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aLaboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier,
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Abstract

We studied the effective behavior of a composite made of a periodic distribution of

inclusions linked to a matrix by a very thin layer, with the three components being

of linear Kelvin-Voigt viscoelastic type. The effective behavior, derived by a rigor-

ous mathematical homogenization method, is not of Kelvin-Voigt type but instead

involves an additional fading memory term. The influence of various parameters of

the composite were numerically analyzed through a finite elements method.
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1 Introduction

Composite mechanical behavior clearly depends on the nature of the consti-

tuents but also on that of the interfaces between them [1,2]. Making perfectly

bonded inclusions in a matrix during composite materials manufacturing is

still a major technological issue [3]. Moreover, estimating the effective beha-

vior of viscoelastic composites is of growing interest due to their intensive

use in many engineering components under dynamic loadings, particularly for

sandwich structures [4,5] but also for granular composites [6]. The nature of

the matrix/reinforcement interface can evolve from perfect bonding to com-

plete debonding [7]. This pattern can result from the loading or coupling agent

(Figure 1 and Figure 2). Dynamic loadings on this type of material clearly in-

duce microstructural damage, such as matrix-inclusion debonding [8] and [9].

Around 30 years ago, [10,11,12] established that the effective behavior of a he-

terogeneous solid with perfectly bonded linear Kelvin-Voigt viscoelastic com-

ponents is no longer of Kelvin-Voigt type but instead has a long, but fading,

memory. Here we consider a composite made of a periodic distribution of in-

clusions linked to a matrix by very thin layers.The three phases are assumed

to be of Kelvin-Voigt type but the coefficients of elasticity and viscosity of the

layers are lower than those of the matrix and inclusions [13,14,15,16]. Recently,

[17] proposed a semi-analytical incremental model using the Eshelby solution
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for two elastic phases associated with a non-linear traction-separation law at

the interface. Other studies have also highlighted an influence of the viscoelas-

tic mechanical properties of the interface on the damping of composite plates

[18,19]

In this paper, we propose a theoretical and numerical approach where the

three components (inclusions, matrix, interface) are viscoelastic. First, by ho-

mogenization we derive the effective behavior which is also not of Kelvin-Voigt

type but instead involves an additional memory term with exponential decay.

We then use a finite element method to quantify the influence of various geo-

metrical and mechanical parameters on the kernel associated with the fading

memory term.

2 Effective behavior

The heterogeneity of a three-phase viscoelastic body S occupying a domain

Ω with a smooth boundary ∂Ω can be described as follows. Let Y = (0, 1)3

be the unit cell of R3 and I be a domain strongly included in Y with a

smooth boundary S. Let h be a small real number in (0, dist(S, ∂Y )) with

the sets Bh := {y ∈ Y ; dist(y, S) < h}, Ih := {y ∈ I; y /∈ Bh}, Y ∗h :=

Y \(Bh∪Ih). For clarity, we propose a 2D representation of different regions of

the spaces introduced above in Figure 3. Let ε be another small real number

with Jε := {j ∈ Z3; ε(j + Y ) ⊂ Ω} then Ihε :=
⋃
j∈Jε ε(j + Ih), Bhε :=⋃

j∈Jε ε(j + Bh) and Ω∗hε := Ω \ (Ihε ∪ Bhε) standing for the geometric sets

occupied by the periodic distribution of the inclusions, the thin interphase,

and the matrix, respectively. Hereafter, the subscript letters e and v refer to

elastic and viscoelastic mechanical characteristics, respectively. The materials

3



constituting S are assumed to be linearly viscoelastic of Kelvin-Voigt type with

As
′
(y) and Bs′(y) denoting the elasticity and viscosity tensors. More precisely,

we assume that there are four mappings AM , BM , AI , BI defined on Y and

taking values in the space of 4th order tensors, with four real positive numbers

λe, µe, λv, µv, such that :

As
′
(y) =



AM(y) if y ∈ Y ∗h

λeθ + 2µeId if y ∈ Bh

AI(y) if y ∈ Ih

(1)

