. This curve,
thus, also argues in favour of ending iterations of the partitioning.

As a result of these different choices, the incremental partitioning step pro-
duces, in the end, 4214 clusters containing 642 054 frauds.

3.3 Hierarchical Step: Results

Figure 4 shows the dendrogram obtained after applying a hierarchical clustering
to the medoids obtained in the partitioning step. The same distance is used for
medoids as for transactions.

Visual inspection of the dendrogram prompts a cut above a cost of 0.5. In-
deed, cutting the dendrogram at 0.5 yields 156 clusters, which represents a rea-
sonable compromise between cluster homogeneity and number of clusters. The
resulting clusters have a small diameter and their number, 156 as compared to
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Fig. 4. Dendrogram of the hierarchical clustering step applied to the medoids obtained
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Fig. 5. Sizes of the final clusters.

the original 958 828 transactions, is a cognitively manageable amount of data to
study for the human analyst.

3.4 Final Results

To take a closer look at the resulting clusters, we start off by studying the
distribution of cluster sizes globally.

Figure 5 shows the cluster sizes in decreasing order and also shows a high
disparity. In particular, the greatest cluster represents 23% of affected frauds on
its own, whereas the second largest is only one third of the largest. More gener-
ally, the fifty largest clusters cover 92% of all affected frauds. In the following we
successively comment the hundred and six smallest and the fifty largest clusters.

Analysis of the Smaller Clusters On average the smaller clusters, the ones
after the first fifty, only contain 471 frauds, i.e. 7%oo0 of the affected frauds. It



could, therefore, be argued that they contain too little information and that it not
necessary to study them further. Indeed, the fraud profiles they are associated to
may seem too anecdotal. However, some of these clusters, or groups of clusters,
may still warrant the analyst’s attention because of some striking characteristics.

In this way, 9 clusters, representing 1745 transactions, are each composed
of exact replicas of a single transaction, that is, identical amount, country and
activity. Even if the largest of these clusters only has 535 frauds, their being
identical marks them as potential parts of a particular modus operandi, which
any analyst might wish to investigate further.

Another trigger which might tingle an analyst’s curiosity is exhibited by
cluster 147, which has a mean amount of 914€, an oddly high value compared
to the average fraud value of about 112€. Moreover, all its transactions are linked
to the same country and activity. This activity only appears in this cluster. For
these reasons, even if cluster 147 only has 72 transactions, a closer study of these
transactions seems appropriate to find other similarities, such as the identity of
the seller or the dates on which they took place, for instance.

Analysis of the Larger Clusters The fifty largest clusters represent the most
notable fraudster profiles. Indeed, they are singularly homogeneous: just two of
them, clusters 26 and 44, are not described by a single country and activity.

If we take a closer look at these two atypical clusters, we see that cluster 26
associates 4 546 frauds to three distinct merchant activities. Of these three ac-
tivities, two are heavily outnumbered by the dominant one, the latter having
4402 frauds, or 96.8% of the cluster, when the other two represent 80 and 64
transactions, that is, 1.8% and 1.4% respectively. Furthermore, these two mi-
nority activity types do not appear in any other cluster. The dominant activity
does appear in five other clusters but with different countries, whereas cluster 26
only has one country. This cluster’s homogeneity is also apparent in its amount
distribution, since the range it covers is [10,13.16].

The other mixed cluster, cluster 44, has 1670 fraudulent transactions and two
countries. Once again, one of the countries is dominated by the other, represent-
ing just 104 individuals or 6.2% of the cluster population, and is only present in
this cluster. These compactness anomalies are, therefore, slight and explainable.

If we turn back to the general population of large clusters, the 96% with only
one activity and one country, we see that compactness does not constrain size.
Indeed, the largest of all clusters, with 147831 frauds, equivalent to 23% of all
affected frauds, belongs to this category. Regarding the amounts, this cluster
spreads over the [1,480] interval, a reasonable size compared to the global span
of the data over [0,10276]. The left part of Figure 6 shows the histogram of its
amounts and also shows how the distribution is concentrated on small values.

Another illustration of the first fifty clusters’ quality, is given by cluster 12.
This cluster, still defined over a single country and activity, has 8 828 frauds with
amounts on the interval [0.99,83.73]. The right part of Figure 6 offers a view on
their dispersion. Looking at this distribution, we see that it could be subdivided
into homogeneous subintervals, probably the ones given by the partitioning step,
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Fig. 6. Histogram of the amounts (left) for the largest cluster (population: 147 831; bin-
width: 9.58€), (right) for 12th largest cluster (population: 8828; bin-width: 1.65€).

later joined by the hierarchical clustering. Cluster 12, thus, illustrates the use
of this fusion step: instead of studying individually all 93 original clusters — the
clusters fused during the hierarchical step to form cluster 12 — the analyst can
focus on a generalised view, yet still be able to identify potentially interesting
subgroups. The analyst may yet explore these subgroups by choosing to cut
the dendrogram at a lower value. This inspection can be made locally by con-
centrating on the branch which actually contains the interesting clusters. This
granularity refocusing ability, local or not, emanating from the cluster hierarchy,
is an added benefit and justification for the proposed global architecture of the
clustering method.

4 Conclusion

In this paper, we proposed a methodology for the identification of the character-
istics of credit-card frauds, through the identification of distinct fraud profiles.
It is based on the combination of an incremental variant of the fuzzy c-medoids
with hierarchical clustering, and it is thus able to process very large hetero-
geneous data. We illustrated the relevance of the proposed approach on a real
dataset describing next to one million online fraudulent transactions.

Ongoing work aims at enriching the interpretation of the obtained profiles,
in particular by the construction of typical transactions representing each fraud
profile, so as to ease their characterisation. To that aim, the use of fuzzy proto-
types is considered, in order to underline the specificity of each profile as opposed
to the others.
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