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1. Introduction 
Dual energy X-ray transmission technique is routinely used in luggage inspection [1], as well as in 

the medical field, firstly introduced by Jacobson in 1953 [2]. Alvarez and Macovski developed the 

concept for tomodensitometry in 1976 [3-4]. In their work, the attenuation coefficient, µ, is 

mathematically written as a function of interaction type (Compton and photoelectric effect in the 

typical medical energy domain < 200 keV), and the attenuation at both energies thus allows to 

retrieve an information related to density and atomic number. Another kind of decomposition 

consists in writing the µ coefficient as a linear combination of two known materials µ coefficients 

with their equivalent thicknesses [5]. Obtaining the µ coefficient requires a tomographic device. In 

the case of radioscopic inspection, the information measured is the attenuation coefficient 

multiplied by the crossed thickness d, i.e. µd. As such, dual energy radioscopy allows computing 

the equivalent thicknesses of two known materials from their two attenuation factors (µd). The 

theoretical problem can be treated in a monochromatic or polychromatic way, as detailed in [6]. 

 

In the industrial field of waste sorting, especially for recycling and re-use of certain waste materials, 

several scenarios can be investigated : detection of copper in various metallic pieces, batteries in 

compost, etc…Dual energy radioscopy using a basis of known materials is attractive for such 

applications. However, a preliminary theoretical step is necessary for feasibility and performance 

assessment of different sorting scenarios. A simulation tool is of great interest as the materials 

nature is perfectly known, and all acquisitions parameters can be optimized, which would be a 

tedious experimental task. In our study, we have used the “Virtual X-ray Imaging” simulation 

software (VXI) developed at INSA-Lyon (LVA laboratory) in order to optimize the detector 

geometry, but also to assess performances of the method. 

 

2. Simulation of dual energy radioscopy inspection in industrial conditions 
The VXI software is a deterministic simulation code developed by INSA-Lyon [7-8]. The principle 

is based on a ray tracing approach and Beer-Lambert law. Simulation of first order X-ray scattering 

is also included in the code [9-10]. 

For dual energy radioscopy, two different acquisition strategies can be adopted: either the energy 

separation is done at the tube level with two separate high voltages, or the separation is done at the 

detector level, using the same X-ray tube spectrum. Due to our industrial constraints (high 

acquisition speed and final cost of the machine), the separation at the detector level is preferred.  

As far as the detector type is concerned, two types also can be considered. Scintillator-based 

integration detectors with two detection lines are the most industrially used. The two lines are most 

often in a sandwich configuration, but another solution with parallel lines is also commercially 

available. The second type of detector is a spectrometry one with a semi-conductor detecting 

material such as CdTe. Such detectors are also commercially available, although their use in 

industrial environment is still not wide-spread.  

Figure 1 shows an example of simulation of two typical spectra obtained at 140 kV with a 

sandwich-type detector (left), and a spectrometric detector (right). For the latter, the detector 

consists of 140 energy channels of 1 keV each, and a threshold is applied to separate the low and 

high energy photons. A gap is usually used to perform a better separation. In our simulation, the 
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detector is considered perfect, i.e., all incident photons are absorbed. 

It is worth noting that scintillator-based detectors deliver a so-called “integration” signal, i.e., the 

measurement is proportional to the total absorbed energy, which is the product of the photons 

number and their energy. On the opposite, the spectrometric detectors are of counting type, i.e., the 

measurement is proportional to the sum of photons received in each energy band. 

  

FIGURE 1 – Simulation of spectra obtained at 140 kV. Left : sandwich detector (low energy line: 0.3 mm 
Gd2O2S scintillator ; high energy line : filter 0.6 mm Cu; scintillator 3 mm CsI.).Right: spectrometric ideal 

detector 500 µm CdTe. 

Dual energy radioscopic inspection requires a calibration step using a basis of two known materials. 
The attenuation factor (µd) is measured at the two energies for a range of known thicknesses of the 
two materials (fig.2). For each energy, the measurements are fitted by a polynomial. Then, when an 
unknown material is acquired, the calibration polynomials allow computing the equivalent 
thicknesses of the two materials of the basis. 

NB : What is called “measurement” is indeed the neperian logarithm of the transmitted energy (or 
respectively the number of photons in case of a spectrometric detector), divided by the incident 
energy (resp. incident number of photons), in order to retrieve the attenuation factor µd 
(attenuation coefficient µ * thickness d). 

 

FIGURE 2 – Calibration surfaces: each material thickness (one material alone or the two materials together) 
corresponds to a couple of measurements at low energy MBE and high energy MHE. Simulation carried out at 

140 kV with material 1 : polyethylen (PE) ;  material 2 : vinyl polychloride (PVC), sandwich detector (cf 
description figure 1). 