Bs′(y) =



BM(y) if y ∈ Y ∗h

λvθ + 2µvId if y ∈ Bh

BI(y) if y ∈ Ih

(2)

with s′ = (h, λe, µe, λv, µv) and θ being the mapping defined on the space S3

of 3x3 symmetric matrices by :

e ∈ S3 7→ θe = (tr e)Id ∈ S3 (3)

where Id is the identity matrix of S3 and tr e is the trace of e. If the same

symbols denote the extensions into R3 by Y -periodicity of these two functions

As
′
and Bs′ , then the elasticity and viscosity tensors which involve the sextuple

of parameters s := (ε, s′), read as :

As(x) = As
′
(x/ε), Bs(x) = Bs′(x/ε) ∀x ∈ Ω.
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Hence, the quasi-static evolution of S clamped on ∂Ω subjected to body forces

of density f is governed by :

(Ps) :



div σs + f = 0 in Ω

σs = Ase(us) +Bse(u̇s) in Ω

us = 0 on ∂Ω

us(·, 0) = us0 in Ω

(4)

where us, e(us), σs stand for displacement, strain and stress fields, while the

upper dot denotes the time derivative and us0 the initial state. If f is smooth

enough, problem (Ps) may be formulated in terms of an evolution equation in

a Hilbert space of possible states with finite strain energy [11,12]. Then the

theory of semi-groups of linear operators implies the existence and uniqueness

of a weak solution of (Ps). Therefore, the effective behavior of the strongly

heterogeneous body may be derived by a study of the asymptotic behavior of

(us, σs) when s tends to 0 with the condition :

∃(λe, µe, λv, µv) ∈ [0,∞]4 s. t. (λe, µe, λv, µv) = lim
s→0

1

2h
(λe, µe, λv, µv) (5)

Because such a study has been already done from a rigorous mathematical

point of view in [20] and that one of the goals of this present paper is the

study of the influence of some geometric and mechanic parameters, in this

section, we confine to heuristically suggest what could be the effective beha-

vior. This is done in three steps. First a suitable assumption 6 on the initial

state and a Laplace transform with respect to the time reduce the problem

to two problems of periodic homogenization in elastostatics. These two pro-

blems which involve additional parameters to the periodicity one, are solved

5



by adding arguments from the mathematical modeling of bonding. Finally,

as Laplace transform is one to one, this supplies the effective behavior. More

precisely, it is convenient [11,12] to assume that “the initial state is elastic”,

i.e. there exists g0 independent of s such that



div σs0 + g0 = 0 in Ω

σs0 = Ase(us0) in Ω

us0 = 0 on ∂Ω.

(6)

Hence, if ẑ denotes the Laplace transform with respect to the time of a function

z :

ẑ(p) =
∫ ∞

0
e−ptz(t) dt, (7)

the field θs := pûs − us0 does solve an abstract heterogeneous elastostatic

problem : 

div ξs − 1

p
g0 = 0 in Ω

ξs = Cse(θs) in Ω

θs = 0 on ∂Ω

(8)

where

Cs(p) :=
1

p
As +Bs. (9)

Indeed (6) and (8) are not exactly standard problems of periodic homogeni-

zation for elastic bodies because, due to the presence of parameter s′ in the

expression of As
′

and Bs′ , the coefficients of ‘elasticity’ As(x) and Cs(p)(x) are

not of the type R(x/ε) with R being a fixed function. Nevertheless, by com-

bining arguments of homogenization theory [10] and mathematical modeling
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of soft adhesive bonded joints [21], it is possible to determine the asympto-

tic behaviors of (us0, σ
s
0) and (θs, ξs). Roughly speaking, if s′ is kept constant,

when ε tends to zero, the asymptotic behavior of the two previous couples

of fields should be of standard homogeneous type with elasticity coefficients

given through the solutions to the cell problems :

(
P̃ e,kl

)
:



div σ̃e,kl = 0 in Y

σ̃e,kl = As
′
(y)

(
Ekl + e(ũe,kl)

)
ũe,kl Y -periodic, σ̃e,kln Y -antiperiodic

(10)

(
P̃ p,kl

)
:



div σ̃p,kl = 0 in Y

σ̃p,kl =
(

1

p
As

′
(y) +Bs′(y)

) (
Ekl + e(ũp,kl)

)
ũp,kl Y -periodic, σ̃p,kln Y -antiperiodic

(11)

by

Ãs
′

ijkl =
1

|Y |

∫
Y

(σ̃e,kl)ij dy (12)

C̃s′

ijkl(p) =
1

|Y |

∫
Y

(σ̃p,kl)ij dy (13)

and Ekl is an element of the canonical basis of S3, with n being the unit

outward normal along ∂Y .

