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Abstract: It is well known inside the Formal Concept Analysis (FCA) community that a concept lattice could have an
exponential size in the data. Hence, the size of concept lattices is a critical issue in the presence of large
real-life data sets. In this paper, we propose to investigate factor lattices as a tool to get meaningful parts of the
whole lattice. These factor lattices have been widely studied from the early theory of lattices to more recent
work in the FCA field. This paper contains two parts. The first one gives background about lattice theory
and formal concept analysis, and mainly compatible sub-contexts, arrow-closed sub-contexts and congruence
relations. The second part presents a new decomposition called “reverse doubling construction” that exploits
the above three notions used for the doubling convex construction investigated by Day. Theoretical results and
their proofs are given as well as an illustrative example.

1 INTRODUCTION

During the last decade, the computation capabilities
have promoted Formal Concept Analysis (FCA) with
new methods based on concept lattices. Though they
are exponential in space/time in worst case, concept
lattices of a reasonable size enable an intuitive repre-
sentation of data expressed by a formal context that
links objects to attributes through a binary relation.
Methods based on concept lattices have been devel-
oped in various domains such as knowledge discovery
and management, databases or information retrieval
where some relevant concepts, i.e. possible corre-
spondences between objects and attributes are con-
sidered either as classifiers, clusters or representative
object/attribute subsets.

With the increasing size of data, a set of meth-
ods have been proposed in order to either generate
a subset (rather than the whole set) of concepts and
their neighborhood in an on-line and interactive way
(Ferré, 2014; Visani et al., 2011) or better display lat-
tices using nested line diagrams (Ganter and Wille,
1999). Such approaches become inefficient when
contexts are huge. However, the main idea of lat-
tice/context decomposition into smaller ones is still
relevant when the classification property of the ini-
tial lattice is maintained. Many lattice decomposi-
tions have been defined and studied, either from an

algebraic point of view (Demel, 1982; Mihók and
Semanis̃in, 2008) or from an FCA point of view
(Ganter and Wille, 1999; Funk et al., 1995). We
can cite the Unique Factorisation Theorem (Mihók
and Semanis̃in, 2008), the matrix decomposition (Be-
lohlavek and Vychodil, 2010), the Atlas decomposi-
tion (Ganter and Wille, 1999), the subtensorial de-
composition (Ganter and Wille, 1999), the subdirect
decomposition (Demel, 1982; Freese, 2008; Freese,
1997; Freese, 1999; Wille, 1969; Wille, 1976; Wille,
1983; Wille, 1987; Funk et al., 1995), or the doubling
convex construction. The doubling convex construc-
tion has also been widely studied (Day, 1994; Na-
tion, 1995; Geyer, 1994; Bertet and Caspard, 2002),
mainly from a theoretical point of view in order to
characterize lattices that can be obtained by such de-
composition.

In this paper, we investigate a new method named
reverse doubling construction to reduce the size of
data. In other words, we propose a new method to
construct a smaller lattice from a given one. It is
based on the previous work of Day about the dou-
bling convex construction (Day, 1977; Day, 1994).
Such a method has then be generalized (Geyer, 1994)
and further widely studied (Day et al., 1989; Nation,
1995; Bertet and Caspard, 2002). Intuitively, this con-
struction consists in doubling into a lattice L a convex
subset C of nodes of L. In this paper, we propose a



“reverse doubling construction” which aims at remov-
ing from a lattice L a doubled convex set until no du-
plicated convex set exists. However, there may be no
convex to remove and hence no changes in the initial
lattice structure. When the reverse doubling construc-
tion successively applied to an assumed finite lattice L
and a convex set C, and following the Day’s doubling
construction, the initial lattice L is recovered without
any loss of information.

Studies about the doubling convex construction
can be organized according to the following chrono-
logical sequence of events:

• The first one corresponds to the original work of
Day (Day, 1977; Day, 1994; Day et al., 1989; Na-
tion, 1995), who introduced the construction. At
the very beginning, only intervals were doubled.