Calibration surfaces can also be plotted as a 2D graph in the (MBE, MHE) plane, such as illustrated in 

fig.3. When the two energies are monochromatic, the surfaces and lines are respectively planar and 

straight, instead of curves like in fig.2 and 3. 



 

FIGURE 3– Calibration surfaces in the (MBE, MHE) plane (polychromatic simulation PE-PVC at 140 kV with 
sandwich detector). The calibration points of different thicknesses mat1/mat2 are represented in terms of iso-

percentage lines (material 2 %). 

A quick interpretation of figure 3 shows that materials discrimination is easier for high thicknesses 
(because the lines converge at null thickness). On another hand, the more different are the materials 
in terms of chemical composition, the more different are their respective line in the (MBE, MHE) plane 
(as it reflects their attenuation behavior). However, those interpretations are only qualitative and a quantitative 
image quality criterion is needed. 
 

3. Image quality assessment 
At first, for image quality optimization and choice of best operating conditions, different signal to 

noise ratios (SNR) are computed. First of all, the SNR on the initial measurements is determined, 

where the measurements are the deposited energies respectively in the high and low energy lines of 

the detector. Then, the SNR on the equivalent thickness is derived, where the signal refers to the 

equivalent thickness of material 1 (resp. material 2) obtained after dual energy processing. An 

analytical relation for the noise relative to each signal (measurements and equivalent thicknesses) is 

obtained theoretically from the error propagation rule, knowing the theoretical signal equation 

(function of the energy), as detailed in [11]. Measurement dispersion is simulated thanks to 50000 

random runs with Gaussian distribution. In each energy bin, the photon number follows a Poisson 

distribution, which is modelled by a normal law of mean N and variance N. 

Thus, a complete theoretical evaluation is possible thanks to the fact that the deposited energy is 

perfectly known at each incident energy through the simulation code, which would not be possible 

to do experimentally.  

 

Figure 4 illustrates the measurement dispersion obtained for 1mm of PVC (material 2). We observe 

that dispersion is higher in the high energy (HE) beam (standard deviation is 9.10-3 instead of 5.10
-

3
 for the low energy beam), due to the fact that energy absorption is less important than at low 

energy. The blue histogram on the left of the graph is the high energy signal which is lower than the 

low energy one (green line) as it represents the attenuation factor µd.  
 

Once the equivalent thicknesses are computed from the measurements, the uncertainty in the 

resulting thickness can be assessed which is directly due to the measurement dispersion (figure 5).  
 



  
                                                                          

FIGURE 4 – Dispersion of measurement points for 1 mm of material 2 (PVC) and 0 mm of material 1 (PE). 

Left : representation in the calibration map (sandwich detector, 140 kV); right : representation with histograms. 

 
FIGURE 5 – Histograms of equivalent thicknesses of material 1 (blue line) and 2 (red line) computed from the 
measurements of fig.4. Mean values computed are d1 = 0.07 mm et d2 = 0.96 mm (instead of d1real = 0 mm et 

d2real = 1 mm). 
 

The different SNR allow us to optimize acquisition conditions for a given sorting scenario (high 

voltage influence, detector type, etc…). As an example, fig.6 shows the influence of scintillator 

thickness in a scenario where chloride materials are to be detected in a neutral plastic flux. The 

chosen SNR is computed with the material 2 thickness divided by its uncertainty in the considered 

most difficult case (1 mm PVC alone). An optimal thickness of less than 100 µm is found for the 

low energy scintillator, because it allows only very low energies to be absorbed, while for the high 

energy line, the highest the thickness, the best is the SNR because the more energy is absorbed. It is 

worth noting that the final detector choice is a result of a compromise because the machine should 

adapt to different scenarios. A detailed study of all acquisition parameters can be found in [11]. 

 

 



 

4. Performance assessment of a sorting scenario 
After having illustrated how simulation can serve to optimize acquisition parameters, we show how 

it can help to assess performances of different scenarios. For this final assessment, we introduce a 

decision threshold associated to a confidence level, which allows quantifying the performance of 

various waste sorting scenarios in terms of purity and efficiency. Let’s consider a scenario where 

material 2 should be detected (thus denoted “positive”), and material 1 should be considered normal 

(thus denoted “negative”). As defined in [14 -15], efficiency and purity are given by the following 

relations:  

- Efficiency = Tp/Cp 

- Purity = Tn/Rn 

Where: 

- Tp is the mass of material 2 which has been correctly detected (« true positive »),  

- Cp is the mass of material 2 present in the initial flux to be sorted,  

- Tn is the mass of material 1 which has been correctly detected (« true negative »), 

- Rn is the total mass of material considered as normal (negative) after sorting. 