Then, according to [21], letting s′ tend to zero with due account of (5) gene-

rates the following candidate for effective coefficients

Aeff
ijkl =

1

|Y |

∫
Y

(σe,kl)ij dy (14)

Ceff
ijkl(p) =

1

|Y |

∫
Y

(σp,kl)ij dy (15)
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through solutions to the cell problems :

(
P e,kl

)
:



div σe,kl = 0 in Y

σe,kl = AM
(
Ekl + e(ue,kl)

)
in Y \ I

σe,klν = (λe[u
e,kl]ν + 2µe[u

e,kl]⊗S ν)ν on S

σe,kl = AI
(
Ekl + e(ue,kl)

)
in I

ue,kl Y -periodic, σe,kln Y -antiperiodic

(16)

and
(
P p,kl

)
where AM , AI ,λe, µe are respectively replaced by CM,p := 1

p
AM +

BM , CI,p := 1
p
AI + BI , λp := 1

p
λe + λv, µp := 1

p
µe + µv ; with ν being a unit

normal along S while [v] denotes the jump of the vector field v across S,

[v]ν = [v] · ν denotes the jump in the direction of ν, ⊗S is the symmetric

tensor product. The solution to problem
(
P v,kl

)
, where AM , AI , λe, µe are re-

placed by BM , BI , λv, µv , is respectively denoted by
(
uv,kl, σv,kl

)
and we set

Beff
ijkl = 1

|Y |
∫
Y (σv,kl)ij dy . Actually, in the cell problems

(
P e,kl

)
, the interphase

occupying the layer Bh is replaced by a mechanical constraint along S, the

interface the layer shrinks to. The constitutive equations of this constraint

depend strongly on the relative behavior of λe, µe, λv, µv with respect to h. If

µe = +∞, there is perfect adhesion between I and Y \ I ; if λe = +∞, there is

bilateral contact between I and Y \I with a tangential sliding with or without

elastic resistance depending on µe 6= 0 or µe = 0 ; if λe = 0 and µe = 0, I and

Y \ I are free to separate ; as soon as one coefficient λe, µe differs from zero or

+∞, there is an elastic pull back between I and Y \ I. Similar remarks stand

for the cell problems
(
P p,kl

)
with λp, µp in place of λe, µe. Thus, it is only for

the sake of simplicity that the interphase is assumed isotropic ; general elas-

ticity coefficients would involve the limit of their ratio by 2h ! On the other

hand, assuming first that ε is fixed and letting s′ tend to zero, with µe 6= 0 and
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µv 6= 0 , will imply [21] that (us0, σ
s
0) and (θs, ξs) will converge toward (uε0, σ

ε
0)

and (θε, ξε) solutions to the following periodic homogenization problems :



div σε0 + g0 = 0 in Ω

σε0 = AM(x/ε)e (uε0) in Mε

σε0νε = (λe[u
ε
0]ε · νε + 2µe[u

ε
0]ε ⊗S νε)νε on Sε

σε0 = AI(x/ε)e (uε0) in Iε

uε0 = 0 on ∂Ω

(17)



div ξε − 1

p
g0 = 0 in Ω

ξε = CM,p(x/ε)e (θε) in Mε

ξενε = (λp[θ
ε]ε · νε + 2µp[θ

ε]ε ⊗S νε)νε on Sε

ξε = CI,p(x/ε)e (θε) in Iε

(18)

where Iε =
⋃
j∈Jε ε(j + I), Mε = Ω \ Iε, Sε = ∂Iε, νε is a unit normal vector

to Sε and [·]ε is the jump across Sε. As previously, the interphase occupying

the thin layers Bhε is replaced by a mechanical constraint of same type along

the interface Sε the layers shrink to.

Then letting ε tend to zero and proceeding as in Sanchez-Palencia [10], and

Attouch-Murat [22], it can be shown that (uε0, σ
ε
0), (θε, ξε) will tend to the so-

lution of a standard homogeneous elasticity problem with effective coefficients

of elasticity given by (14) and (15). Thus the limiting processes ε → 0 and

s′ → 0 do commute when µe 6= 0 and µv 6= 0. Actually this case which in-

volves free rigid motions in the inclusions is delicate. Nevertheless, by arguing

as in [23] and duly taking the connectivity of the domain Mε occupied by the

matrix into account, it is possible to show [20] that the effective coefficients
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are also given by (14) and (15) when ε and s′ go quite independently to zero

under the sole conditions (5) and

lim
s→0

ε2/µe = lim
s→0

ε2/h = 0 (5
′
)

which means that the Lamé coefficient µe and the thickness of the interphase

are not too small.