• Further generalizations were developed that lead
to the general doubling convex method (Geyer,
1994).

• In parallel, characterizations of lattices obtained
by iterating the doubling convex construction we-
re investigated (Day, 1977; Day, 1994; Day et al.,
1989; Nation, 1995; Bertet and Caspard, 2002).

• In this paper, we define a reverse construction
which removes a convex from a lattice whenever
it is possible.

Being able to recover the full lattice from the
smaller one and a convex inside, means that all the
information is contained in the small lattice. Thus we
only need to consider the sub-context that defines the
small lattice. In other words, only a part of the data
is relevant. Consequently, one needs only to access
or even keep a smaller part of the data. This is obvi-
ously an interesting way to manage big data that are
nowadays ubiquitous in many real-life applications.

This paper is organized as follows. The next sec-
tion as well as the appendix give the background
needed to understand the rest of the article. Then,
Section 3 presents the decomposition method while
an example serves as an illustration in Section 4. Con-
clusion and future work are given in Section 5.

2 STRUCTURAL FRAMEWORK

Throughout this paper all sets (and thus lattices) are
considered to be finite.

This work takes place in the framework of Formal
Concept Analysis (FCA) (Ganter and Wille, 1999)
which deals with formal contexts, i.e. data repre-
sented as binary matrices. From a formal context, a
concept lattice is deduced. An example of a formal

Figure 1: A lattice with its irreducible nodes

context is given in Table 1 and its associated concept
lattice is given in Figure 1.

2.1 Lattices and Formal Concept
Analysis

2.1.1 Algebraic Lattice

Let us first recall that a lattice (L,≤) is an ordered set
in which every pair (x,y) of elements has a least upper
bound, called join x∨ y, and a greatest lower bound,
called meet x∧ y. As we are only considering finite
structures, every subset A⊂ L has a join and meet (e.
g. finite lattices are complete).

2.1.2 Concept or Galois Lattice

A (formal) context (O,A,R) is defined by a set O of
objects, a set A of attributes, and a binary relation R⊂
O×A, between O and A. Two operators are derived:
• for each subset X ⊂ O, we define X ′ = {m ∈

A, j R m ∀ j ∈ X} and dually,

• for each subset Y ⊂ A, we define Y ′ = { j ∈
O, j R m ∀m ∈ Y}.
Table 1 is an example of a formal context where X

in a cell ( j,m) means that object j has the attribute m.
A(formal) concept represents a maximal objects-

attributes correspondence by a pair (X ,Y ) such that
X ′ =Y and Y ′ = X . The sets X and Y are respectively
called extent and intent of the concept. The set of
concepts derived from a context is ordered as follows:

(X1,Y1)≤ (X2,Y2)⇐⇒ X1 ⊆ X2⇐⇒ Y2 ⊆ Y1 (1)

The whole set of formal concepts together with
this order relation form a complete lattice, called the
concept lattice of the context (O,A,R).



Table 1: The reduced context of the lattice in Figure 1

b c d f g j
2 x x x x x
3 x x x x
5 x x x
6 x x x
9 x x

Different formal contexts can provide isomorphic
concept lattices, and there exists a unique one, named
the reduced context, defined by the two sets O and A
of the smallest size.

This particular context is introduced by means of
special concepts or elements of the lattice L, namely
irreducible elements.

An element j ∈ L is join-irreducible if it is not a
least upper bound of a subset not containing it. The
set of join irreducible elements is noted JL. Meet-
irreducible elements are defined dually and their set
is ML. As a direct consequence, an element j ∈ L is
join-irreducible if and only if it has only one immedi-
ate predecessor denoted j−. Dually, an element m∈ L
is meet-irreducible if and only if it has only one im-
mediate successor denoted m+.

In Figure 4, nodes with with a number above are
meet-irreducible while nodes with a number below
are join-irreducible.

