
HAL Id: hal-01282301
https://hal.science/hal-01282301v1

Submitted on 25 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Credit-Card Fraud Profiling
Marc Damez, Marie-Jeanne Lesot, Adrien Revault d’Allonnes

To cite this version:
Marc Damez, Marie-Jeanne Lesot, Adrien Revault d’Allonnes. Dynamic Credit-Card Fraud Profiling.
The 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI), Nov 2012,
Girona, Catalonia, Spain. pp.234-245, �10.1007/978-3-642-34620-0_22�. �hal-01282301�

https://hal.science/hal-01282301v1
https://hal.archives-ouvertes.fr


Dynamic Credit-Card Fraud Profiling

Marc Damez, Marie-Jeanne Lesot, and Adrien Revault d’Allonnes

LIP6, Université Pierre et Marie Curie-Paris 6, UMR7606
4 place Jussieu, Paris cedex 05, 75252, France

{marc.damez,marie-jeanne.lesot,adrien.revault-d’allonnes}@lip6.fr

Abstract. The paper proposes a scalable incremental clustering algo-
rithm to process heterogeneous data-streams, described by both categor-
ical and numeric features, and its application to the domain of credit-
card fraud analysis, to establish dynamic frauds profiles. The aim is to
identify subgroups of frauds exhibiting similar properties and to study
their temporal evolution and, in particular, the emergence of fraudster
behaviours. The application to real data corresponding to a one year
fraud stream highlights the relevance of the approach that leads to the
identification of significant profiles.

Keywords: Incremental Clustering, Data-Streams, Heterogeneous Data,
Bank Fraud, Credit Card Security

1 Introduction

Credit and debit cards have become ubiquitous modes of payment, which have
brought with them the important issue, both for banks and card-holders, of
card fraud [1]. The ensuing economic losses have motivated a vast field of study
in the machine learning community [2–4], in particular concerned with elec-
tronic business, both for supervised –fraud detection– and unsupervised –fraud
characterisation– learning tasks.

This paper considers the latter, i.e. the identification of ever changing groups
of similar frauds. This problem is challenging in its twofold dynamic nature.
First, fraudsters are inventive and continuously adapt to circumvent anti-fraud
policies, elaborating new types of frauds. Second, the data are constantly incom-
ing, building a never-ending stream. Finally, the very nature of the heterogeneous
data, described by both numeric and categorical attributes, renders part of the
classic methods unusable.

In this paper, we propose a methodology to process incoming streams pre-
senting these characteristics and study the derived profiles and the dynamics
of their contents. Contrary to most clustering tasks, the method proposed in
this paper is less interested in summarising the data into abstract and possibly
non-existent prototypes than it is in identifying precisely observable behaviours,
those which are most likely to belong to an actual type of fraudster. The pro-
posed method is tested on a real dataset representing one year of frauds

The paper is organised as follows: after outlining related work in Section 2,
we present in Section 3 the methodology we propose. Section 4 analyses the



2 Dynamic Credit-Card Fraud Profiling

profiles obtained using this methodology on a real dataset corresponding to a
one year fraud-stream.

2 Related Work

Data representing credit-card frauds combine two characteristics that both re-
quire specific clustering algorithms, namely their data-stream and heterogeneous
nature. This section outlines algorithms that have been proposed to deal with
either data type.

2.1 Clustering Data-Streams

Data-Stream Characteristics: As opposed to classic data, data-streams are
characterised by their production mode: the dataset is incrementally built, which
means that not all data are available at once. They usually lead to very large
datasets having restrictive characteristics which require specific algorithms to
perform data-mining [5].

Indeed, data-streams first demand incremental algorithms that process data
progressively, incorporating them as they come in to update the learnt model.
Moreover, because of their production mode as well as memory constraints im-
posed by their quantity, data-streams usually require single-pass algorithms.

Another characteristic of data-streams is their dynamic feature: apart from
the data arriving progressively, their underlying distribution generally evolves
with time. This is in contradiction with the hypothesis of identically distributed
data most classic data-mining algorithms rely on.

