
HAL Id: hal-01282159
https://hal.science/hal-01282159v1

Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML-Based Modeling of Robustness Testing
Regina Moraes, Hélène Waeselynck, Jérémie Guiochet

To cite this version:
Regina Moraes, Hélène Waeselynck, Jérémie Guiochet. UML-Based Modeling of Robustness Testing.
15th IEEE International Symposium on High Assurance Systems Engineering (HASE2014), Jan 2014,
Miami, United States. pp.168-175, �10.1109/HASE.2014.31�. �hal-01282159�

https://hal.science/hal-01282159v1
https://hal.archives-ouvertes.fr

UML-Based Modeling of Robustness Testing

Regina Moraes∗, Hélène Waeselynck†‡, and Jérémie Guiochet†‡
∗School of Technology – UNICAMP, Rua Paschoal Marmo, 1888, Limeira, SP, Brazil

†CNRS, LAAS, 7 av. du colonel Roche, F-31400, Toulouse, France
‡Univ. Toulouse, F-31400, Toulouse, France

Email: regina@ft.unicamp.br, helene.waeselynck@laas.fr, jeremie.guiochet@laas.fr

Abstract—The aim of robustness testing is to characterize
the behavior of a system in the presence of erroneous or
stressful input conditions. It is a well-established approach in
the dependability community, which has a long tradition of
testing based on fault injection. However, a recurring problem
is the insufficient documentation of experiments, which may
prevent their replication. Our work investigates whether UML-
based documentation could be used. It proposes an extension
of the UML Testing Profile that accounts for the specificities of
robustness testing experiments. The extension also reuses some
elements of the QoSFT profile targeting measurements. Its ability
to model realistic experiments is demonstrated on a case study
from dependability research.

Keywords—Robustness Testing ; UML Testing Profile ; UML
Profile extension ; Case Study

I. INTRODUCTION

Robustness testing is a specific form of black-box testing
that complements conformance testing by studying whether
erroneous or stressful input conditions (e.g., faults, or attacks)
may alter the system’s regular behavior. A robust system can
handle unexpected inputs arising from other systems or the
computational environment [1] and can deliver a dependable
service even when submitted to an aggressive environment [2].

The dependability community has a long tradition of ro-
bustness testing based on fault injection [3]. The injection
techniques span physical, design or unintentional interaction
faults, as well as attacks. It is deemed crucial to assess the
possible impact of faults and attacks on systems, in order
to provide adequate protection mechanisms that mitigate or
reduce this impact. The test outcome is typically a set of mea-
surements rather than a pass/fail verdict. Effort to standardize
this kind of testing has yielded the emergence of the concept
of dependability benchmarking [4].

A recurring problem is the lack of approaches to docu-
ment experiments, which might be one of the reasons why
studies reusing tests to compare and to consolidate results
are seldom available [5]. Our research investigates whether
the Unified Modelling Language (UML) [6] could be used
for documenting robustness testing. Its starting point is the
UML Testing Profile (U2TP) released by the Object Man-
agement Group (OMG). This profile offers a set of concepts
for designing, visualizing, specifying, analyzing, constructing
and documenting the artifacts of system testing [7]. Note that
advanced research around U2TP goes beyond documentation
purposes. It investigates complete development chains where
test code (or code skeleton) is produced from the UML models
[8], [9]. This is done in the framework of conformance testing.
We are not aware of work using U2TP in the framework of

robustness testing with fault injection. In particular, U2TP has
not gained attention in dependability research, where UML-
based work focuses on guiding early system design choices
[10] [11].

This paper proposes a specialization and extension of
U2TP that addresses the documentation of robustness testing
experiments. It also reuses a few elements from the Quality of
Service and Fault Tolerance profile (QoSFT) [12] to represent
robustness measurements. The core of the contribution is then
on the testing concepts to be reused, adapted or created based
on U2TP. A set of key elements for extending U2TP is
first identified. Its capability to represent real experiments is
explored, taking an example from dependability research in
the area of service-oriented systems [13]. The UML models
were validated with the authors of the original experiments.

The next sections are organized as follows: Section II
presents a brief overview of robustness testing in dependability
research; starting from U2TP, adaptations for robustness testing
are presented in Section III; Section IV applies the documen-
tation approach to the study; Section V concludes this paper.