2.1.3 Fundamental Bijection

A fundamental result (Barbut and Monjardet, 1970)
establishes that any lattice (L,≤) is isomorphic to the
concept lattice of the context (JL,ML,≤), where JL
and ML are the join and meet irreducible concepts of
L, respectively. Moreover, this context is a reduced
one.

As a direct consequence, there is a bijection be-
tween lattices and reduced contexts where objects of
the context are associated with join-irreducible con-
cepts of the lattice, and attributes are associated with
meet-irreducible concepts.

Table 1 in the appendix shows the reduced context
of the lattice in Figure 1.

When needed, operators •′ introduced in subsec-
tion 2.1.2 will be written •L to stress the fact that they
are used with the reduced context of the lattice L.

A sub-context consists of a binary relation be-
tween a subset of objects and a subset of attributes
in the initial data. In this paper we consider particular
sub-contexts for which three different equivalent def-
initions can be given. More details can be found in
(Viaud et al., 2015).

• Compatible sub-contexts,

• Arrow-closed sub-contexts,

• Sub-contexts defining factor lattices and congru-
ence relations.

In conjunction with Day’s doubling construction
(Day, 1977; Day, 1994), these particular sub-contexts
enable us to introduce a new construction, namely the
reverse doubling construction.

3 REVERSE DOUBLING
CONVEX

In this section, we describe the reverse doubling con-
struction which itself uses congruence relations.

Given a lattice L, we recall that we are looking for
a lattice LC containing a convex C such that L= LC[C].

3.1 Main Steps

Before giving details about this decomposition, let us
provide the main steps of our construction.

3.1.1 Main Steps of the proof

Given a finite lattice L, we are searching a lattice LC
and a convex set C ⊂ LC such that L is isomorphic to
LC[C].

1. We first use following result of Day (Day, 1994):
Theorem 1. Let L be a congruence normal lattice
and Θ a congruence relation which is an atom, i.e.
a successor of the bottom element. Then, there
exists a convex set C such that L is isomorphic to
L/Θ[C].

From this theorem 1, we know that good candi-
dates can be obtained from factor lattices, spanned
by a congruence relation which is an atom.
It is important to note that we only get good candi-
dates because we do not use the congruence nor-
mality hypothesis.

2. We next use the following equivalence whose
proof can be found in (Ganter and Wille, 1999):



Theorem 2. Given a lattice L, the set of congru-
ence relations on L corresponds bijectively with
the set of arrow-closed subcontexts of the reduced
context of L.

From this Theorem 2, we know that these con-
gruence relations correspond to arrow-closed sub-
contexts.

3. Then the following theorem 3 of Geyer is used:
Theorem 3. Let L = LC[C] be a lattice obtained
by doubling the convex set C of the lattice LC.
Note K = (O,A,R) the reduced context of L, then
the reduced context KC = (J,M,R∩ J×M) is an
arrow-closed subcontext of K such that:

R∩ ((O\J)× (A\M)) = /0 (2)

We only need to check if the arrow-closed sub-
contexts that are just good candidates satisfy the
Geyer’s condition 2.

4. If none of these sub-contexts is valid, the decom-
position is not possible. Otherwise, each one of
these sub-contexts generates a lattice LC that is
appropriate.

3.1.2 Main Steps of the construction

The principal steps are as follows:

1. The first step of our construction is to compute
atoms of the lattice of congruence relations.

2. Then we select the arrow-closed sub-contexts sat-
isfying the Geyer’s condition. Each one of these
sub-contexts generates a lattice LC that is appro-
priate.

3. The last step consists in identifying the convex set
C in LC.

3.2 The Lattice of Congruence
Relations

A reduced context (O,A,R) of a lattice L is supposed
to be given.

