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Lattice decompositions through methods using
congruence relations

Jean-François Viaud and Karell Bertet and Christophe Demko and Rokia Missaoui

1 Introduction

During the last decade, the computation capabilities have promoted Formal Concept
Analysis (FCA) with new methods based on concept lattices. Though they are ex-
ponential in space/time in worst case, concept lattices of a reasonable size enable an
intuitive representation of data organized by a context that links objects to attributes
through a binary relation. Methods based on concept lattices have been developed
in various domains such as knowledge discovery and management, databases or
information retrieval where some relevant concepts, i.e. possible correspondences
between objects and attributes are considered either as classifiers, clusters or repre-
sentative object/attribute subsets.

With the increasing size of data, a set of methods have been proposed in order
to either generate a subset (rather than the whole set) of concepts and their neigh-
borhood in an on-line and interactive way [10, 22] or better display lattices using
nested line diagrams [15]. Such approaches become inefficient when contexts are
huge. However, the main idea of lattice/context decomposition into smaller ones
is still relevant when the classification property of the initial lattice is maintained.
Many lattice decompositions have been defined and studied, both from an algebraic
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point of view [8, 18] or from an FCA point of view [15, 14]. We can cite the Unique
Factorisation Theorem [18], the matrix decomposition [2], the Atlas decomposition
[15], the subtensorial decomposition [15], the subdirect decomposition, or the dou-
bling convex construction.

The subdirect decomposition has been widely studied many years ago, in the
field of universal algebra [8, 13, 11, 12], and even in FCA [23, 24, 25, 26, 14].
To the best of our knowledge, there is no new development or novel algorithms
for subdirect decomposition of contexts. The doubling convex construction has also
been widely studied [6, 19, 16, 3], mainly from a theoretical point of view, in order
to characterize lattices that can be obtained by such decomposition.

In this chapter, we investigate the subdirect decomposition of a concept lattice
as a first step towards an interactive exploration and mining of large contexts. The
subdirect decomposition of a lattice L into factor lattices (Li)i∈{1,...,n}, denoted by
L ↪→ L1× ·· ·×Ln, is defined by two properties (see important results in [15]): (i)
L is a sublattice of the direct product L1× ·· · × Ln, and (ii) each projection of L
onto a factor is surjective. The first property establishes that each factor lattice is
the concept lattice of an arrow-closed subcontext, i.e. closed according to the arrow
relation between objects and attributes. This means that the decomposition can be
obtained by computing specific subcontexts. The second property states that there
is an equivalence between arrow-closed subcontexts and congruence relations of L,
i.e., an equivalence relation whose equivalence classes form a lattice with elements
closed by the meet and join operations. This means that the concepts of L can be
retrieved from the factor lattices, and the classification property of L is maintained
since each equivalence relation forms a partition of the elements. The last result
establishes an equivalence between arrow-closed subcontexts and compatible sub-
contexts, i.e. subcontexts such that each concept corresponds to a concept of the
initial lattice. This result gives a way to compute the morphism from L into the di-
rect product, and thus to retrieve the concepts of L from the factor lattices. In this
chapter, we deduce from these results strong links between the following notions
that have not been used yet together as far as we know:

• Factors of a subdirect decomposition,
• Congruence relations,
• Arrow-closed subcontexts and
• Compatible subcontexts.

As suggested in [15], the contexts of the factors of a particular subdirect de-
composition, namely the irreducible subdirect subcontexts, can be obtained by a
polynomial processing of each row/object of the initial context. Therefore, the sub-
direct decomposition of a lattice can be extended to a subdirect decomposition of its
reduced context into subdirect and irreducible subcontexts.

In this chapter, we propose a subdirect and polynomial decomposition of a con-
text into subcontexts by extending the subdirect decomposition of a lattice into fac-
tors lattices.

After studying the subdirect decomposition, we investigate a new procedure
named reverse doubling construction to reduce the size of data. It is based on the
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previous work of A. Day. The doubling convex procedure was first designed by Day
[5, 6], then generalized [16] and widely studied [7, 19, 3]. Intuitively, this construc-
tion consists in doubling into a lattice L a convex subset C of nodes of L. In this
chapter, we propose a ”reverse doubling construction” which consists in removing
from a lattice L a doubling convex set until no duplicated convex set exists. Hov-
ewer, our procedure could end with the only conclusion that there is no convex to be
removed. When successively applying the reverse doubling construction to a lattice
L and a convex set C, and Day’s doubling construction, the lattice L is recovered.
Our only hypothesis is that lattices are finite. We can deduce, at least, two interesting
consequences from this second decomposition:

• Like in the first case, from an ”information retrieval” point of view, the search
space is thus reduced and hence easier to analyse.

• From a ”knowledge discovery” point of view, learning which information is dou-
bling and redundant is important.