Finally, to determine the structure of the effective constitutive equations of the

real media, it is fundamental to note that Ceff(p) is not equal to 1
p
Aeff(p)+Beff,

but that we have :

Ceff(p) = K̂(p) +
1

p
Aeff +Beff, (19)

with the tensor K being defined by :

Kijkl(t) :=
1

|Y |

∫
Y

(τ kl)ij(y, t) dy (20)

where (wkl, τ kl) is the unique solution, up to a constant for wkl, to the evolution

problem :

(
Qkl

)
:



div τ kl = 0 in Y

τ kl = AMe(w
kl)(t) +BMe(ẇ

kl)(t) in Y \ I

τ klν = (λe[w
kl]ν + λv[ẇ

kl]ν)ν

+ 2(µe[w
kl]⊗S ν + µv[ẇ

kl]⊗S ν)ν on S

τ kl = AIe(w
kl)(t) +BIe(ẇ

kl)(t) in I

wkl Y -periodic, τ kln Y -antiperiodic

wkl(0) = uv,kl − ue,kl

(21)

when some coefficients λe, µe, λv, µv are not finite, the term involved in the
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boundary conditions on S for (P v,kl), (P e,kl) and (Qkl) disappears and is repla-

ced by the condition [·]ν = 0 when {λe, λv} 3 ∞ or [·] = 0 when {µv, µe} 3 ∞.

This corresponds to the perfect bonding case, i.e. continuity of displacement

and of the stress vector across the interface.

Hence (19) implies that the effective behavior of the composite is described

by displacement and stress fields (u0, σ0) satisfying :



div σ0 + f = 0 in Ω

σ0(t) = Aeffe
(
u0(t)

)
+Beffe

(
du0

dt
(t
)

+

t∫
0

K(t− τ)e
(
du0

dt
(τ)
)

dτ

u0 = 0 on ∂Ω

u0(·, 0) = u0
0 in Ω

(22)

The fact that Ceff(p) differs from 1
p
Aeff(p) + Beff (see (19)) is the source of

the memory term. As in [12] it can be shown that K(t) possesses the classical

symmetries and exponentially decreases when t goes to +∞. The homogeneous

material is no longer of Kelvin-Voigt type but rather a material with fading

memory. Actually, this fading memory effect is due to the incompatibility

of the relaxation times of the three phases and has been evidenced in many

works. Note that if the initial state us0 does not satisfy (4), an additional term

involving us0 appears in the homogenized stress σ0.
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3 Numerical Experiments

The homogenized terms Aeff and Beff have been computed in [24], so we focused

on the study of the influence of various parameters on the sole kernel associa-

ted with the memory term. To reduce the computational work, we make the

assumption that the inclusions are long parallel fibers and that the material

properties are independent with respect to the variable parallel to the fibers.

Hence the frame work of plain strain may be used and the kernel K reduces

to a 3× 3 symmetric matrix K connecting the components (E11, E22, E12) of

the strain tensor to the components (Σ11,Σ22,Σ12) of the stress tensor, where

1 and 2 refer to two orthogonal directions normal to the fiber direction. The

fiber cross-sections are assumed to be circular and centered in a unit square,

then we have K22 = K11 and K23 = K13.

A finite element code, namely CAST3M®[25], was used for the computations.

A typical mesh used in the numerical experiments in case of a 50% volume

fraction of inclusions is shown in Figure 4. The amplitude of the time evolution

study is T = 10−3s and an implicit method with a time step δt = 10−5s is used.