II. ROBUSTNESS TESTING IN DEPENDABILITY RESEARCH

According to Avizienis et al [14], the dependability of
a system is the ability to avoid service failures that are
more frequent and more severe than is acceptable. Threats
to dependability are failures (service deviates from correct
service), errors (system state that may cause a subsequent
failure) and faults (adjudged or hypothesized cause of an error).

To achieve high levels of dependability, fault tolerance
mechanisms must be implemented. To experimentally assess
the adequacy of the implemented mechanisms, testing based
on fault injection is frequently used [3], [15]. The test input
domain has then two main dimensions: the functional activity
(workload) and the faults (faultload, or attackload when secu-
rity is the focus). A key issue is the identification of faultloads
representative of real fault sets [16], [17], [18]. Another one
is how to combine the faultload and the workload, so as to
avoid useless experiments where the injected faults would not
be activated [19]. The test output domain includes readouts
(observation data collected) from which measurements are
derived. For example, the aim may be to get an estimate of
the coverage provided by the fault tolerance mechanisms [20],
or to measure the error latency [21].

Besides the evaluation of fault tolerance mechanisms, fault
injection has proven a useful technique to characterize the
behavior of systems in the presence of faults, with targets as
different as embedded control systems [19], operating systems

[22] [23], middleware [24], communication infrastructure and
protocols [25] [26], and web services [13].

This work focuses on documenting such fault injection
experiments issued from the dependability community. The
typical profile of an injection campaign is to have a golden run
followed by one or several injection runs. During the golden
run, the workload is executed without the injection of the
faults and the readouts are collected (baseline phase). During
the injection run, the very same workload is executed in the
presence of the faultload, and the new readouts are collected
(test phase). At the end of the experiments, the observed results
are analysed and measurements are derived (check phase).

III. UML MODELS FOR ROBUSTNESS TESTING

After a brief presentation of U2TP [7], we show how
robustness measurement can be introduced by using a fragment
of either QoSFT [12] or MARTE [27] profiles. We then give
an overview of all new stereotypes and interfaces dedicated to
robustness testing.

A. OMG UML testing profile

OMG published the UML 2.0 Testing Profile (U2TP) [7]
to describe test components and activities. The goal of U2TP
is to provide a means to specify static (structural) and dynamic
(behavior) aspects of UML models and to incorporate existing
test technologies for functional black-box testing. The UML
Testing Profile is organized in four logical groups of concepts:
Test Architecture, Test Behaviour, Test Data and Test Time.

The Test Architecture group describes the architecture
of components and their configuration. The Test Behavior
includes concepts to specify the dynamic aspects of test
procedures and the implementation of the test cases. Test Data
defines the syntax and semantics of processed input / output
values (i.e., data that is used in test cases). Time concepts are
used as a means to manipulate and control test behavior, or to
ensure the proper termination of a test case.

The robustness testing case study (Section IV) will ex-
emplify the use of many U2TP concepts like: SUT (system
under test), Test Context (contains a collection of test cases,
specifies the test configuration and control), Test Components
(interact with the SUT to realize the test cases), and Scheduler
(controls the execution of test components) However, some
concepts need to be specialized or newly introduced to cover
the specificities of robustness testing. We want measurements
to be used in place of verdicts. We also want the models to
explicitly identify the structural and behavioral elements in
charge of the injection of faults.

B. Robustness measurement concepts

Robustness testing involves quantitative assessment; hence
we need concepts for measurement. QoSFT [12] and MARTE
[27] are two standardized profiles including quantitative con-
cerns. Either one or the other can provide a solution for us. As
regards QoSFT, note that the focus is on its QoS Characteristics
package addressing quantifiable characteristics of services.

As presented in Figure 1, both QoS and MARTE allow
the definition of robustness dimensions (here we define two
dimensions, FaultCoverage and ErrorLatency). QoS offers a

<<enumeration>>
SourceKind

est
meas
calc
req

<<modelLibrary>>
MARTE_Library::BasicNFP_Types

RobustnessMeasures

<<enumeration>>
DirectionKind

incr
decr

<<nfpType>>
FaultCoverage

unit : NFP_Percentage
value : Real
precision : Real
srcKind : SourceKind = calc
dir : DirectionKind = incr

<<nfpType>>
ErrorLatency

unit : TimeUnitKind
value : Real
srcKind : SourceKind = calc
dir : DirectionKind = decr

<<import>>

. . .