More generally, as for any reduction technique, we can deduce the following
consequences:

• less data to store means smaller storage space.
• less data to exploit means faster computations.

Studies concerning the doubling convex construction can be organized according
to the following chronological sequence of events:

• The first one corresponds to the orginal work of Day [5, 6, 7, 19], who introduced
the procedure. At the very beginning, only intervals were doubled.

• Then, further generalizations were developped that lead to the present general
doubling convex method [16].

• In parallel, characterisations of lattices obtained by iterating the doubling convex
construction were investigated [5, 6, 7, 19, 3].

• In this chapter, we define a reverse procedure which removes a convex from a
lattice whenever it is possible.

Being able to recover the full lattice from the smaller one and a convex inside,
means that all the information is contained in the small lattice. Thus we only need
to consider the sub-context that defines the small lattice. In other words, only a part
of the data is relevant. Consequently, one need only to access or even keep a smaller
part of the data. This is obviously an interesting way to manage big data.

These two decompositions, namely the sub-direct decomposition and the reverse
doubling construction, lead to data storage saving of large contexts. Indeed, the gen-
eration of the whole set of factor lattices can be avoided by providing an interactive
generation of a few (but not all) concepts and their neighborhood from large con-
texts. Moreover, a focus on a specific factor lattice can be proposed to the user by
generating, partially or entirely, the concept lattice and/or a basis of implications.

There are at least two reasons for studying this case of pattern management. The
first one comes from the fact that users tend to be overwhelmed by the knowledge
extracted from data, even when the input is relatively small. The second reason is
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that the FCA has made progress in lattice construction and exploration, and hence
existing solutions can be adapted and enriched to only target useful patterns.

This chapter is organized as follows. The next section gives the background
needed to introduce the two decompositions. Then, the next two sections present
the two decompositions. We conclude in the last section with some perspectives.

2 Structural framework

Throughout this paper all sets (and thus lattices) are considered to be finite.

2.1 Lattices and Formal Concept Analysis

2.1.1 Algebraic lattice

Let us first recall that a lattice (L,≤) is an ordered set in which every pair (x,y)
of elements has a least upper bound, called join x∨ y, and a greatest lower bound,
called meet x∧ y. As we are only considering finite structures, every subset A ⊂ L
has a join and meet (e. g. finite lattices are complete).

2.1.2 Concept or Galois Lattice

A (formal) context (O,A,R) is defined by a set O of objects, a set A of attributes,
and a binary relation R⊂ O×A, between O and A. Two operators are derived:

• for each subset X ⊂ O, we define X ′ = {m ∈ A, j R m ∀ j ∈ X} and dually,
• for each subset Y ⊂ A, we define Y ′ = { j ∈ O, j R m ∀m ∈ Y}.

A (formal) concept represents a maximal objects-attributes correspondence by a
pair (X ,Y ) such that X ′ =Y and Y ′ = X . The sets X and Y are respectively called ex-
tent and intent of the concept. The set of concepts derived from a context is ordered
as follows:

(X1,Y1)≤ (X2,Y2)⇐⇒ X1 ⊆ X2⇐⇒ Y2 ⊆ Y1

The whole set of formal concepts together with this order relation form a com-
plete lattice, called the concept lattice of the context (O,A,R).

Different formal contexts can provide isomorphic concept lattices, and there ex-
ists a unique one, named the reduced context, defined by the two sets O and A of the
smallest size.

This particular context is introduced by means of special concepts or elements of
the lattice L, namely irreducible elements.

An element j ∈ L is join-irreducible if it is not a least upper bound of a subset
not containing it. The set of join irreducible elements is noted JL. Meet-irreducible
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elements are defined dually and their set is ML. As a direct consequence, an element
j ∈ L is join-irreducible if and only if it has only one immediate predecessor denoted
j−. Dually, an element m ∈ L is meet-irreducible if and only if it has only one
immediate successor denoted m+.

In Figure 2.1.2, join-irreducible nodes are labelled with a number and meet-irre-
ducible nodes are labelled with a letter.

Fig. 1 A lattice with its irreducible nodes

2.1.3 Fundamental Bijection

A fundamental result [1] establishes that any lattice (L,≤) is isomorphic to the con-
cept lattice of the context (JL,ML,≤), where JL and ML are the join and meet irre-
ducible concepts of L, respectively. Moreover, this context is a reduced one.

As a direct consequence, there is a bijection between lattices and reduced con-
texts where objects of the context are associated with join-irreducible concepts of
the lattice, and attributes are associated with meet-irreducible concepts.