 

The different sorting situations are represented in figure 7 as a confusion matrix. The whole set of materials 

is denoted N. Cn and Cp represent respectively the real quantities of material 1 (normal) and 2 (positive) in 

the initial flux to sort (this is the reality). Rn and Rp represent the materials as classified by the sorting 

machine, respectively normal and positive. Thus we have N=Cp+Cn=Rp+Rn. Among the quantities Rn and 

Rp, a part of materials have been correctly sorted by the machine (respectively Tn and Tp), while another 

part is a sorting error (respectively Fn, which represents the quantity of material 2 undetected, and Fp which 

is the normal materials which have been wrongly detected as positive).  

Efficiency and purity are good performance metrics for sorting applications, because it allows assessing how 

the materials can be exploited after sorting: a good sorting machine should not only be efficient but purity is 

also important because the normal material can be recycled afterwards. 

 
FIGURE 6 – Influence of the scintillator thickness for the low energy line (left) and the high energy line (right) 

on the obtained SNR (1mm PVC alone, 140 kV, detector with two parallel lines). Default thickness for the 
high energy line is 3 mm of CsI (left curve), and 200 µm of Gd2O2S for the low energy line ( right curve). 

 



 

Figure 7 – Confusion matrix where green boxes represent the good classifications, and red boxes the 
sorting errors 

 

In order to obtain the different terms (Tn, Tp, Fn, Fp), a decision threshold is needed. We define it 

as a detection threshold in the measurement space (MBE, MHE). This is illustrated in figure 8 where 

zone 1 correspond to the normal zone, and zone 2 represent the zone where materials will be 

classified as positive. 

In practice, we choose a detection threshold equal to the line corresponding to the material 1 (i.e. 

the normal material in our configuration) plus a number “n” times the standard deviation. The role 

of this “n” value is illustrated in figure 9. Measurement dispersion (σ) is represented as boxes of 

size ±nσ. An example of measurement line for a given sample is plotted as a dotted line (for this sample, 

the chemical composition is fixed while the thickness increases, and for each thickness, a couple of 

measurements MBE, MHE is obtained). In order to assess the performances of sorting at “nσ”, the sample 

curve minus σ is plotted (blue line). This line intersects the threshold curve at point P. The sample will be 

correctly classified as soon as its thickness is above the P point.  

The bigger the n, the lower the risk to classify a normal material as positive (Fp type error, which 

influences the purity value). But on another hand, the risk to miss a positive material increases also 

(Fn type error, which influences efficiency). Thus the best n value is the result of a compromise. 

 

FIGURE 8 – Detection or decision threshold (blue line) represented in the calibration map. Black arrows 

represent growing thicknesses of material 1 and 2 alone. Then two examples of normal and positive 

material are represented with growing thicknesses (red parts =sorting errors, green parts =correct 

classifications). 



 

FIGURE 9 – Detection threshold as obtained by the material 1 line plus n times the standard deviation σ. Then, 

for a given sample, the measurement line (dotted line) minus n times σ (blue line) defines an intersection point 

P with the detection threshold. This point P gives the minimal thickness of the sample which will be detected. 

 

Simulation allows to assess the behavior of different materials in the calibration map, allowing thus 
to define the smallest thickness which can be detected for a given threshold. This limit of thickness 
is obtained via the P intersection point.  

The table 1 shows the limit of detection of different materials using a calibration PE/PVC. This 
scenario corresponds to the detection of flame retardants (brome, chloric of phosphor based) inside 
various plastics. Only neutral plastics (without flame retardants) can be recycled. As can be seen 
from the table values, when the flame retardant is heavy (Br), the detection is easier and the limit is 
lower. Some flame retardants contain antimony (Sb), which makes their detection easier. Two 
plastics (<3% Cl and P) remain “undetectable” in the thickness range considered here (<10 mm). 

Table 1 : Limits of detection of different plastics with flame retardants (calibration PE/PVC) 

Material 1 

(typical name ) 

Material 2 

(typical name ) 

mass% of element 

to detect (nature) 

%Sb2O3 minimal detectable 

thickness at 1σσσσ (mm) 

ABS TBBPA 6 (Br) 3,6 à 6 0.3 

PS HBCDD 3 (Br) - 0.9 

PE Dechlorane plus 13 (Cl) 10 0.2 

ABS Dechlorane plus 11 (Cl) 6 0.4 

PE PVC 57 (Cl) - 0.3 

ABS TCPP 3.3 (Cl) - undetectable 

PE APP 3.2 (P) - undetectable 

PA APP 3.2 (P) - 5.5 

PE ATH 3.5 (Al) - 2.1 

PE MDH 3.5 (Mg) - 2.3 

 

4. Experimental validation in industrial conditions 
 
4.1 Prototype trials 

Based on the simulation study, a prototype was built by BERTIN company, using a sandwich detector. 