(b)

<<QoSCharacteristic>>
Robustness

<<QoSCharacteristic>>
FaultCoverage

<<QoSDimension>>
+coverage-rate:real

{direction(increasing),
unit(percentage)}

<<QoSDimension>>

0..1

0..1

<<QoSCharacteristic>>
ErrorLatency

<<QoSDimension>>
+latencyTime :integer

{direction(deacreasing),unit(second)}

<<QoSDimension>>

0..1

0..1

(a)

Fig. 1: Specification of robustness measurements using (a) QoS
or (b) MARTE

recursive notion of QoSCharacteristics. Indeed, a characteristic
may have several dimensions, where each dimension can be
a characteristic on its own (e.g. FaultCoverage might have
several dimensions). For each leaf dimension, a compact
notation is offered to specify the measurement unit (e.g., a
time unit for error latency), and also the direction to order two
values compared with a higher-quality relation (e.g., the higher
the fault coverage, the better the quality). This is specified
as a constraint put on this dimension: {direction(increasing)}.
MARTE does not provide the multi-dimensional and multi-
level structuring of measurements. Indeed in MARTE, a non
functional property (nfp), can only be associated with one
nfpType (a nfp dimension). Hence, we used a package (Ro-
bustnessMeasures) to introduce a structure similar to the one
of QoS. Even if MARTE also offers a rich set of predefined
elements (e.g., NFP Percentage, SourceKind, DirectionKind),
we chose QoS Characteristics to represent robustness measure-
ments, favoring structuring facilities and compactness.

C. Robustness Testing Extension

This proposal considers the reuse and integration principles
that UML suggested through the profiles idea. The main con-
struct in a profile is the stereotype. This extension mechanism
allows us to create new modeling elements, bringing specific
properties related to robustness testing. Stereotypes help us to
identify elements of interest in a model.

Our proposal inherits and extends elements from the UML
Testing Profile, the vast majority of elements being directly
reused as they were defined in the original profile. In addition,
QoS characteristics are re-used. The new elements we intro-
duce are presented in Figure 2. In this figure, elements on the
left originate from UML Metamodel definition, elements in the
middle originate from U2TP or QoSFT Profiles, and elements
on the right represent our new stereotypes and interfaces.

<<metaclass>>
Operation

<<metaclass>>
Behavior

<<stereotype>>
TestCase

<<stereotype>>
GoldenRun

<<stereotype>>
InjectionRun

<<stereotype>>
RobustnessMeasurement

<<stereotype>>
QoSDimension

<<metaclass>>
Feature

UML metamodel QoS or U2TP profile Robustness testing
stereotypes & interfaces

<<stereotype>>
RobustnessTestContext

<<metaclass>>
StructuredClassifier

<<interface>>
Arbiter

getVerdict() : Verdict
setVerdict(v : Verdict)

<<stereotype>>
Injector

<<interface>>
Analyzer

analyse()

<<stereotype>>
TestContext

+arbiter : Arbiter
+scheduler : Scheduler

+analyser : Analyzer

<<stereotype>>
WorkloadElt

<<stereotype>>
FaultloadElt

<<metaclass>>
Operation

<<metaclass>>
Behavior

<<stereotype>>
TestComponent

Fig. 2: Stereotypes and Interfaces of the Robustness extension

The central role is the <<RobustnessTestContext>>
stereotype, specializing the original U2TP <<Test Context>>
(see Figure 2). It is used to specify the context of a robustness
test, aggregating the test configuration and test cases to be
applied on the SUT. The set of injected faults is defined as
the faultload. Each specific fault is represented by faultload
elements. The <<FaultloadElt>> stereotype extends UML
2.0 Behavior and Operation metaclasses. This stereotype can
be used to specify a complete behavior (e.g., a wrong order in a
sequence of messages), or a single operation (e.g., a message
with wrong parameters). It allows us to represent injection
procedures of varying complexity. Similarly, the workload is
defined as a set of <<WorkloadElt>>. It is responsible for
the activity of the SUT, during the <<GoldenRun>>, when
no artificial fault is present and also during the <<Injection-
Run>> when <<FaultloadElt>> are injected. The golden
and injection run concepts are represented as stereotypes,
because they are two different test cases in the robustness test
context. The former is the nominal testing scenario, whereas
the latter includes injected faults. The fault injection task is
performed by the <<Injector>> that takes advantage of its
knowledge about both the workload and the faultload to place
the specific <<FaultloadElt>> into a <<WorkloadElt>>.