Table 2.1.3 shows the reduced context of the lattice in Figure 2.1.2.
When needed, operators •′ introduced in subsection 2.1.2 will be written •L to

stress the fact that they are used with the reduced context of the lattice L.
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Table 1 The reduced context of the lattice in Figure 2.1.2

b c d f g j
2 x x x x x
3 x x x x
5 x x x
6 x x x
9 x x

2.2 Compatible and Arrow-closed Subcontexts

This section is dedicated to the equivalence between compatible and arrow-closed
subcontexts.

2.2.1 Compatible subcontexts

A subcontext of a formal context (O,A,R) is a triple (J,M,R∩ J×M) such that
J ⊂ O and M ⊂ A. A subcontext (J,M,R∩ J×M) of (O,A,R) is compatible if for
each concept (H,N) of (O,A,R), (J∩H,M∩N) is a concept of (J,M,R∩ J×M).

2.2.2 Arrow relations

The arrow-closed subcontexts involved in the equivalence are based on the arrow
relations between join and meet irreducible concepts of a lattice. Consider the re-
duced context (JL,ML,≤) of a lattice (L,≤). Arrow relations [4, 17] form a partition
of the relation 6≤ (defined by not having x ≤ y) by considering the immediate pre-
decessor j− of a join-irreducible j, and the unique immediate successor m+ of a
meet-irreducible m:

• j l m if j 6≤ m, j ≤ m+ and j− ≤ m.
• j ↑ m if j 6≤ m, j ≤ m+ and j− 6≤ m.
• j ↓ m if j 6≤ m, j 6≤ m+ and j− ≤ m.
• j ◦m if j 6≤ m, j 6≤ m+ and j− 6≤ m.

In Figure 2.2.2, the reduced context of Figure 2.1.3 is enriched with the four
relations l, ↑, ↓, and ◦ in the empty cells that both correspond to the case where
j 6≤ m:

As an illustration, let j = 5 and m = f be join-irreducible and meet-irreducible
nodes respectively (see Figure 2.1.2). Then, j− = 2 and m+ = c. The relation 5 l f
holds since 5 6≤ f , 5≤ c and 2≤ f .
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Table 2 Reduced context of Table 2.1.3 filled with arrow relations
b c d f g j

2 × × × × × l
3 × l × ↓ × ×
5 × × × l l ◦
6 × × l × ↓ ◦
9 l × ◦ × ◦ ◦

2.2.3 Arrow-closed subcontext

A subcontext (J,M,R∩ J×M) of a context (O,A,R) is an arrow-closed subcontext
when the following conditions are met:

• If j ↑ m and j ∈ J then m ∈M
• If j ↓ m and m ∈M then j ∈ J

As an example, the first subcontext of Figure 2 is an arrow-closed subcontext of
the reduced context of Table 2.2.2 whereas the second one is not, due to the down-
arrow 6 ↓ g.

Fig. 2 Arrow-closed and non-arrow-closed subcontexts of the context in Table 2.2.2
c d f g

3 x x
5 x x
6 x x

c d f g
3 x x
5 x x

2.2.4 Equivalence theorem

First let us introduce the first equivalence we need in this chapter, whose proof can
be found in [15]:

Theorem 1. Let (J,M,R∩J×M) be a subcontext of (O,A,R). The following propo-
sitions are equivalent:

• The subcontext (J,M,R∩ J×M) is a compatible one.
• The subcontext (J,M,R∩ J×M) is an arrow-closed one.

2.3 Congruence Relations and Factor Lattices

In this section, we introduce the equivalence between congruence relations and
arrow-closed subcontexts.
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2.3.1 Quotient

An equivalence relation is a binary relation R over a set E which is reflexive, sym-
metric and transitive. An equivalence class of x ∈ E is:

xR = {y ∈ E |xRy}

The set of equivalence classes, called the quotient set E/R, is:

E/R = {xR |x ∈ E}

2.3.2 Factor lattice

A congruence relation Θ on a lattice L is an equivalence relation such that:

x1Θy1 and x2Θy2 =⇒ x1∧ x2Θy1∧ y2 and x1∨ x2Θy1∨ y2

The quotient L/Θ verifies the following statement:

xΘ ≤ yΘ ⇐⇒ xΘ(x∧ y)⇐⇒ (x∨ y)Θy

With such an order, L/Θ is a lattice, called factor lattice. A standard theorem
from algebra, whose proof is omitted, states that:

Theorem 2. The projection L→ L/Θ is a lattice morphism onto.

2.3.3 The second equivalence theorem

We are now able to formulate the second equivalence whose proof can be found in
[15]:

Theorem 3. Given a lattice L, the set of congruence relations on L corresponds
bijectively with the set of arrow-closed subcontexts of the reduced context of L.

Congruence relations will be computed with this theorem. However, other algo-
rithms exist [11, 12].