General Principles: The main existing methods for clustering such data-
streams belong to the framework of incremental clustering. First introduced to
address the issue of very large datasets, these algorithms decompose the dataset
into samples of manageable size. They consist in iteratively processing each sam-
ple individually and merging the corresponding partial results into the final par-
tition. In the case of very large datasets, samples are automatically extracted,
e.g. randomly drawn so as to fit in memory. In the case of data-streams, where
samples are imposed by the time-line, and defined as the set of data becoming
available in a given time interval, samples can be seen as data buffers.

Incremental clustering algorithms can be divided according to the way the
partial results are merged, this fusion being either progressive or final. Progres-
sive fusion means including, in the clustering step of a given sample, the results
from the previous steps. Final fusion is performed at the end, when all samples
have been processed. As detailed below, the same distinction can be applied to
data-stream clustering algorithms.

Online Clustering: Online clustering algorithms are incremental approaches
with progressive fusion: the previously seen data are summarised by extracted



Dynamic Credit-Card Fraud Profiling 3

clusters, possibly weighted by their sizes, and this summary is processed together
with the next sample.

This approach has been applied to most classic clustering algorithms, e.g.
leading to incremental variants for k-means [6], fuzzy c-means [7], fuzzy c-
medoids [8] or dbscan [9]. Likewise stream [10], which is one of the first algo-
rithms dedicated to data-streams, achieves the same kind of result with memory
size limitations and theoretical guarantees on the result quality.

Two-level Approaches: The online approaches are said not to be able to
fully adapt to the dynamics of the data, as they do not question previous clus-
ter merges [11]. Therefore, two-level approaches reject progressive fusion and
postpone the fusion step until the final partition is required by the user. More
precisely, they combine an online part, updating compact representations of the
data seen so far, with an offline part, which extracts a final partition from this
compact representation. The offline step does not take into account the temporal
component: no comparison can be made between two consecutive demands of
the user. The two steps are also respectively called micro and macro-clustering.

Some approaches in this framework apply the same clustering algorithm to
both steps, e.g. fuzzy c-means [12] or fuzzy c-medoids [8]. The centres or medoids
obtained from each data buffer are in turn clustered.

Other methods perform a preclustering step of a different nature than the
final one, e.g. incrementally updating quantities to compute cluster statistics
such as cluster average or standard deviation. This approach is exemplified by
birch [13], that incrementally builds a compact representation of the dataset,
based on structured summaries that optimise memory usage along user-specified
requirements. Clustream [11] generalises the representation, taking into ac-
count the temporal dimension in the precluster description. These algorithms
try to add a new data point to one of the preclusters. If this fails, then a new
cluster is created to represent the data point. To maintain the memory size, ei-
ther one of the previously identified clusters is deleted, e.g. based on a recentness
criterion, or two clusters are merged, e.g. the two most similar.

This principle has also been applied to density-based clustering [14]: it also
combines online micro-cluster maintenance with offline generation of the final
clusters with a variant of dbscan. Two types of clusters are distinguished: core
and outlier-clusters, which can become core-clusters if they reach a size threshold.
To prevent memory overload, the outlier-clusters are periodically pruned.

The proposed methodology described in the Section 3 is similar to this one,
with two main differences, as detailed below: first it relies on partitioning and
not density-based clustering. Second, it uses a different representation of the
so-called outlier clusters.

2.2 Clustering Heterogeneous Data

Heterogeneous data are defined as data described by both numeric and categor-
ical attributes. The presence of categorical attributes rule out the computation



4 Dynamic Credit-Card Fraud Profiling

of average values and, therefore, the usage of all mean-centred clustering tech-
niques, in particular the very commonly applied k-means and its variants.

Two main approaches can be distinguished: first, so-called relational methods
which rely on the pairwise dissimilarity matrix (e.g. pairwise distances) and not
on vector descriptions of the data. This type of approach includes hierarchical
clustering methods, density-based methods [15] as well as relational variants of
classic algorithms [16, 17].