Finally, an essential task is to collect results for quantitative
analysis. The <<Analyzer>> is responsible for the analysis
of all the results obtained in order to compose the <<Ro-
bustnessMeasurement>> based on a set of measurements. It
replaces the original Arbiter of U2TP that was in charge of
the elaboration of pass/fail verdicts.

Figure 3 presents the main concepts used in our approach,
using the Meta Object Facility (MOF) notation, i.e. using a
sub-set of the UML notation to represent concepts [28]. All
new elements can be presented on the same class diagram
in order to define relations and their cardinalities. The meta-

GoldenRun

InjectionRun

WorkLoad

FaultLoad

RobustnessMeasurement

RobustnessTestContext

Injector Analyzer

1..* 0..1

1

1

1

1

1

0..*

0..*

0..*
0..*
0..*

0..*

0..* 0..*

0..*

1..*

0..*

0..*

0..*
0..*

0..*

FaultLoadElt

WorkLoadElt

0..*

0..*

1

1 0..*

Fig. 3: MOF Metamodel for Robustness Testing concepts

model also contains high-level concepts (like Workload and
Faultload) that are meaningful to the domain, but are not used
as stereotypes or interfaces in concrete models.

IV. A CASE STUDY ON WEB SERVICES

To investigate the usability of the proposed concepts, our
case study is the work by Vieira et al. [13] titled Assess-
ing Robustness of Web-services Infrastructures. Web-Services
(WS) are increasingly being used as a strategic way for data
exchange and content distribution. Robustness of individual
services and server infrastructures is highly desirable: when
several WS work together to achieve an objective, a local
failure could severely impact the composition result.

The robustness testing approach of Vieira et al. is applied
to WS specified in the TPC-App performance benchmark [29],
which considers a retail distributor on the Internet. It accepts
WS Requests to place orders, view and make changes to
the catalogue items, update or add customer information, or
request the status of an existing order. The experiments in [13]
focus on two different implementations of a subset of services
that are tested and compared. They both run on top of a JBoss
application server. The injected faults consist in modifying the
SOAP messages sent to request the services.

For space constraints, this section presents a subset of the
UML models we developed for this case study. It should be
sufficient to show the profile concepts in action, and demon-
strate their potential to document a non-trivial robustness
testing experiment.

A. Measurement of Robustness

The measurements selected by the authors are modeled in
Figure 4. Their representation makes use of QoS stereotypes
as defined in Section III-B where QoSDimension stereotype
has been specialized as robustnessMeasurement.

One of the measurements is the crash scale. It was first in-
troduced by Koopman and De Vale [22], and is now commonly
used in robustness testing experiments. With slight adaptations
to address WS, the C.R.A.S.H. scale categorizes the failure
modes of SUT as follows: Catastrophic: the application server
becomes corrupted or the machine crashes or reboots; Restart:
the web service execution hangs and must be terminated by
force; Abort: abnormal termination of the web-service with an
exception raised; Silent: after a timeout, no response from the

<<QoSCharacteristic>>
Robustness

<<QoSCharacteristic>>
wsCrash

<<QoSDimension>>
catastrophicCount : real {direction(decreasing)}
<<QoSDimension>>
restartCount : real {direction(decreasing)}
<<QoSDimension>>
abortCount : real {direction(decreasing)}
<<QoSDimension>>
silentCount : real {direction(decreasing)}
<<QoSDimension>>
hinderingCount : real {direction(decreasing)}

<<robustnessMeasurement>>
0..1

0..1

<<QoSCharacteristic>>
NibNif

<<QoSDimension>>
nibRate: real{direction(increasing)}
<<QoSDimension>>
nibRate: real{direction(increasing)}

0..1

0..1
<<robustnessMeasurement>>

Fig. 4: WS robustness measurements

server and no error report; Hindering: the error code returned
is not correct or the response is delayed.

The analyzer is in charge of determining the number of
failures observed for each mode (only the Abort mode occurred
during the experiments). In conformance with the QoSFT
profile, the decreasing direction indicates that the lower the
number of failures, the higher the robustness.

The other measurements are intended to characterize the
performance of the services with and without faults. NIb is
the baseline average number of successful interactions per
minutes (golden run) while NIf is the equivalent measure in
the presence of faults (injection runs). The favorable direction
is increasing.

The case study nicely exemplifies the differences between
an analyzer (used in robustness testing) and an arbiter (used in
conformance testing). An arbiter reports one ordinal verdict,
e.g., pass or fail; the elaboration of the verdict is often part
of the execution of a test case. In contrast, the analyzer works
off-line from a log file. It performs a quantitative evaluation,
and there are usually several values to be reported because no
single value can characterize robustness.