2.4 Subdirect decompositions

In this section, we introduce the equivalence between subdirect decompositions and
sets of arrow-closed subcontexts.
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2.4.1 Subdirect product

Definition 1. A subdirect product is a sublattice of a direct product L1× ·· · × Ln
of lattices Li, i ∈ {1, . . . ,n} such that each projection onto a factor is surjective. The
lattices Li, i∈{1, . . . ,n} are the factor lattices. A subdirect decomposition of a lattice
L is an isomorphism between L and a subdirect product which can be denoted as:

L ↪→ L1×·· ·×Ln � Li

2.4.2 The third equivalence theorem

The third and most important equivalence whose proof can be found in [15], makes
a connection with sets of arrows-closed subcontexts when they cover the initial con-
text:

Proposition 1. Given a reduced context (O,A,R), then the subdirect decomposi-
tions of its concept lattice L correspond bijectively to the families of arrow-closed
subcontexts (J j,M j,R∩ J j×M j) with O = ∪J j and A = ∪M j.

2.5 The doubling convex construction

The second decomposition, presented in this chapter is based on Alan Day’s dou-
bling convex construction [5, 6, 7, 19]. First recall that a subset C ⊂ LC of a lattice
LC is convex if it satisfies the following condition: for all x,y ∈C such that x≤ y, if
z ∈ LC satisfies x≤ z≤ y then z ∈C. Roughly, a convex set contains all its intervals.

Now we can give the doubling convex construction of Day. Let C ⊂ LC be a
convex set of a lattice LC, let LC[C] = LC\C∪ (C×{0,1}). Define the following
order on LC[C]:

• x≤ y if x≤ y in LC
• (x, i)≤ y if x≤ y in LC
• x≤ (y, j) if x≤ y in LC
• (x, i)≤ (y, j) if x≤ y in LC and i≤ j.

With this order LC[C] is a lattice.
For instance consider the lattice LC of Figure 2.5. A convex set C is identified

with red nodes. After applying Day’s construction, the lattice of Figure 2.5 is ob-
tained. The two occurrences of the convex set are identified with green and pink
nodes.

Our construction is based on the two following theorems proved by W. Geyer
[16].
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Fig. 3 A lattice LC with nodes of a convex set C in red.

Fig. 4 The lattice of Figure 2.5 with the convex set doubled. Nodes of each convex are coloured
in green and pink.
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Theorem 4. Let L = LC[C] be a lattice obtained by doubling the convex set C of the
lattice LC. Note K = (O,A,R) the reduced context of L, then the reduced context
KC = (J,M,R∩ J×M) is an arrow-closed sub-context of K such that:

(∗)R∩ ((O\J)× (A\M)) = /0

Later on, the previous condition (∗) will be referred as the Geyer’s Condition.
Now we are searching for an arrow-closed sub-context that satisfies the Geyer’s
Condition.

Using theorem 3, it is equivalent to search for an arrow-closed sub-context or a
congruence relation. Now recall that it is possible to give a lattice structure to the
set of congruence relations in the following manner. First, the binary relations can
be ordered by the inclusion. Then the set of congruence relations can be ordered
that way. Moreover, the intersection of two congrence relations is still a congruence
relation; thus we get the meet operation. As usual, the join operation is not so easy.
However, given a set of congruence relations, it is sufficient to consider the smallest
congruence relations containing all of them.

With this lattice structure on the congruence relations, we can state the following
result of Day [6]:

Theorem 5. Let L be a congruence normal lattice and Θ a congruence relation
which is an atom, i.e. a successor of the bottom element. Then, there exists a convex
set C such that L is isomorphic to L/Θ [C].

Notice that congruence normality has not been defined because it will not be used
in this chapter. Notice also that Day is more explicit about the convex C, but we will
give a new construction of it.

3 Subdirect decomposition into subdirectly irreducible factors

3.1 Main Result

From the three previous equivalences found in [15], we deduce the following one:

Corollary 1. Given a lattice L and its reduced context (O,A,R), we have an equiv-
alence between:

1. The set of arrow-closed subcontexts of (O,A,R),
2. The set of compatible subcontexts of (O,A,R),
3. The set of congruence relations of L and their factor lattices.

Corollary 2. Given a lattice L and its reduced context (O,A,R), we have an equiv-
alence between:

1. The families of arrow-closed subcontexts of (O,A,R) covering O and A,
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2. The families of compatible subcontexts of (O,A,R) covering O and A,
3. The families (θi)i∈I of congruence relations of L such that ∩i∈Iθi = ∆ with

x∆y⇐⇒ x = y.
4. The set of subdirect decompositions of L and their factor lattices.

In the following, we exploit these four notions that, to the best of our knowledge,
have not been put together yet.

1. The subdirect decomposition ensures that L is a sublattice of the factor lattice
product. Moreover, each projection from L to a factor lattice is surjective.

2. The congruence relations of L indicate that factor lattices correspond to their
quotient lattices, and thus preserve partitions via equivalence classes.