Recall that congruence relations are equivalence
relations compatible with the lattice structure. As a
particular kind of binary relation, the set of congru-
ence relations inherits a structure of lattice: it is a
sublattice of the lattice of binary relations which is
ordered by inclusion. Using Theorem 2, this lattice
is also the lattice of arrow-closed sub-contexts. As
explained previously, we aim at finding the atoms of
that lattice. To that end, we introduce a new con-
text, namely the context of arrow-closed subcontexts,
which is defined and computed as follows. We first
compute one-generated arrow-closed sub-contexts.

Definition 1. A context (J,M,R) is one-generated if it
can be obtained by arrow-closing a context with only
one j ∈ J. Thus (J,M,R) is the smallest arrow-closed
subcontext containing j ∈ J.

The set of such one-generated sub-contexts con-
tains all join-irreducible arrow-closed sub-contexts of
the lattice of arrow-closed sub-contexts. Thus, the set
of one-generated sub-contexts generates the lattice of
arrow-closed sub-contexts. The one-generated sub-
contexts are stored as observations of a new context
in the following way: an arrow-closed is character-
ized by its set of attributes, since it is closed. Thus
the newly generated context has the same set of at-
tributes, namely A. Since one-generated sub-contexts
are computed by closing one j ∈ O, they can be iden-
tified with that j. The set of observations of the newly
generated context is still O. Finally, there is a cross
in the new context between object j and attribute a if
and only if the arrow-closed sub-context generated by
j contains the attribute a.

From this context, we can deduce the lattice of
arrow-closed sub-contexts and in particular its atoms.

3.3 The Factor Lattice

We are now given a list of arrow-closed sub-contexts,
which correspond to atom congruence relations.

The second step is to remove from this list the fol-
lowing contexts:

• The empty context. In the particular case where
the initial lattice has only two congruence rela-
tions, there is only one atom, namely the bottom
element. This case is excluded since it gives rise
to a trivial decomposition.

• Any context that does not satisfy Geyer’s Condi-
tion.

After this removal process, our list could be emp-
ty. Since the Geyer’s condition is necessary and suffi-
cient, we can conclude that the original lattice can not
be processed through the reverse doubling construc-
tion.

On the opposite side, any remaining context gen-
erates a lattice LC such that there exists a convex set
C so that the initial lattice L satisfies L = LC[C].

3.4 Finding the Convex

Given a lattice LC satisfying the previous conditions
of Subsection 3.3, the last step is to identify in LC
nodes of a convex set C such that L = LC[C].

Using Theorem 3 which gives a necessary and suf-
ficient condition, we already know that L is obtained
by the doubling construction from LC. Thus, each



concept of LC gives rise to one concept in L if and
only if it is not in C and two concepts in L if and only
if it is in C.

Let us be more precise about these two concepts,
and first let us recall some notations: (O,A,R) is
the reduced context of the lattice L. We consider
(J,M,R ∩ J ×M) an atom in the lattice of arrow-
closed sub-contexts which satifies the Geyer’s condi-
tion. From this context, we can deduce LC the lat-
tice from which a convex has been removed. Let c
be a concept of LC. Recall from (Ganter and Wille,
1999) that arrow-closed sub-contexts are also com-
patible ones. Since (J,M,R∩ J ×M) is a compat-
ible sub-context, using this result, c can be written
as c = (H ∩ J,N ∩M) with (H,N) a concept of L.
Since c is a concept, we have (H ∩ J)′ = N ∩M and
(N ∩M)′ = H ∩ J. Recall, from the end of Subsec-
tion 2.1.3, that these operations are written •L in the
reduced context (O,A,R) of L; thus we also have
HL = N and NL = H. Now, we can conclude that,
if c = (H ∩ J,N ∩M) is not in the convex, it comes
from the unique concept of L, namely (H,N) and
thus we must have ((H ∩ J)LL,(H ∩ J)L) = (H,N) =
((N ∩M)L,(N ∩M)LL). In the other case, we have
((H ∩ J)LL,(H ∩ J)L) 6= ((N∩M)L,(N∩M)LL).

