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INTRODUCTION

In 1904, Maxwell Garnett [START_REF]is not the same person as the founder of the classical theory of electromagnetism James Clerk Maxwell (1831-1879). The approximation was published in the following two papers: "Colours in metal glasses and in metallic films[END_REF] has developed a simple but immensely successful homogenization theory. As any such theory, it aims to approximate a complex electromagnetic medium such as a colloidal solution of gold micro-particles in water with a homogeneous effective medium. The Maxwell Garnett mixing formula gives the permittivity of this effective medium (or, simply, the effective permittivity) in terms of the permittivities and volume fractions of the individual constituents of the complex medium.

A closely related development is the Lorentz molecular theory of polarization. This theory considers a seemingly different physical system: a collection of point-like polarizable atoms or molecules in vacuum. The goal is, however, the same: compute the macroscopic dielectric permittivity of the medium made up by this collection of molecules. A key theoretical ingredient of the Lorentz theory is the so-called local field correction, and this ingredient is also used in the Maxwell Garnett theory.

The two theories mentioned above seem to start from very different first principles. The Maxwell Garnett theory starts from the macroscopic Maxwell's equations, which are assumed to be valid on a fine scale inside the composite. The Lorentz theory does not assume that the macroscopic Maxwell's equations are valid locally. The molecules can not be characterized by macroscopic quantities such as permittivity, contrary to small inclusions in a composite. However, the Lorentz theory is still macroscopic in nature. It simply replaces the description of inclusions in terms of the internal field and polarization by a cumulative characteristic called the polarizability. Within the approximations used by both theories, the two approaches are mathematically equivalent.

An important point is that we should not confuse the theories of homogenization that operate with purely classical and macroscopic quantities with the theories that derive the macroscopic Maxwell's equations (and the relevant constitutive parameters) from microscopic first principles, which are in this case the microscopic Maxwell's equations and the quantummechanical laws of motion. Both the Maxwell Garnett and the Lorentz theories are of the first kind. An example of the second kind is the modern theory of polarization [START_REF] Resta | Macroscopic polarization in crystalline dielectrics: The geometrical phase approach[END_REF][START_REF] Resta | Physics of ferroelectrics: A modern perspective[END_REF], which computes the induced microscopic currents in a condensed medium (this quantity turns out to be fundamental) by using the densityfunctional theory (DFT). This tutorial will consist of two parts. In the first, introductory part, we will discuss the Maxwell Garnett and Lorentz theories and the closely related Clausius-Mossotti relation from the same simple theoretical viewpoint. We will not attempt to give an accurate historical overview or to compile an exhaustive list of references. It would also be rather pointless to write down the widely known formulas and make several plots for model systems. Rather, we will discuss the fundamental underpinnings of these theories. In the second part, we will discuss several advanced topics that are rarely covered in the textbooks. We will then sketch a method for obtaining more general homogenization theories in which the Maxwell Garnett mixing formula serves as the zeroth-order approximation.

Over the past hundred years or so, the Maxwell Garnett approximation and its generalizations have been derived by many authors using different methods. It is unrealistic to cover all these approaches and theories in this tutorial. Therefore, we will make an unfortunate compromise and not discuss some important topics. One notable omission is that we will not dis-cuss random media [START_REF] Wood | Effective medium theory of optical properties of small particle composites[END_REF][START_REF] Niklasson | Effective medium models for the optical properties of inhomogeneous materials[END_REF][START_REF] Mackay | Strong-propertyfluctuation theory for homogenization of bianisotropic composites: Formulation[END_REF] in any detail, although the first part of the tutorial will apply equally to both random and deterministic (periodic) media. Another interesting development that we will not discuss is the so-called extended Maxwell Garnett theories [START_REF] Doyle | Optical properties of a suspension of metal spheres[END_REF][START_REF] Ruppin | Evaluation of extended Maxwell-Garnett theories[END_REF][START_REF] Bohren | Do extended effective-medium formulas scale properly?[END_REF] in which the inclusions are allowed to have both electric and magnetic dipole moments.

Gaussian system of units will be used throughout the tutorial.

LORENTZ LOCAL FIELD CORRECTION, CLAUSIUS-MOSSOTTI RELATION AND MAXWELL GARNETT MIXING FORMULA

The Maxwell Garnett mixing formula can be derived by different methods, some being more formal than the others. We will start by introducing the Lorentz local field correction and deriving the Clausius-Mossotti relation. The Maxwell Garnett mixing formula will follow from these results quite naturally. We emphasize, however, that this is not how the theory has progressed historically.

A. Average field of a dipole

The key mathematical observation that we will need is this: the integral over any finite sphere of the electric field created by a static point dipole d located at the sphere's center is not zero but equal to -(4π/3)d.

The above statement may appear counterintuitive to anyone who has seen the formula for the electric field of a dipole,

E d (r) = 3r(r • d) -d r 3 , (1) 
where r = r/r is the unit vector pointing in the direction of the radius-vector r. Indeed, the angular average of the above expression is zero [10]. Nevertheless, the statement made above is correct. The reason is that the expression (1) is incomplete. We should have written

E d (r) = 3r(r • d) -d r 3 - 4π 3 δ(r)d , (2) 
where δ(r) is the three-dimensional Dirac delta-function.