Indeed, comparing the robustness of alternative imple-
mentations is an acute issue. Let us take the example of a
comparison according to the crash scale. Generally speaking,
it is obvious that the catastrophic failure mode is more severe
than, say, the hindering one. However, whether it is preferable
to have sparse crashes and a correct handling of invalid param-
eters the rest of the time, or no crash but frequent abnormal
terminations and inappropriate error codes returned, is left to
the decision of service integrators. The number and repartition
of failure modes are useful indicators; they could not easily
be aggregated into an absolute robustness level. Moreover,
other indicators may also be of interest, like the degradation of
performance. The inherent difficulty of robustness evaluation
is captured by the concepts we reused from the QoS profile,
i.e., evaluation must account for multiple characteristics and
multiple dimensions of the characteristics.

B. Experiment Architecture

Figure 5 provides a partial view of the test architecture. The
target of the test is the service provider (Server) as indicated
by the SUT stereotype. The ConsRBE component, playing the

role of a consumer, thus acts as a test driver for the server
(see its testComponent stereotype). The server processes the
requests sent by ConsRBE and sends back a response mes-
sage. In normal operation, the network mediates client/server
communication. In the test experiments, the proxy intercepts
all messages issued by the client, and possibly modifies them
before they are passed to the server. In Figure 5, Proxy has the
injector stereotype: it is a test component with the capacity of
injecting faults. This is a major role for robustness testing.

A partial view of the architecture is a convenient support
to show the major components, their roles, and the interaction
flows between them. The interfaces of individual components
can be further documented in dedicated models.

Most of the time, robustness testing requires a complex
test environment. Besides the major test components, it is not
rare to use many auxiliary components to aid in the control
and monitoring of test execution. The case study we took from
[13] is no exception and exhibits a complex test architecture.

In the UML Testing Profile, the composite structure of
a test context is a collection of test component objects and
connections between these objects and the SUT. Figure 6
shows this composite structure for the case study. It involves
component objects already discussed, like the server, the
network and proxy. The client ConsRBE is connected to a
controller that is responsible for telling ConsRBE when to start
and stop the generation of requests (controls the generation of
the workload). In addition to them, a Coordinator is responsi-
ble for managing all the experimental process; it implements
the Scheduler interface of the UT2P profile. Executor is a
daemon component running on each machine. It processes
Coordinator’s requests to create new processes during the
experiment execution. Analyzer is responsible for analyzing
data logged in a File and for determining final measurement
results (see Section IV-A). Finally, the Loader is a component
to load data. It provides remote access to a Database and other
resources used during execution.

It is important to properly document the set of required
test components, as well as the connections between SUT,
test components and the fault injection part. Pure textual
descriptions are likely not to be clear enough. Diagrammatic
views, such as the UML ones, offer a much more adequate
support. The stereotypes attached to model elements also
contribute to the clarity of the diagrams, by making it explicit
which roles are played by the components.

C. Fault Model and Data Representation

Fault injection focuses on corrupting SOAP service re-
quests sent to the provider through the network (using http
or https protocols, for example). The injection changes the
value of a parameter in either the message header (http
version number, message length) or the message body (e.g.,
the customer id of a ChangePaymentMethod request). The
mutation operators depend on the type of the parameter. For
instance, the http version number in the header can be replaced
by a null value, another valid version number or an invalid
version number. In [13], the authors represent the fault model
by mutation tables for the considered types of parameters. We
demonstrate how the data mutation concept can be built from
existing data concepts in U2TP (data partition and data pool).

PartialArch 2013/11/08 powered by astah*
 pkg

<<testComponent>>
ConsRBE

IReqNetC

IProvNetCIReqRMIC
<<testComponent>>

Network

<<injector>>
Proxy

IProvServ

IReqCons
IReqServ

IProvCons

IReqRMIN

<<sut>>
Server

IReqNet
IReqRMIS

IProvNet

IProvRMICo

Fig. 5: Partial architecture of the WS systemWS_Suite 2013/11/08 powered by astah*
 pkg