Although it was not the best detector from the simulation study, it was selected as the best compromise 

between cost, performance and commercial availability.   



FIGURE 10: Dual energy inspection prototype built by BERTIN at Pellenc ST site 

Dynamic trials were carried out in industrial conditions (speed 3 m.s
-1

). Table 2 shows the results 

obtained on plastics among which those containing brome should be detected (positive). All 

materials were manually tested to check the real part with and without brome. 

TABLE 2. trials with prototype at industrial speed (3m/s)  
Initial flux (manual 

check) 

After sorting : negative 

materials  (kg) 

After sorting : positive 

materials (kg) 

Total (kg) 

without Br Tn = 0,900 Fp = 0,071 Cn = 0,971 

with Br Fn = 0,005 Tp = 0,700 Cp = 0,705 

 Rn = 0,905 Rp = 0,771 N = 1,676 

Purity 99, 4 % 

 

Efficiency 99,3 % 

 

The results obtained are very high due to the fact that the materials were between 1 and 2 mm in 

thickness, which is much higher that the limit of detection which was simulated from brome 

samples (see table 1). 

 
4.2. Field trials with industrial machine 

From the expertise gained with the prototype, a sorting machine « XPert » was built by PELLENC 

ST (fig.11). Three machines are operating on site by now. Mechanical design includes 

radioprotection and Xpert machine do not require a safety area as regards NFC-15160 standard.  

Two principal applications have been developed with corresponding calibrations, metals and 

plastics sorting. 

 

 



 
FIGURE 11 : Industrial sorting machine Xpert (PELLENC ST) 

 

Sorting of metals 

At present, metals coming from old vehicles after crushing are inspected by a floating process in 

order to re-use the part with aluminum (light fraction) which can directly be recycled in casting 

industry. However, the heavy fraction can still contain aluminum which can be inspected afterwards 

with the Xpert machine. In the future, it is expected to replace the floating process by the Xpert 

machine used directly, which would prevent the waste water station. 

 

Depending on the aluminum quantity in the initial flux, the sorting machine can be adapted in order 

to consider aluminum as the positive material to be separated (case where aluminum is the minor 

part), or aluminum is considered as the normal fraction, and the dense materials as positive (case 

where aluminum is the major part). In practice positive materials are ejected by a blower. 

As seen in table 3, the best result is obtained on the purity of the normal fraction (aluminum) which 

is important as it is the valuable part. 

 
Table 3. Performances obtained in the case of heavy metals ejection (field trials) 

Material 
Ejected + 

(heavy, g) 

Not ejected - 

(light, g) 
Efficiency 

Aluminum 330 25000 

Heavy metals (Cu, Zn + mix) 2000 499 80% 

Purity 86% 98% 

 

Sorting of plastics 

European directive RoHS (2002/95/CE) restricts the use of two brome-based molecules, PBB and 

PBDE. Nevertheless, this list is expected to become longer as soon as toxicity of brome-based 

molecules is discovered. Thus, a sorting machine able to separate brome-based molecules is of great 

interest. 

The threshold detection was chosen at 3% weight of brome. Sorting allows separating brome 

plastics from a plastics flux, allowing future re-use of normal plastics. This is interesting as 

electronic type waste products have a chemical composition very complex due to the presence of 

additives mostly unknown. 

Trials have been carried out on high quantities of plastics (600 kg to 1 t per test) using a 3% Br 

weight threshold. Fluxes containing about 90% of normal plastics have been tested, one of the result 

is given in table 4. Purity of the two classified fraction are good (especially the recyclable part), and 

efficiency is also high. 

 
Table 4. Field trials on plastics (660 kg of plastics among which 583 can be recycled) 



Material Classified as 

negative (kg) 

Classified as 

positive (kg) 

Efficiency 

Without Br of Br <3% 579 4  

With Br >3% 1 76 98% 

Purity 99.8% 98%  

Br content (XRF) 309 ppm   

 

5. Conclusion 
Our study shows the interest of using a simulation code such as VXI in order to optimize 

acquisition conditions and assess the performances that can be expected before building a dedicated 

prototype. A criterion has been defined allowing to quantify the performance of a given sorting 

scenario. Limits of detection of different flame retardants have been shown as an exemple result. A 

prototype has been built by BERTIN allowing to validate the feasibility as forecasted by simulation. 

Finally an industrial machine was designed and built by PELLENC ST, with very good results 

obtained. At present, three machines are in operation at three industrial sites for metal and plastic 

sorting. 

It is worth noting that the sandwich detector was selected for the machine as the best compromise 

between cost, quality and commercial availability. However, in the future, spectrometric detectors 

should allow increasing performances as shown by our simulations. 
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