From this point, we can state a simpler condition
for a concept to be in the convex set:

Theorem 4. A concept c = (H ∩ J,N ∩M) is in the
convex if and only if

(H ∩ J)L ⊆ (N∩M) or (N∩M)L ⊆ (H ∩ J) (3)

Proof. We have previously seen that if c is in the con-
vex then:

((H ∩ J)LL,(H ∩ J)L) = (H,N) (4)

= ((N∩M)L,(N∩M)LL) (5)

So both inclusions are true and actually are equal-
ities.

Suppose, reciprocally, that we have the first one:

(H ∩ J)L ⊂ (N∩M) (6)

We obtain the same result dually in the second
case.

First we prove that the inclusion is an equality.
Indeed, since (J,M,R ∩ J ×M) is a subcontext of
(O,A,R), we have:

(H ∩ J)′ ⊂ (H ∩ J)L (7)

However (H ∩ J)′ = (N∩M), so:

(N∩M)⊂ (H ∩ J)L (8)

and dually

(H ∩ J)⊂ (N∩M)L (9)

Therefore, we deduce that (H ∩ J)L = (N ∩M),
and then (N∩M)L = (H ∩ J)LL.

Moreover:

(H∩J)⊂ (N∩M)L =⇒ (N∩M)LL ⊂ (H∩J)L (10)

and with (N∩M) = (H ∩ J)L, we deduce that:

(N∩M) = (N∩M)LL (11)

since (N∩M)⊂ (N∩M)LL.
Now from (H ∩ J)L = (N ∩M) = (N ∩M)LL and

(N∩M)L = (H ∩ J)LL, we get:

((H∩J)L,(H∩J)LL) = ((N∩M)LL,(N∩M)L) (12)

This means that a concept ((H ∩ J),(N ∩M)) in
the small lattice LC that satisfies the condition (H ∩
J)L ⊂ (N ∩M) or (N ∩M)L ⊂ (H ∩ J) comes from a
unique concept in the lattice L, namely the concept:

((H ∩ J)LL,(H ∩ J)L) = (H,N) (13)

= ((N∩M)L,(N∩M)LL)
(14)

Conversely, if ((H ∩ J),(N ∩M)) does not satisfy
the previous condition, it comes from two concepts in
L:

((H∩J)LL,(H∩J)L) 6= ((N∩M)L,(N∩M)LL) (15)

Thus to get L from LC, one needs to double these
concepts and then these concepts are exactly the ones
of the convex.

4 EXAMPLE

To illustrate the reverse doubling convex construc-
tion, we will use the lattice given in Figure 2 and its
reduced context given by Table 2 already filled with
arrows. Nodes in light grey and dark grey correspond
to the two occurrences of the doubled convex.

From the lattice shown in Figure 2, we compute
Table 3 of one-generated arrow-closed sub-contexts
and then we get the lattice of congruence relations
given in Figure 3. Notice that Table 3 has been re-
duced after computation. In this particular case, there
are two atoms.

Since the two atoms identified in Figure 3 satisfy
Geyer’s condition, the lattice given in Figure 2 has
two decompositions.



Table 2: The reduced context of the lattice in Figure 2 filled with arrows.

9 10 14 19 33 15 28 7 26 13
2 ↓ l ↓ × × × × ↓ ↓ ×
4 × × × l ↓ ↓ ↓ ↓ ↓ ↓
8 × × l × l × × × × ×
12 l × ↑ × ◦ ↓ ↓ × × l
14 l × × ↑ ◦ ◦ ◦ ◦ ◦ ◦
25 ◦ ↑ ◦ × × × l ◦ ◦ ×
20 ◦ ↑ ◦ × × l × ◦ ◦ ×
27 × × ↑ × ↑ × l × l ×
16 × × ↑ × ↑ l × l × ×

Table 3: The reduced context computed to get the lattice of congruence relations (Figure 3).