<<textContext>>
WS_Suite

<<testComponent>>
:ConsRBE

<<testComponent>>
:Network

<<sut>>
: Server

<<injector>>
:Proxy

<<testComponent>>
:Loader

<<testComponent>>
:Executor

:dataPool

provNetPortCoordinator:
Scheduler

consRMIPortR

<<testComponent>>
:RBEController

coordRMIPort

consRMIPortRCo

contRMIPortc

consNetPort

consNPort

servNPort

servNPort

provNetPort

provNetPortE

servRMIPortRnetRMIPortR

coordRMIPort
L

<<analyzer>>
:Analyzer

coordRMIPort
A

coordRMIPort
E

<< os >>
:File System

OSPort

OSPortA

<<testComponent>>
:Database

Fig. 6: Composite structure of the test context

A data partition defines an equivalence class for a set
of values used in a stimulus or observation. A data pool
aggregates the partitions and concrete values used in a test
context. Data selectors provide strategies for selecting them.
Figure 7 presents our approach to model the corruption of
existing data. Its principle is generically shown for a service
request with two parameters (in the case study, Request1 would
be a request like NewCustomer, ChangePaymentMethod, etc.).
The message data is modeled by class MsgRequest1 that
inherits a header from Msg. Fault models are attached to
the various parameters. Both valid and faulty requests can
be selected from the data pool. For illustrative purposes,

two exemplary partitions of faulty requests are shown: Re-
quest1FaultHttpVersion and Request1FaultParam1. Each of
them is linked to a valid partition and a fault model. Accord-
ingly, the changeMsg method returns faulty requests (note its
FaultloadElt stereotype). Of course, other partitions could be
built to accommodate diffrent injection strategies. For instance,
a partition could be linked to several fault models for multiple
corruptions of parameters at the same time.

D. Golden Run and Injection Runs

The Golden Run precedes the fault injection experiments.
Its goal is to characterize the behavior of the system in the

Msg

<<DataPartition>>
Request1FaultHttpVersion

<<DataSelector>>
<< FaultLoadElt>>
changeMsg(): MsgRequest1

<<DataPool>>
MsgDataPool

<<DataSelector>>
selectMsg():Msg

MsgRequest1

HttpVersion

MsgLength

FaultModel
HttpVersion

FaultModel
MsgLength

<<DataPartition>>
Request1FaultParam1

<<DataSelector>>
<< FaultLoadElt>>
changeMsg(): MsgRequest1

Param1

Param2

FaultModel
Param1Type

FaultModel
Param2Type

*

<<DataPartition>>
MsgRequest1Partition

<<DataSelector>>
<< WorkLoadElt>>
selectMsg():MsgRequest1

<<DataPartition>>
FaultMsgRequest1Partition

<<DataSelector>>
<< FaultLoadElt>>
changeMsg(): MsgRequest1

valid invalid

1

1 1

1

1

1

1

1

1

Fig. 7: Data representation of valid and faulty requests

absence of artificial faults. In the case study, it consists of
sending requests (Stimulus) to the server, and logging the ob-
servable events resulting from their processing (Observation).
The results are stored for comparison with the injection runs.
The sequence diagram in Figure 8 gives a generic view of the
interactions among the objects. Test components are created,
the server is configured and functional activity is started.
The activation of the server has predefined time duration.
Workload messages are produced until time is elapsed (see
loop fragment). During this time, the behavior of the server
is observed. Both normal and abnormal behavior is logged, as
shown in the alt fragment. Although the workload messages
go through the proxy, they are forwarded unchanged to the
server. The proxy’s fault injection capability is inhibited.

After the Golden Run, the very same workload is per-
formed in the presence of faults. Figure 9 presents the loop
fragment of the fault injection procedure. The proxy now
modifies either the message header or the value of a parameter
in the message body (in accordance with the type of the target
parameter). The modified message continues its route to the
server, whose behaviour is observed.

V. CONCLUSION

This work proposes an extension to the UML Testing Pro-
file that makes it suitable for the documentation of robustness
testing experiments. Golden and injection runs are introduced
as a specialization of test cases. Their behavioral description
involves workload and faultload elements. Test components
can have the injector role. An Analyzer in charge of measure-
ments replaces the Arbiter in charge of verdicts. Robustness
is a multi-dimensional QoS characteristic, as defined by the
QoSFT profile. An alternative definition could have used a set
of MARTE’s non functional properties grouped into packages.