3. The compatible subcontexts give a way to compute the morphism from L onto
its factors.

4. Arrow-closed subcontexts enable the computation of the reduced context of the
factor lattices.

In the following we present the generation of a particular subdirect decomposi-
tion and show a possible usage of factor lattices.

3.2 Generation of Subdirectly Irreducible Factors

In this section, we consider subdirect decompositions of a lattice L with its reduced
context (O,A,R) as input. From Corollary 2, a subdirect decomposition of a lattice
L can be obtained by computing a set of arrow-closed subcontexts of (O,A,R) that
have to cover O and A. There are many sets of arrow-closed subcontexts and thus
many subdirect decompositions. In particular, the decomposition from a lattice L
into L itself is a subdirect decomposition, corresponding to the whole subcontext
(O,A,R) which is clearly arrow-closed. A subdirect decomposition algorithm has
been proposed in [14]. However, all congruence relations are computed and then
only pairs of relations are formed to get a decomposition. As a consequence, poten-
tially multiple decompositions are produced with necessarily two factors.

In this chpater, we focus on the subdirect decomposition of a context into a possi-
bly large number of small factors, i.e. factors that cannot be subdirectly decomposed.
A factor lattice L is subdirectly irreducible when any subdirect decomposition of L
contains L itself as a factor. A nice characterization of subdirectly irreducible lattices
can be found in [15]:

Proposition 2. A lattice L is subdirectly irreducible if and only if its reduced context
is one-generated.

A reduced context (O,A,R) is one-generated if it can be obtained by arrow-
closing a context with only one j ∈ J. Thus (O,A,R) is the smallest arrow-closed
subcontext containing j ∈ J.

Therefore, we deduce the following result:



Lattice decompositions 13

Proposition 3. Let L be a lattice. From L, we can deduce a product lattice L1× ...×
Ln where each lattice Li is:

• the concept lattice of a one-generated subcontext,
• subdirectly irreducible,
• a factor lattice of the subdirectly irreducible decomposition.

From this result, we propose an algorithm (Algorithm 1) to compute in polyno-
mial time the contexts of the factor lattices L1, . . . , ...Ln of a subdirectly irreducible
decomposition, with a reduced context (O,A,R) as input. The one-generated sub-
contexts for each j ∈ J are obtained by arrow-closing (Algorithm 2). The subdirectly
irreducible decomposition of L can then be obtained by computing the concept lat-
tices of these subcontexts.

One can notice that the closure computed from join-irreducible concepts can also
be calculated from meet-irreducible concepts.

Algorithm 1: Subdirect Decomposition
Input: A context (O,A,R)
Output: List L of the contexts (J j,M j,R j) of the subdirectly irreducible

factor lattices
1 L ← /0;
2 forall the j ∈ O do
3 Compute (J j,M j,R j) = Arrow Closure(( j, /0, /0),(O,A,R)), the

one-generated subcontext span by j;
4 if L does not contain any subcontext that covers (J j,M j,R j) then
5 add (J j,M j,R j) to L

6 if L contains a subcontext covered by (J j,M j,R j) then
7 delete it from L

8 return L ;

Algorithm 2: Arrow Closure

Input: A subcontext (J̃,M̃, R̃) of a context (J,M,R)
Output: Arrow-closure of (J̃,M̃, R̃)

1 Jc = J̃; Mc = M̃;
2 predJ = 0; predM = 0;
3 while predM < card(Mc) or predJ < card(Jc) do
4 predJ = card(Jc);
5 predM = card(Mc);
6 forall the j ∈ Jc do
7 add to Mc all m ∈M such that j ↑ m;

8 forall the m ∈Mc do
9 add to Jc all j ∈ J such that j ↓ m;

10 Return (Jc,Mc,R∩ Jc×Mc)
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Table 3 Iterations of Algorithm 1 for the reduced context in Table 2.1.3

j Arrow Closure Contained in L
Input Output

(J̃,M̃, R̃) Jc Mc
2 (2, /0, /0) {2} { j} ×
3 (3, /0, /0) {3} {c}
5 (5, /0, /0) {3,5,6} {c,d, f ,g} ×
6 (6, /0, /0) {6} {d}
9 (9, /0, /0) {9} {b} ×

Consider the reduced context in Figure 2.1.3. Each iteration of Algorithm 1 is
described by Figure 3 for each value of j, the input and output of Algorithm 2,
and the three one-generated subcontexts that belong to L at the end of the process.
Therefore we get three factor lattices (see Figure 5).

Fig. 5 The three factor lattices of the decompostion with their subcontext as caption

({2},{ j}, /0) Main sub-context ({9},{b}, /0)

The first subcontext is the one on the left of Figure 2. The two other ones are:
({2},{ j}, /0) and ({9},{b}, /0). The latter two subcontexts are interesting because:

• They show that the initial lattice has parts which are distributive. Indeed, these
two subcontexts contain exactly one double arrow in each line and each column.