On the other hand, medoid-based methods [18, 19] constitute variants of the
mean-centered methods that do not define the cluster representative as the av-
erage of its members, but as its medoid, that is, the data point that minimises
the, possibly weighted, distance to cluster members.

2.3 Linearised Fuzzy c-Medoids

The linearised fuzzy c-medoids algorithm [19], written l-fcmed hereafter, is a
scalable medoid-based clustering algorithm: it can process data that are both in
vast amounts and heterogeneous. Moreover, being a fuzzy variant, it offers prop-
erties of robustness and independence from random initialisation. We present
it in greater detail here because the proposed method described in Section 3
depends on it.

The algorithm’s inputs are D = {xi | i = 1, . . . , n} the dataset to be clustered,
d the metric used to compare data, c the desired number of clusters, m the
fuzzifier which sets the desired fuzziness and p the size of the neighbourhood in
which medoid updates are looked for.

After initialisation of the cluster centres as c data in D the algorithm alter-
nately updates memberships and cluster centres using the following equations:

uir =

[
c∑

s=1

(
d(xi, vr)

d(xi, vs)

) 2
m−1

]−1
vr = argmin

k∈Np(vr)

n∑
i=1

umrid(xk, xi) (1)

where uir denotes the membership degree of xi to cluster r, vr the cluster centres
and Np(vr) the neighbourhood of centre vr, which looks to update medoids in
their vicinity, alleviating computational costs. The latter is defined as the p data
maximising membership to cluster r. Both updates are iterated until medoid
positions stabilise.

3 Proposed Methodology

This section describes the methodology we propose to dynamically cluster a
heterogeneous stream, as sketched in Algorithm 1. It belongs to the family of
two-level approaches, performing a micro-clustering step based on a partitioning
approach.

The micro-clusters, i.e. the cluster information which is updated for each new
datum, are defined as cluster medoids. As in [13, 11, 14], we test whether a new
data point fits an existing cluster. If the test succeeds, no update is performed;



Dynamic Credit-Card Fraud Profiling 5

if it fails, instead of creating a new cluster immediately, we add the data point
to a buffer B. Cluster creation then only takes place when the buffer reaches a
size threshold and is the result of a partitioning algorithm applied to B.

We propose, for this, a variant of the linearised fuzzy c-medoids [19], adding a
cluster selection step to increase cluster homogeneity. This step makes it possible
to identify atypical data grouped in a set of as yet unassigned data, denoted U :
similarly to [14], we distinguish outliers from core-clusters. The main difference
here is that the outliers are not clusters of their own but a single set.

The next subsections respectively describe in more detail the test for assign-
ing a point to an existing cluster, called cluster augmentation criterion, and the
cluster selection criterion, as well as the global architecture of the algorithm.

3.1 Cluster Augmentation Criterion

Cluster augmentation consists in testing whether an incoming point can be as-
signed to one of the already identified clusters, or whether it should be buffered
as a candidate clusterable. This procedure has two immediate advantages. The
first is to reduce, for a given volume of data, the number of times the buffer
is filled and, thus, the identification of new clusters, making the global process
run faster. The second advantage is that it avoids the discovery, at a later stage,
of clusters too similar to those already identified: it, indeed, ensures that the
next data considered for clustering are adequately separate from the previously
selected clusters. It, therefore, suppresses the need for a posterior fusion step,
where the results of the buffer clustering are merged to the previously obtained
clusters. This, again, alleviates the computation costs of the global method.

We propose to consider that a data point can be assigned to an existing
cluster only under the condition that it does not deteriorate its compactness:
addition is not aimed at generalising a cluster, rather at processing new data
quickly. Therefore, we impose that a point can be added to a cluster if and only
if it falls within the mean distance to the medoid at the time the cluster was
selected. This can be written formally as:

d(x, νC) ≤ 1

|C|
∑
y∗∈C

d(y∗, νC) (2)

where y∗ denotes any element in the cluster at its creation. This augmentation
condition defines a local criterion that adapts to the compactness of each cluster.
In particular, for a cluster containing only exact replicas of a data point, the
augmentation criterion will exclusively allow the addition of more replicas. Once
again, this severe criterion is intended to help the identification of fraudster
behaviours, more than it is meant to offer a summarisation of the observed data.