To show the proposed concepts in action, we used exper-
iments from a robustness testing research group. The UML
modeling exercise involved both structure and interaction

diagrams. It proved challenging as regards the complex test
architecture. We found that the visual support of UML di-
agrams, specialized with stereotypes to indicate the roles of
components, was really useful for documentation purposes.
In the sequence diagrams, stereotypes attached to workload
and faultload elements are also convenient to identify which
interactions correspond to the activation part of the test, among
the many other interactions necessary for test configuration
and logging. Overall, the outcomes of the case study were
quite promising in respect of the capacity to model realistic
robustness testing experiments.

The models were validated with the help of the authors
of the original experiments. Several iterations were necessary
to incorporate details that would not have their place in
[13], but are important for documentation. The feedback we
received was encouraging. No deep expertise on UML or
U2TP was necessary to understand the models. The authors
could recognize the representation of their experiments and
even point at errors when we misunderstood the experimental
settings. It bodes well for the intelligibility of our modeling
approach for peers in dependability research.

Our future work will elaborate on the reproducibility of
experiments. We will take a recent example of experiments
developed by some of us at UNICAMP, and will try to replicate
it at LAAS based on its documentation. It will give us further
insights into the methodology, e.g., what is worth modeling
and to which level of details.

ACKNOWLEDGEMENTS

This work was initiated during Regina Moraes six-month
stay at LAAS/CNRS, supported by CAPES BEX3587-10-
0. The work was also supported by RobustWeb - CAPES
0580/08. We thank Nuno Laranjeiro from the University of
Coimbra for his availability to validate our models.

<<goldenRun>> GoldenRun 2013/11/08 powered by astah*
<<goldenRun>> GoldenRunsd

Coordinator :
Scheduler

<<testComponent>>
 : Executor

<<testComponent>>
 : logFile

<<injector>>
 : Proxy

<<sut>>
 : Server

<<testComponent>
> : RBE Controller

<<testComponent>>
 : ConsRBE

 : Loader

<<create>>
3: create()

<<create>>
2: create()

<<create>>
1: create()

loop [elapse(t)]

[exception]

[valid]

alt

7: configure()

5: configure()

4: configure()

<<create>>
6: create()

17: closeService()

19: notify()

8: start()
8.1: start()

8.2: start()

18: notify()

18.1: log()

19.1: notify()

10: log()

13: log()

14: answer()

12: answer()

15: SOAPException()

15.1: errorNotification()
15.1.1: log()

16: errorNotification()

9: <<workloadElt>>request()

11: <<workloadElt>> request()

8.2.1: start()

1!

2! Observation!

Stimulus!

1!

2!

Fig. 8: Golden Run procedure

REFERENCES

[1] J. Cohen, D. Plakosh, and K. Keeler, “Robustness testing of software-
intensive systems: Explanation and guide,” Software Engineering Insti-
tute, Carnegie Mellon University, Tech. Rep. CMU/SEI-2005-TN-015,
2005.

[2] J. Voas, “Certifying off-the-shelf software components,” IEEE Com-
puter, vol. 31, no. 6, pp. 53–59, 1998.

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation
- a methodology and some applications,,” IEEE Trans. on Software
Engineering, vol. 16, no. 2, pp. 166–182, 1990.

[4] K. Kanoun and L. Spainhower, Dependability Benchmarking for Com-
puter Systems. Wiley and IEEE Computer Society Press, 2008.

[5] J. Arlat and R. Moraes, “Collecting, analyzing and archiving results
from fault injection experiments,” in Proc. Fifth Latin-american Symp.
on Dependable Computing, Sao Jose dos Campos, SP, Brazil, 2011.

[6] OMG, “UML 2.4.1 Superstructure and Infrastructure,” Object Manage-
ment Group, 2011.

[7] ——, “UML 2.0 Testing Profile v.1.1, formal/2012-04-01,” Object
Management Group, Tech. Rep., 2012.

[8] J. Zander, Z. Dai, I. Schieferdecker, and G. Din, “From U2TP models to
executable tests with TTCN-3: An approach to model driven testing,” in
Proc. Int. Conf. on Testing of Communicating Systems TestCom, 2005,
pp. 289–303.