9 10 19 15 28
2 ×
4 ×
8 × ×

25 × × × ×
20 × × × ×

Figure 2: The lattice of Figure 4 with the convex set dou-
bled. Nodes of each convex are colored in light grey and
dark grey.

Using only one of these atoms, namely the one
containing observation 25, we get the arrow-closed
subcontext of Table 4, which satisfies Geyer’s condi-
tion. Then, its concept lattice, which is also the fac-
tor lattice of the selected congruence relation, can be
computed and visualized on Figure 4.

In Figure 4, nodes of the convex C are in grey, and
when the doubling construction is applied on that lat-
tice, with this convex set, the lattice from Figure 2 is
obtained. Nodes in light grey and dark grey corre-

Figure 3: The lattice of congruence relations of the lattice
given in Figure 2

spond to the two occurrences of the doubled convex.
This lattice is obtained from the reduced context given
in Table 4, which is one of the two atoms of the lattice
in Figure 3.

In order to test our decomposition method with re-
spect to its ability to reduce the lattice size, a first ex-



Table 4: The reduced context of the factor lattice given in Figure 4

10 13 14 19 26 28 33 9
12 × × ×
14 × ×
2 × × × ×
25 × × ×
27 × × × ×
4 × × ×
8 × × × × ×

Figure 4: A lattice with its irreducible nodes. Nodes with a
number above are meet-irreducible while nodes with a num-
ber below are join-irreducible.

periment has been done. A series of 500 random con-
texts with 20 observations, 10 attributes and a density
of 75% was generated. Only 42 of them (8.4%) had a
non trivial decomposition. However, 17 of these con-
texts (40%) led to reduced lattices with a ratio of 50%
while the rest (60%) of contexts led to a lattice size
reduction higher than 50%. Table 5 reflects such ra-
tios where the first column represents the lattice size
reduction (i.e., the number of nodes of the reduced
lattice over the number of nodes in the initial lattice)
while the second column indicates the number and
proportion of contexts for which the reduction ratio
is in the interval given in the first column. We can
then conclude that the decomposition is rarely possi-
ble, but when it occurs, it often leads to a significant
reduction in the lattice size.

All computations were done using the Galac-
tic project available at http://thegalactic.github.io/
while the lattices were drawn with ConExp (see

http://conexp.sourceforge.net/).

5 CONCLUSION AND FUTURE
WORK

In this paper, a new decomposition based on Day’s
construction was given which uses congruence rela-
tions. Although Day’s doubling construction has been
widely studied, the reverse doubling construction we
are investigating is, to the best of our knowledge, a
new decomposition method that could be helpful in
dealing with large contexts and their visualization.

To further investigate the reverse doubling con-
struction, it would be interesting to conduct large-
scale experiments on very large real-life data, not only
to test the potential of decomposition for lattice reduc-
tion but also its performance and scalability for such
large data sets. Since noisy data occur frequently in a
process of data analysis, we plan to carefully perform
a preprocessing step in which efficient data cleaning
techniques will be identified and used.

Since the empirical study in (Snelting, 2005)
shows that many real-life contexts do not contain non-
trivial congruence relations, we plan to formally iden-
tify cases in which the reverse doubling construction
can either be used or not.

Our future work consists to study, compare and
combine other decompositions with the one descri-
bed in this paper. In particular the Fratini congruence
(Duquenne, 2010) which exploits again a congruence
relation, and Atlas decomposition (Ganter and Wille,
1999) which uses tolerance relations.



Table 5: Lattice size reduction ratio and proportion of reduced lattices

Ratio of the numbers of nodes Number and proportion of contexts
50% 17 - 40%
50% to 60% 9 - 21%
60% to 70% 6 - 14%
70% to 80% 5 - 12%
80% to 90% 4 - 10%
90% to 100% 1 - 3%

REFERENCES

Barbut, M. and Monjardet, B., editors (1970). L’ordre et
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