3.2 Cluster Selection Criterion: the l-fcmed-select Algorithm

Medoid selection is a substep that actually modifies the l-fcmed algorithm, lead-
ing to the variant we propose, called l-fcmed-select. One of its motivations comes



6 Dynamic Credit-Card Fraud Profiling

Algorithm 1 DS-l-fcmed-select

For each new data point x
. Process x

if ∃C ∈ C such that x can be added to C according to Eq. 2 then
Update C: C ← C ∪ {x}

else
Update B ← B ∪ {x}

end if
. Process B

if |B| = τB then
Apply l-fcmed-select to B → (C′,U ′)
Update C ← C ∪ C′
Update U ← U ∪ U ′

end if
. Process U

if purging criterion on U is fulfilled then
Apply DS-l-fcmed-select recursively to U , treated as a data-stream

end if

from the issue of determining the appropriate number of clusters, c: as all par-
titioning clustering algorithms, l-fcmed always produces c clusters, whether c
is relevant for the considered data or not. In order to bypass this difficulty, we
propose to ask for a ‘reasonable’ –probably overestimated– number of clusters,
and then to select only some of the produced clusters.

The proposed selection condition is, again, a compactness criterion: we keep
only the clusters of sufficient size that exhibit a very high homogeneity, evaluated
as the radius of the cluster. The selection criterion can, thus, be formalised as:

|C| > τC and max
x∈C

d(x, νC) ≤ ξ (3)

where τC is the minimal acceptable size and ξ a compactness threshold.
This algorithm does not return a data partition as some of the data, that

assigned to discarded clusters, remain unattributed. More formally, l-fcmed-select
outputs a set of clusters, C = {C1, ..., Cc′}, with c′ ≤ c, and a set of unassigned
data U . The latter represents atypical cases, or as yet unexplained data, that do
not deserve, for the time being, medoids of their own in the clustering solution.

3.3 Global Architecture and Parameters

The global architecture of the proposed methodology, called DS-l-fcmed-select, is
given in Algorithm 1. The set of clusters C, the buffer B and the set of unassigned
data U are initially assigned the empty set.

When a new data point then arrives, the algorithm tries to assign it to one
of the existing clusters. If this substep fails, the point is added to the buffer B.

Once the buffer reaches a user-defined size threshold, τB, meaning that too
many points differ from the previously identified clusters, then l-fcmed-select is



Dynamic Credit-Card Fraud Profiling 7

applied anew to the data in the buffer. Previously testing addability ensures that
all obtained clusters are distinct enough from the already identified clusters.

The l-fcmed-select algorithm imposes handling the set U of unassigned data.
The corresponding data are ‘more atypical’ than the ones in B, insofar as they
have been submitted at least once to clustering, whereas buffered data have only
been tested against existing clusters. However, it may be the case that atypical
behaviours eventually become less isolated, warranting a cluster of their own.

Therefore, when some purging condition on U is reached, the data it contains
are considered once more for core-clustering. We apply DS-l-fcmed-select, pro-
cessing it as a fictitious data-stream. The purging condition could be linked to
the U ’s size, yet this induces the risk of running back to back purges, if U ’s size
does not fall far enough below the threshold. To avoid this, we harness U ’s purge
to the amount of processed data, with the idea that these regular purges still
attest to the aging of the data. A purge, thus, starts every time τU points of the
data-stream have been processed and stops as soon as U ’s size stops decreasing.

Overall, the proposed method relies on three sets of parameters, that is the
l-fcmed parameters: the number of clusters c, the fuzzifier m and the neighbour-
hood size for the medoid update p; the cluster selection criteria: the minimal
acceptable cluster size τC and diameter ξ; and the size thresholds: the size at
which B is subjected to l-fcmed-select, τB and the rate at which U is purged, τU .