[9] P. Baker and C. Jervis, “Testing UML2.0 models using TTCN-3 and the
UML2.0 testing profile,” in Proc. SDL 2007, LNCS 4745. Springer,

<<injectionRun>> loadTestFragment 2013/11/08 powered by astah*

<<injectionRun>> loadTestFragmentsd

<<testComponent>>
 : logFile

<<injector>>
 : Proxy

<<sut>>
 : Server

<<testComponent>>
 : ConsRBE

loop [elapse(t)]

[exception]

[valid]

alt

6: errorNotification()

5.1.1: log()
5.1: errorNotification()

5: SOAPException()

2: answer()

4: answer()

3: log()

1: <<workloadElt>> request()
1.1: <<faultLoadElt>>changeMessage()

1.1.1: log() 1.1.2: <<faultLoadElt>> request()

Fig. 9: Fragment of Fault Injection procedure

2007, pp. 86–100.

[10] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, and
G. Savoia, “Dependability analysis in the early phases of UML based
system design,” Int. Journal of Computer Systems Science and Engi-
neering, vol. 16, pp. 265–275, 2001.

[11] S. Bernardi, J. Merseguer, and D. Petriu, “A dependability profile within
MARTE,” Software and System Modeling, vol. 10, no. 3, pp. 313–336,
2011.

[12] OMG, “UML profile for modelling quality of service and fault tol-
erance characteristics and mechanisms, v.1. formal/06-05-02,” Object
Management Group, 2006.

[13] M. Vieira, N. Laranjeiro, and H. Madeira, “Assessing robustness of
web-services infrastructure,” in Proc. 37th IEEE-IFIP Int. Conf. on
Dependable Systems and Networks - DSN, 2007.

[14] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans. on
Dependable and Secure Computing, vol. 1, pp. 11 – 33, 2004.

[15] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[16] V. Sieh, O. Tschche, and F. Balbach, “Comparing different models using
verify,” in Proc. 6th Int. Working Conf. on Dependable Computing for
Critical Applications - DCCA-6, Germany, 1997, pp. 59–76.

[17] J. Duraes and H. Madeira, “Emulation of software faults: A field data
study and a practical approach,” IEEE Trans. on Soft. Engineering,
vol. 32, pp. 849–867, 2006.

[18] R. Moraes, R. Barbosa, J. Duraes, N. Mendes, and H. Martins,
E.and Madeira, “Injection of faults at component interfaces and inside
the component: Are they equivalent?” in Proc. European Dependable
Computing Conference - EDCC, Portugal, 2006, pp. 53–64.

[19] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson, “Experimental
dependability evaluation of a fail-bounded jet engine control system for
unmanned aerial vehicles,” in Proc. European Dependable Computing
Conference, Hungary, 2005, pp. 246–262.

[20] W. Bouricius, W. Carter, D. Jessep, P. Schneider, and A. Wadia,

“Reliability modeling for fault-tolerant computers,” IEEE Trans. on
Computers, vol. 20, no. 11, pp. 306–311, 1971.

[21] J. Arlat, A. Costes, Y. Crouzet, L. J-C., and D. Powell, “Fault injection
and dependability evaluation of fault-tolerant systems,” IEEE Transac-
tion on Computers, vol. 42, no. 8, pp. 913–23, 1993.

[22] P. Koopman and J. De Vale, “Comparing the robustness of POSIX
operating systems,” in Proc. 29th Annual Int. Symp. on Fault-Tolerant
Computing. Digest of Papers, 1999, pp. 30–37.

[23] K. Kanoun and Y. Crouzet, “Dependability benchmarks for operating
systems,” Int. Journal of Performability Engineering, vol. 2, no. 3, pp.
275–287, 2006.

[24] N. Laranjeiro, M. Vieira, and H. Madeira, “Experimental robustness
evaluation of JMS middleware,” in IEEE Int. Conf. on Services Com-
puting, vol. 1, 2008, pp. 119–126.

[25] D. Stott, G. Ries, M.-C. Hsueh, and R. Iyer, “Dependability analysis of
a high-speed network using software-implemented fault injection and
simulated fault injection,” IEEE Trans. on Computers, vol. 47, no. 1,
pp. 108–119, 1998.

[26] D. Andres, J. Friginal, J.-C. Ruiz, and P. Gil, “An attack injection
approach to evaluate the robustness of ad hoc networks,” in Proc. IEEE
Pacific Rim Int. Symp. on Dependable Computing, China, 2009.

[27] OMG, “UML profile for modeling and analysis of real-time and
embedded systems (MARTE) version 1.0, formal/2009-11-02,” Object
Management Group, 2009.

[28] ——, “MOF meta Object Facility core v 2.4.1,” Object Management
Group, 2011.

[29] T. P. P. Council, “TPC benchmark app (application server) standard
specification, version 1.1,” 2005.