Hereafter, the superscripts inc and mat refer to the mechanical characteristics

of the isotropic inclusion and isotropic matrix, respectively. First, note that all

the presented curves exhibit the same trend, i.e. the influence of the memory

term vanishes after a reasonable time. In what follows, for any decreasing

function G of the time, the “characteristic decay time” of G means the time

tc such that G(tc) is equal to 10% of its initial value G(0) .
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3.1 Influence of material and geometrical parameters in case of perfect bon-

ding

First, Figures 5 and 6 show the influence of the contrast of the elastic pro-

perties of the inclusions and the matrix in case of perfect bonding. We set

the volume fraction of inclusions at 50% and the material properties as in-

dicated in Table 1. The perfect bonding of the inclusion to the matrix is

numerically obtained by setting very high values for the mechanical interface

parameters, namely {λv, µv} and {λe, µe}. For this parametric study, the ratio

RLc = λinc
e

λmat
e

= µinc
e

µmat
e

between the Lamé coefficients of the inclusion and of the

matrix ranges from 2.10−2 to 4. Of course, when RLc = 1, i.e. matrix and

inclusion are similar, the memory term K vanishes. When RLc increases from

0.02 to 1., i.e. soft inclusion cases, all of the initial values of K decrease and

tend to vanish for RLc = 1. When RLc increases from 1. to 4., i.e. stiff inclu-

sion cases, the initial value of all components of K increases. We also note that

“characteristic decay time” of each component of K is lower for stiff inclusions

than for soft inclusions for a given volume fraction of inclusions.

The influence of the volume fraction of inclusions on the memory term is then

presented in the case of a stiff inclusion (RLc = 0.1) with material constants

as in Table 2 and of a soft inclusion (RLc = 10) with material constants as in

Table 3. Here the volume fraction of inclusions ranges from 10% to 70%. For

clarity, only studies with coefficients K11 and K12 are presented respectively

in Figures 7 and 8. In case of a stiff inclusion, Figures 7(a) and 8(a) show that

the initial value of the memory term and its decay increase with the volume

fraction of inclusions. In case of a soft inclusion, Figures 7(b) and 8(b) show

that the lowest initial value is also associated with the lowest value of the
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volume fraction of inclusions used here, namely 10%. This could be linked to

the fact that for very low volume fractions the inclusion has no influence since

the memory term tends to zero [13]. Figure 8(b) also indicates that this initial

value peaks around 40% of volume fraction of inclusions. As for a stiff inclu-

sion, the initial value first increases with the increase in the volume fraction

of inclusions and secondly for large volume fractions, namely Vfrac ≥ 40%,

the initial value still decreases due to the influence of the inclusion stiffness.

The existence of this maximum highlights that for high volume fractions of

inclusions the memory term is governed by the constitutive behavior of the

inclusion and for low volume fractions of inclusions the memory term tends

to vanish. In the case of a large volume fractions of soft inclusion, Figures

7(b) and 8(b) illustrate a decrease in the “characteristic decay time” of K11

and K12, respectively, with an increase in the volume fraction of inclusions.

Figures 7 and 8 also show that the composite with a stiff inclusion exhibits

the lowest “characteristic decay time” of Kij. The results obtained in the two

previous parametric studies are in total agreement with the results proposed

by Cherraf-Schweyer et al. [13].

A parametric study highlighting the influence of the interface material charac-

teristics on the memory term is now presented. Hereafter, we set the volume

fraction of inclusions at 50% and the material properties of the matrix and

the inclusions are defined in Table 1. Only numerical experiments on K11 are

presented for the sake of clarity.
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3.2 Influence of the elastic properties of the interface

First the influence of the elastic constitutive coefficients of the interface is

studied for a stiff or soft inclusion for the two values of the viscosity consti-

tutive coefficients of the interface given in Table 4 and respectively on Fi-

gures 9 and 10. In theses figures, a set of curves are presented for Rk = λe
λe0

ranging from 1 to 10−3. In the case of high values of the viscosity constitu-

tive coefficients of the interface, Figure 9(a) clearly shows an increase in the

”characteristic decay time” of K11 with the decrease in Rk. Figure 9(a) also

exhibits that the decay of K11 always exist as predicted by theory even if it

might take much longer time. This phenomena is also observed in [13]. Fi-

gure 9(b) is a re-scale of Figure 9(a) to point out what is happening in case of

Rk ∈ [0.5, 1]. This increase is much greater with the stiff inclusion than with

the soft inclusion. This highlights an influence of the elastic coefficient of the

interface on the decay of K11 accentuated by the stiffness of the inclusion even

for high values of {λv, µv}. In the case of low values of the viscosity constitu-

tive coefficients of the interface, Figure 10 indicates a decrease in the initial

value of K11 with a decrease in Rk. In this case, there is no significant effect

of Rk on the “characteristic decay time” of K11.