• They give us a dichotomy: any concept contains either 2 or j ; any concept con-
tains either 9 or b

• In the reduced context, an arrow brings a deeper knowledge than a cross.

The context on the middle of Figure 2 is tricky to understand. For the other ones,
we have a simple relation 2 l j or 9 l b, which means that, for instance, 2 and j are
some kind of complement or converse.

Figure 10 shows a factor lattice and its corresponding congruence.

3.3 Onto Morphism and FCA

A subdirect decomposition of a lattice L into factor lattices L1, . . . ,Ln is relevant
since there exists an into morphism from L to the product lattice L1× . . .×Ln. This
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Fig. 6 Factor lattice and congruence

morphism is specified by the bijection between compatible subcontexts and congru-
ence relations stated by Corollary 1:

Proposition 4. Let (J,M,R∩ J×M) be a compatible subcontext, then the relation
ΘJ,M defined by:

(A1,B1)ΘJ,M(A2,B2)⇐⇒ A1∩ J = A2∩ J⇐⇒ B1∩M = B2∩M

is a congruence relation, and its factor lattice is isomorphic to the concept lattice of
the subcontext (J,M,R∩ J×M).

Algorithm 3 computes this morphism: each concept of L is computed as the prod-
uct of concepts in each factor, and then marked in the product lattice. From Algo-
rithm 3, we get the large tagged lattice product shown in Figure 4. Obviously, this
algorithm is not intended to be used in a real application with large contexts since
the product lattice is much more bigger than the original one, while the main goal
of the decomposition is to get smaller lattices. We only use this algorithm in the
empirical study.

Nevertheless, this morphism can be extended to develop basic FCA processing.
Once the subdirectly irreducible decomposition of a reduced context (O,A,R) into
the contexts C1, . . . ,Cn is computed, an interactive exploration and mining process
can easily be considered by using the following basic tasks and avoiding the gener-
ation of the lattice for the whole context (O,A,R):

• Compute the smallest concept of L that contains a given subset of objects or
attributes, and identify its neighborhood

• Compute the smallest concept ci j and its neighborhood in a subset of factors that
contain a given collection of objects or attributes. Each factor Li is a specific view
of data.
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Algorithm 3: Into morphism
Input: Initial lattice L;
Subcontexts (J j,M j,R j);
Product lattice P = L1× . . .×Ln
Output: Product lattice P with nodes coming from L marked.

1 forall the c = (A,B) ∈ L do
2 forall the (J j,M j,R j) do
3 Compute (A∩ J j,B∩M j);

4 Mark, in P, the product node Π j(A∩ J j,B∩M j);

Fig. 7 Lattice product in which nodes of the initial lattice appear in red

4 Reverse doubling convex

In this section, we describe the reverse doubling construction which itself uses con-
gruence relations.

Given a lattice L, we recall that we are looking for a lattice LC containing a
convex C such that L = LC[C].

4.1 Main steps

Before giving into details about this decomposition, let us give the main steps of
our construction. Given a finite lattice L, we are searching a lattice LC and a con-
vex set C ⊂ LC such that L is isomorphic to LC[C]. From Theorem 5, we know that
good candidates can be obtained from factor lattices, spanned by a congruence re-
lation which is an atom. It is important to note that we only get good candidates
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because we do not use the congruence normality hypothesis. Hovewer, the first step
of our construction is to compute atoms of the lattice of congruence relations. From
Theorem 3, we know that these congruence relations correspond to arrow-closed
sub-contexts. Then from Theorem 4 of Geyer, we only need to check if these arrow-
closed sub-contexts, that are just good candidates, satisfy the Geyer’s condition. If
none of these sub-contexts is valid, the decomposition is not possible. Otherwise,
each one of these sub-contexts generates a lattice LC that is appropriate. The last
step consists in identifying the convex set C in LC.

To illustrate the reverse doubling convex construction, we will use the lattice
given in Figure 4.1 and its reduced Table 4.1, already filled with arrows.

Fig. 8 The lattice used to illustrate the reverse doubling convex decomposition. Nodes in green
and pink correspond to the two occurrences of the doubled convex.