4 Experimental Results

4.1 Data and Experimental Setup

We applied the proposed methodology to a real fraud-stream covering almost
one year (49 weeks) and containing close to a million fraudulent transactions.
Each is described by its amount in Euros, a positive real number, as well as
categorical attributes, namely the country where it took place and the merchant
category code, a general categorisation of transacted products.

The distance d between two transactions t1 and t2, represented as vectors
of their features, is defined as d(t1, t2) = 1/q

∑q
i=1 di(t1i, t2i), where di is the

distance for attribute Ai. Two cases are distinguished: di is either di = dcat, if
Ai is categorical, or di = dnum, if it is numeric. Each is defined as follows:

dcat(x, y) =

{
1 if x 6= y
0 otherwise

dnum(x, y) =
|x− y|

max(x, y)

The distance for numeric attributes is thus defined as a relative gap: the as-
sumption being that a difference of 2e in amount, say, should not have the same
impact if the compared amounts are around 5e or if they are closer to 1 000e.

For the algorithm parameters, we use the following setup: l-fcmed is applied
with c = 400, m = 2 and p = bτB/cc = 12. Cluster selection is based on τC = 10
and ξ = 0.15. Note that, due to the distance choice, this low value imposes that
data assigned to a given cluster all have the same country and the same activity,
variability is only (moderately) tolerated for the amount. The size threshold for



8 Dynamic Credit-Card Fraud Profiling

0 1000 2000 3000 4000 5000 6000 7000
0

5000

10000

15000

20000

25000

30000

Fig. 1. Sizes of the clusters once all data has been processed, in descending order

the buffer is τB = 5 000 and the set of unassigned data U is purged every time
τU = 50 000 transactions have been processed. The experiments were run using
a parallel implementation of DS-l-fcmed-select on a multicore cluster.

4.2 Experimental Results

With these parameters, the proposed methodology finds a total of 6 476 clusters
covering a wide range of sizes and time-spans. In the following, we first analyse
the global results of the final step, then comment the dynamics of fraud profiles,
both globally and at a more detailed level.

Final Global Analysis: In order to study the obtained clusters when the whole
data-stream has been processed, we focus on cluster sizes. Figure 1 shows the
final sizes of the clusters in decreasing order.

It can be observed that, despite a very severe compactness criterion, the
largest cluster groups 26 917 frauds, highlighting the redundancy of the data, in
which there exists a largely dominant type of fraud. More generally, the 25%
largest clusters cover 77.7% of all affected frauds. Conversely, the 25% smallest
clusters only cover 3.6% of the assigned frauds. This shows that the fraud be-
haviours include a large number of rather rare fraud procedures, either due to
atypical country, activity, amounts or a combination of the above.

Moreover, at the end of the process there remain 21.7% of the whole as
unassigned frauds, i.e. too atypical to be clustered according to the criteria
imposed on the clustering result.

Global Dynamic Analysis: We first analyse the dynamics of fraud profiles
globally, examining the distribution of each profile time-span. These lengths
are defined as the number of weeks between dates for the first and last frauds
assigned to each cluster. We should point out that our analysis of the dynamics
is more concerned with the evolution of the contents, the frauds, then it is with
the displacement of the clusters, as is usually the case.



Dynamic Credit-Card Fraud Profiling 9

0 10 20 30 40 50
0

100

200

300

400

500

600

0 10 20 30 40 50
0

50000

100000

150000

200000

250000

300000

Fig. 2. Time-span histograms: (left) number of clusters covering each number of weeks,
(right) cumulative size of clusters covering each number of weeks

Figure 2 shows the repartition of these durations, both in terms of the number
of clusters, on the left, as well as the number of frauds they represent, on the
right. Two types of clusters co-exist: a first category, representing 46.9% of all
clusters, groups long-lasting profiles that nearly span over the whole year, with
periods longer than 40 weeks. This comes along with a dominance in terms of
data quantities, as they represent 81.6% of the assigned fraudulent transactions.