3.3 Influence of the viscous properties of the interface

Now the influence of the viscosity constitutive coefficients of the interface is

studied. We keep the same geometrical and material parameters as before

(Table 2) for the matrix and inclusion. In Figures 11 and 12, sets of curve

values are presented for Rvis = λv
λv0

ranging from 1.0 to 10−3. In Figure 11, we

15



observe that for high values of λe and µe (i.e. very stiff elastic interface), there

is no influence of λv, µv on the behavior of K11. In fact, high elastic stiffness

of the interface does not favor the relative displacement along the interface, so

this is very close to a quasi-perfect bonding case then the viscosity coefficients

have no influence on K11. On the contrary, in Figure 12, we observe a marked

influence of {λ, µ}v on the memory term K11 which corresponds to a weak

elastic stiffness of the interface. In the case of a stiff inclusion in Figure 12(a),

an increase in the “characteristic decay time” of K11 is observed. This time

increases with Rvis. In the case of a soft inclusion, as shown in Figure 12(b),

a less marked influence is noticed as in the previous parametric study. These

results are in agreement with the curves presented in Figure 9.

4 Conclusion

The numerical experiments confirmed the evanescent character of the memory

term and illustrate the high dependency on the geometrical and material para-

meters. For quasi-perfect bonding, we notice that the influence of the volume

fraction of inclusions may change according to the contrast in the elastic pro-

perties of the matrix and inclusions. For stiff inclusion, the increase of initial

values and “characteristic decay time” of all components of K are directly

linked to the increase in the inclusion volume fraction. It is also shown that

low values of the elastic parameters of the interface significantly affect the

variations with respect to the time of K, especially in the case of a stiff in-

clusion. The parametric study also showed that the influence of the interface

parameter on the response of the memory term is greater when the elastic

properties of the interface are weak. This result is in accordance with those of

16



[26], thus highlighting the importance of the weakness of the elastic properties

in the damping of the composite plate. Further studies should be carried out

to assess the influence of a viscous interface in a three-phase composite on

soundproofing.
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Tables

Value Unit Value Unit

λinc
e 40 MPa λinc

v 0.4 MPas−1

λmat
e 4000 MPa λmat

v 0.4 MPas−1

λe 51010 Nm−3s−1 λv 5109 Nm−3s−1

µinc
e 19 MPa µinc

v 0.19 MPas−1

µmat
e 1900 MPa µmat

v 0.19 MPas−1

µe 51010 m−3s−1 µv 5109 m−3s−1

Table 1

Material parameters used in the case of perfect bonding

Value Unit Value Unit

λinc
e 40000 MPa λinc

v 0.4 MPas−1

µinc
e 19000 MPa µinc

v 0.19 MPas−1

λmat
e 4000 MPa λmat

v 0.4 MPas−1

µmat
e 1900 MPa µmat

v 0.19 MPas−1

Table 2

Material parameters used for stiff inclusions
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Value Unit Value Unit

λinc
e 400 MPa λinc

v 0.4 MPas−1

µinc
e 190 MPa µinc

v 0.19 MPas−1

λmat
e 4000 MPa λmat

v 0.4 MPas−1

µmat
e 1900 MPa µmat

v 0.19 MPas−1

Table 3

Material parameters used for soft inclusions

Value Unit Value Unit

λe0 5 106 Nm−3 λe

5 106

5 1010

Nm−3

µe0 5 106 Nm−3s−1 µe

5 106

5 1010

Nm−3s−1

Table 4

Material parameters used for studying the influence of the interface elastic parame-

ter
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Value Unit Value Unit

λe

5 106

5 1010

Nm−3 λv0 5 107 Nm−3s−1

µe

5 106

5 1010

Nm−3s−1 µv0 5 107 Nm−3s−1

Table 5

Material parameters used for studying the influence of the interface viscosity para-

meter
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Figure 5. Influence of the contrast in elastic properties on K1i
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Figure 6. Influence of the contrast in elastic properties on K33
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Figure 7. Influence of the volume fraction of inclusions on K11
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Figure 8. Influence of the volume fraction of inclusions on K12
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Figure 9. Influence of λe, µe for high λv, µv values on K11
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Figure 10. Influence of λe, µe for low λv, µv values on K11
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Figure 11. Influence of λv, µv for high λe, µe values on K11
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Figure 12. Influence of λv, µv for low λe, µe values on K11
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