4.2 The lattice of Congruence Relations

A reduced context (O,A,R) of a lattice L is supposed to be given.
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Table 4 The reduced context of the lattice given in Figure 4.1

2 4 8 12 14 25 20 27 16
9 ↑ × × l l ◦ ◦ × ×
10 l × × × × ↓ ↓ × ×
14 ↑ × l ↓ × ◦ ◦ ↓ ↓
19 × l × × ↓ × × × ×
33 × ↑ l ◦ ◦ × × ↓ ↓
15 × ↑ × ↑ ◦ × l × l
28 × ↑ × ↑ ◦ l × l ×
7 ↑ ↑ × × ◦ ◦ ◦ × l
26 ↑ ↑ × × ◦ ◦ ◦ l ×
13 × ↑ × l ◦ × × × ×

In Subsection 2.3, we introduced congruence relations. As a particular kind of
binary relation, the set of congruence relations inherits a structure of lattice: it is
a sublattice of the lattice of binary relations which is ordered by inclusion. Using
Theorem 3, this lattice is also the lattice of arrow-closed sub-contexts. As explained
previously, we aim at finding the atoms of that lattice. To that end, we introduce a
new context, namely the context of arrow-closed subcontexts, which is defined and
computed as follows. We first compute one-generated arrow-closed sub-contexts.

Definition 2. A context (J,M,R) is one-generated if it can be obtained by arrow-
closing a context with only one j ∈ J. Thus (J,M,R) is the smallest arrow-closed
subcontext containing j ∈ J.

The set of such one-generated sub-contexts contains all join-irreducible arrow-
closed sub-contexts of the lattice of arrow-closed sub-contexts. Thus, the set of one-
generated sub-contexts generates the lattice of arrow-closed sub-contexts. The one-
generated sub-contexts are stored as observations of a new context in the following
way: an arrow-closed is characterized by its set of attributes, since it is closed. Thus
the newly generated context has the same set of attributes, namely A. Since, one-
generated sub-contexts are computed by closing one j ∈ O, they can be identified
with that j. So the set of observations of the newly generated context is O. At last,
there is a cross in the new context between j and a if and only if the arrow-closed
sub-context generated by j contains the attributes a.

From this context, we can deduce the lattice of arrow-closed sub-contexts and in
particular its atoms.

From the lattice of Figure 4.1, we compute the Table 4.2 of one-generated arrow-
closed sub-contexts and then we get the lattice of congruence relations given in Fig-
ure 4.2. Notice that Table 4.2 has been reduced after computation. In this particular
case, there are two atoms.

Using only one of these atoms, namely the one containing observation 25, we get
the arrow-closed subcontext of Table 4.4, which satisfies Geyer’s condition. Then,
its concept lattice, which is also the factor lattice of the selected congruence relation,
can be compute, and visualize on Figure 4.4.



Lattice decompositions 19

Table 5 The reduced context computed to get the lattice of congruence relations (Figure 4.2)

9 10 19 15 28
2 ×
4 ×
8 × ×
25 × × × ×
20 × × × ×

Fig. 9 The lattice of congruence relations of the lattice given in Figure 4.1

4.3 The factor lattice

We are now given a list of arrow-closed sub-contexts, which correspond to atom
congruence relations.

The second step is to remove from this list the following contexts:

• The empty context. In the particular case where the initial lattice has only two
congruence relations, there is only one atom, namely the bottom element. This
case is excluded since it gives rise to a trivial decomposition.

• Any context that does not satisfy Geyer’s Condition.

After this removal process, our list could be empty. Since the Geyer’s condition
is necessary and sufficient, we can conclude that the original lattice can not be pro-
cessed through the reverse doubling construction.

On the opposite side, any remaining context generates a lattice LC such that there
exists a convex set C so that the initial lattice L satisfies L = LC[C].
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The two atoms identified in Figure 4.2 satisfy Geyer’s condition. So the lattice
given in Figure 4.1 has two decompositions.

4.4 Finding the convex

Given a lattice LC satisfying the previous conditions of subsection 4.3, the last step
is to identify in LC nodes of a convex set C such that L = LC[C].

First remark that using theorem 4 which gives a necessary and sufficient con-
dition, we already know that L is obtained by the doubling construction from LC.
Thus, each concept of LC gives rise to one concept in L if and only if it is not in C
and two concepts in L if and only if it is in C.

Let us be more precise about these two concepts, and first let us recall some
notations: (O,A,R) is the reduced context of the big lattice L. We consider (J,M,R∩
J×M) a atom in the lattice of arrow-closed sub-contexts whi ch satifies the Geyer’s
condition. From this context, we can deduce LC the lattice from which a convex has
been removed. Let c be a concept of LC. Since (J,M,R∩ J×M) is a compatible
sub-context, using Theorem 1, c can be written as c = (H ∩ J,N∩M) with (H,N) a
concept of L. Since c is a concept, we have (H∩J)′ = N∩M and (N∩M)′ = H∩J.
Recall, from the end of Subsection 2.1.3, that these operations are written •L in the
reduced context (O,A,R) of L; thus we also have HL = N and NL = H. Now, we
can conclude that, if c = (H ∩ J,N ∩M) is not in the convex, it comes from the
unique concept of L, namely (H,N) and thus we must have ((H ∩J)LL,(H ∩J)L) =
(H,N) = ((N∩M)L,(N∩M)LL). In the other case, we have ((H∩J)LL,(H∩J)L) 6=
((N∩M)L,(N∩M)LL).