A second type of profiles can be described as ‘flash profiles’: these correspond
to behaviours that are very precisely dated, disappearing within a single week or,
possibly, up to two or three weeks. This category represents 9.1% of the clusters,
and still appear to be significant in terms of number of frauds. More precisely,
the average size of the 275 clusters observed only during a single week is 57, with
sizes ranging from 10 to 3001.

Figure 3 provides another view on the dynamics of credit-card fraud profiles.
The full line on top shows the evolution of the number of active clusters each
week, where a cluster is called active at a given date if it is created or if at least
one transaction is assigned to it at that date. The number of active clusters
is globally increasing over the entire period, excepting the final period which is
shorter than the other weeks and not augmented by new data. The ratio between
new and existing clusters is clarified by the two additional dashed lines, where
the one nearer the bottom shows cluster creation per week and the one closer to
cluster activity traces the number of augmented clusters in the period. Cluster
creations tend to slow down significantly after each peak and the range between
consecutive maximum and minimum shrinks as time goes. This is explained by
the fact that most relevant profiles are found and that new ones do not appear
all the time. Cluster augmentation, for its part, explains most of the activity, as
the closeness between plots shows, since the more clusters there are, the more
likely a fraud will fit one. It should also be observed that the number of active
clusters is always much lower than the total number of clusters.

Detailed Dynamic Analysis In order to offer a more detailed analysis, Fig-
ure 4 shows the size evolutions of the 40 largest clusters, where the ranking is
based on the clusters’ final sizes, as in Figure 1.



10 Dynamic Credit-Card Fraud Profiling

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Fig. 3. Number of active (full line), augmented (top dashed) and new (bottom dashed)
clusters per week

Four main types are observed, relative to growth speed: the curves can be lin-
ear, corresponding to a constant speed, concave, as in a deceleration behaviour,
convex, showing an acceleration, or, as already discussed, flash profiles. We dis-
cuss each in turn below.

The constant increase profiles, globally exemplified by ten of the eleven
largest clusters, represent fraud behaviours that are observed all year with very
little variations in terms of relative distribution, i.e. with an approximate con-
stant number of additional representatives each week. These are the ‘fraud basics’
or classic behaviours fraudsters know they can rely on. It should be pointed out
that the constant increase is correlated to the fact that these clusters are the
largest ones.

The second profile type, characterised by concave curves, presents a decelera-
tion or even an abrupt halt in exploitation. This type is illustrated by clusters 21,
25 or 27. It corresponds to obsolete types of frauds on their way out. It would be
interesting to check with credit-card fraud experts whether these observations
can be related to the introduction of specific anti-fraud policies.

The third type is complementary: it groups convex curves, more precisely
a parabolic increase in size or even a sudden augmentation, like cluster 13. It
would likewise be relevant to discuss these results with experts to see if these
observations correlate with credit-card policy modifications.

Over the given temporal window, some clusters combine a sudden increase
and progressive deceleration, as clusters 35 and 38 do. These hybrid profiles
introduce some doubt as to whether clusters of the third type are going to slow
down at some point.

The last type is the already discussed very short-lived clusters , e.g. cluster 23.
It is interesting to note that some of these are indeed large enough to join the
40 largest clusters, in which most are represented over a much longer time-span.

5 Conclusion and Future Work

A methodology to process incoming streams of heterogeneous data and study
the derived profiles and their dynamics is proposed in this paper, together with



Dynamic Credit-Card Fraud Profiling 11

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

30000

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

11

12

13

14

15

16

17

18

19

20

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

21

22

23

24

25

26

27

28

29

30

0 10 20 30 40 50
0

500

1000

1500

2000

2500

31

32

33

34

35

36

37

38

39

40

Fig. 4. Evolution of the size of the 40 largest clusters, where the cluster id equals its
rank in terms of final size.

its application to a real data set of credit-card frauds. The analysis of the results
shows the relevance of the approach, which makes it possible to establish distinct
types of fraud profiles depending on their temporal evolution and to identify spe-
cific fraudster profiles. The proposed algorithm efficiently processes data streams
of heterogeneous nature, in a parallel implementation. It is based on incremental
micro-clustering performed by a variant of the l-fcmed algorithm, defined as its
combination with a cluster selection step guaranteeing highly compact clusters.
The processing decomposes the data into three subsets, namely clusters, data
to-be-clustered in a buffer and atypical data, remaining unassigned. The purge of
the unassigned data, and to a lesser extent the clustering of buffered data, make
it possible to manage some data beside the current flow of the data stream. This
is particularly helpful in the case of credit-card fraud profiling, where frauds can
be declared a long time after the transaction has been recorded.

Ongoing work aims at combining these micro-clustering results with a macro-
clustering step, e.g. through a hierarchical method, to get a more synthetic view
of the clusters, even if the detailed analysis also provides relevant and meaningful
information. Future work includes comparisons with existing algorithms, as well
as the discussion with experts in anti-fraud policies to obtain a semantic valida-
tion of the observed results. Another perspective is to take more information into
account in fraud comparisons, in particular related to transaction sequences.



12 Dynamic Credit-Card Fraud Profiling

Acknowledgements This work was supported by the project eFraudBox funded
by ANR - CSOSG 2009.

References

1. Banque de France: Annual Report of the Observatory for Payment Card Security.
http://www.banque-france.fr/observatoire/home_gb.html (2011)

2. Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Statistical science
17 (2002) 235–255

3. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-
based fraud detection research. Artificial Intelligence Review (2005)

4. Laleh, N., Azgomi, M.A.: A taxonomy of frauds and fraud detection techniques.
Information Systems, Technology and Management Communications in Computer
and Information Science 3 (2009) 256–267

5. Aggarwal, C.C., ed.: Data Streams: Models and Algorithms. Springer (2007)
6. Farnstrom, F., Lewis, J., Elkan, C.: Scalability for clustering algorithms revisited.

SIGKDD Explorations 2 (2000) 51–57
7. Hore, P., Hall, L., Goldgof, D.: Single pass fuzzy c means. In: Proc. of the IEEE

Int. Conf. on Fuzzy Systems, FUZZ-IEEE’07. (2007) 1–7
8. Labroche, N.: New incremental fuzzy c medoids clustering algorithms. In: Proc.

of the NAFIPS’10. (2010) 145–150
9. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering

for mining in a data warehousing environment. In: Proc. of the 24th Very Large
DataBases Conference, VLDB’98. (1998) 323–333

10. O’Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming-
data algorithms for high-quality clustering. In: Proc. of the 18th Int. Conf. on
Data Engineering, ICDE. (2002) 685–694

11. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proc. of Very Large Data Bases, VLDB’03. (2003) 81–92

12. Hore, P., Hall, L., Goldgof, D., Cheng, W.: Online fuzzy c means. In: Proc. of
NAFIPS’08. (2008) 1–5

13. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method
for very large databases. In: Proc. of the ACM Int. Conf on Management of Data,
SIGMOD’96, ACM Press (1996) 103–114

14. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: Proc. of the 6th SIAM Int. Conf. on Data Mining.
(2006)

15. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial
databases: the algorithm DBSCAN and its application. Data Mining and Knowl-
edge Discovery 2 (1998) 169–194

16. Hathaway, R., Bezdek, J.: Nerf c-means: non euclidean relational fuzzy clustering.
Pattern Recognition 27 (1994) 429–437

17. Hathaway, R., Bezdek, J., Davenport, J.: On relational data versions of c-means
algorithms. Pattern Recognition Letters 17 (1996) 607–612

18. Kaufman, L., Rousseeuw, P.: Finding groups in data, an introduction to cluster
analysis. John Wiley & Sons, Brussels, Belgium (1990)

19. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low complexity fuzzy relational
clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems 9
(2001) 595–607