From this point, we can state a simpler condition for a concept to be in the convex
set:

Proposition 5. A concept c = (H ∩ J,N∩M) is in the convex if and only if

(H ∩ J)L ⊆ (N∩M) or (N∩M)L ⊆ (H ∩ J)

Proof. We have previously seen that if c is in the convex then ((H ∩ J)LL,(H ∩
J)L) = (H,N) = ((N∩M)L,(N∩M)LL). So both inclusions are true and actually are
equalities.

Suppose, reciprocally, that we have the first one (H ∩ J)L ⊂ (N ∩M). We obtain
the same result dually in the second case. First we prove that the inclusion is an
equality. Indeed, since (J,M,R∩ J×M) is a subcontext of (O,A,R), we have (H ∩
J)′ ⊂ (H ∩ J)L. However (H ∩ J)′ = (N ∩M), so (N ∩M) ⊂ (H ∩ J)L and dually
(H ∩ J)⊂ (N∩M)L. Therefore, we deduce that (H ∩ J)L = (N∩M), and then (N∩
M)L = (H ∩ J)LL. Moreover, (H ∩ J) ⊂ (N ∩M)L =⇒ (N ∩M)LL ⊂ (H ∩ J)L, and
with (N ∩M) = (H ∩ J)L, we deduce that (N ∩M) = (N ∩M)LL, since (N ∩M) ⊂
(N∩M)LL. Now from (H∩J)L = (N∩M) = (N∩M)LL and (N∩M)L = (H∩J)LL,
we get ((H ∩ J)L,(H ∩ J)LL) = ((N ∩M)LL,(N ∩M)L). This means that a concept
((H ∩ J),(N ∩M)) in the small lattice LC that satisfies the condition (H ∩ J)L ⊂
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(N∩M) or (N∩M)L ⊂ (H∩J) comes from a unique concept in the lattice L, namely
the concept ((H ∩ J)LL,(H ∩ J)L) = ((N∩M)L,(N∩M)LL) = (H,N).

Conversely, if ((H∩J),(N∩M)) does not satisfy the previous condition, it comes
from two concepts ((H ∩J)LL,(H ∩J)L) 6= ((N∩M)L,(N∩M)LL) in L. Thus to get
L from LC, one needs to double these concepts and then these concepts are exactly
the ones of the convex.

In Figure 4.4, nodes of the convex C are in red, and when the doubling construc-
tion is applied on that lattice, with this convex set, the lattice from Figure 4.4 is
obtained.

Fig. 10 The initial lattice. Nodes in green and pink correspond to the two occurrences of the
doubled convex.

This lattice is obtained from the reduced context given in the table 4.4, which is
one of the two atomes of the lattice 4.2.

All computations were done using the Galactic project available at :
http://thegalactic.github.io/

Lattices were drawn with ConExp available at :
http://conexp.sourceforge.net/
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Fig. 11 The factor lattice obtained by the reverse doubling decomposition.

Table 6 The reduced context of the factor lattice given in Figure 4.4

10 13 14 19 26 28 33 9
12 × × ×
14 × ×
2 × × × ×
25 × × ×
27 × × × ×
4 × × ×
8 × × × × ×

5 Conclusion and future work

In this chapter, we have presented two decompositions of lattices based on con-
gruence relations. In the fisrt section, different points of view and constructions
about these relations were given. Then we presented a particular case of the widely
studied subdirect decomposition. To further investigate the subdirect decomposi-
tion, it would be interesting to conduct large-scale experiments on real world data
to understand the semantics behind the generated irreducible contexts. In particu-
lar, attributes covered by several factors interfere in different views of data whose
semantic must be interesting to understand. Moreover families of arrow-closed sub-
context covering the initial context could be used as universal index. It would be
useful to allow the user to interactively select a few factors of the decomposition by
mixing o ur approach with the one in [14]. Since the empirical study in [20] show
that many real-life contexts are subdirectly irreducible, we plan to identify cases in
which a context is necessarily irreducible.

In the previous section, a new decomposition, based on Day’s construction, was
given which uses again congruence relations. Day’s doubling construction has been
widely studied [6, 19, 16, 3], but to our knowledge, this decomposition has never
been done.
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From a theoretical point of view, we think that there are strong links between the
implication basis in a quotient lattice and the one from the initial lattice. To the best
of our knowledge, this issue has never been addressed and could have significant
algorithmic impacts. However, we note that [21] tackle a similar issue in case of a
vertical decomposition of contexts into subcontexts.

To go further, we plan to study, compare and combine other decompositions, in
particular the Fratini congruence [9] which exploits again a congruence relation and
atlas decomposition [15] which uses different tools.
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