The additional delta-term in (2) can be understood from many different points of view. Three explanations of varying degree of mathematical rigor are given below.

(i) A qualitative physical explanation can be obtained if we consider two point charges q/β and -q/β separated by the distance βh where β is a dimensionless parameter. This set-up is illustrated in Fig. 1. Now let β tend to zero. The dipole moment of the system is independent of β and has the magnitude d = qh. The field created by these two charges at distances r ≫ βh is indeed given by [START_REF]is not the same person as the founder of the classical theory of electromagnetism James Clerk Maxwell (1831-1879). The approximation was published in the following two papers: "Colours in metal glasses and in metallic films[END_REF] where the direction of the dipole is along the axis connecting the two charges. But this expression does not describe the field in the gap. It is easy to see that this field scales as -q/(β 3 h 2 ) while the volume of the region where this very strong field is supported scales as β 3 h 3 . The spatial integral of the electric field is proportional to the product of these two factors, -qh = -d. Then 4π/3 is just a numerical factor.

(ii) A more rigorous albeit not a very general proof can be obtained by considering a dielectric sphere of radius a and permittivity ǫ in a constant external electric field E ext . It is known that the sphere will acquire a dipole moment d = αE ext where the static polarizability α is given by the formula 

α = a 3 ǫ -1 ǫ + 2 . ( 3 
) + - q - q + q + q h Z q ! q " ! " # $ % z E P q h # ! P z d qh #
(P) = -8q/β 3 h 2 .
The oval shows the region of space were the strong field is supported; its volume scales as β 3 h 3 . Note that rigorous integration of the electric field of a truly point charge is not possible due to a divergence. In this figure, the charges are shown to be of finite size. In this case, a small spherical region around each charge gives a zero contribution to the integral.

This result can be obtained by solving the Laplace equation with the appropriate boundary conditions at the sphere surface and at infinity. From this solution, we can find that the electric field outside of the sphere is given by (1) (plus the external field, of course) while the field inside is constant and given by

E int = 3 ǫ + 2 E ext . (4) 
The depolarizing field E dep is by definition the difference between the internal field (the total field existing inside the sphere) and the external (applied) field. By the superposition principle,

E int = E ext + E dep .
Thus, E dep is the field created by the charge induced on the sphere surface. By using (4), we find that

-E dep = ǫ -1 ǫ + 2 E ext = 1 a 3 d . (5) 
Integrating over the volume of the sphere, we obtain r<a

E dep d 3 r = - 4π 3 d . (6) 
We can write more generally for any R ≥ a, r<R

(E -E ext )d 3 r = r<R E d d 3 r = - 4π 3 d . ( 7 
)
The expression in the right-hand side of ( 7) is the pre-factor in front of the delta-function in [START_REF] Resta | Macroscopic polarization in crystalline dielectrics: The geometrical phase approach[END_REF].

(iii) The most general derivation of the singular term in (2) can be obtained by computing the static Green's tensor for the electric field [START_REF]Equation (8) is obtained by using the expression φ(r) = [ρ(R)/|r -R|[END_REF],

G(r, r ′ ) = -∇ r ⊗ ∇ r ′ 1 |r -r ′ | . ( 8 
)
Here the symbol ⊗ denotes tensor product. For example, (a

⊗ b)c = a(b • c), (a ⊗ b) αβ = a α b β , etc.
The singularity originates from the double differentiation of the non-analytical term |rr ′ |. This can be easily understood if we recall that, in one dimension,

∂ 2 |x-x ′ | ∂x∂x ′ = δ(x -x ′ ). Evaluation of the right-hand side +q -q +q -q -q +q -q -q -q -q +q -q -q -q -q -q -q !" !"
! ! Fig. 2. (color online) A collection of dipoles in an external field. The particles are distributed inside a spherical volume either randomly (as shown) or periodically. It is assumed, however, that the macroscopic density of particles is constant inside the sphere and equal to v -1 = N/V. Here v is the specific volume per one particle. of ( 8) is straightforward but lengthy, and we leave it for an exercise. If we perform the differentiation accurately and then set r ′ = 0, we will find that G(r, 0)d is identical to the right-hand side of (2). Now, the key approximation of the Lorentz molecular theory of polarization, as well as that of the Maxwell Garnett theory of composites, is that the regular part in the right-hand side of (2) averages to zero and, therefore, it can be ignored, whereas the singular part does not average to zero and should be retained. We will now proceed with applying this idea to a physical problem.

B. Lorentz local field correction

Consider some spatial region V of volume V containing N ≫ 1 small particles of polarizability α each. We can refer to the particles as to "molecules". The only important physical property of a molecule is that it has a linear polarizability. The specific volume per one molecule is v = V/N. We will further assume that V is connected and sufficiently "simple". For example, we can consider a plane-parallel layer or a sphere. In these two cases, the macroscopic electric field inside the medium is constant, which is important for the arguments presented below. The system under consideration is schematically illustrated in Fig. 2.

Let us now place the whole system in a constant external electric field E ext . We will neglect the electromagnetic interaction of all the dipoles since we have decided to neglect the regular part of the dipole field in [START_REF] Resta | Macroscopic polarization in crystalline dielectrics: The geometrical phase approach[END_REF]. Again, the assumption that we use is that this field is unimportant because it averages to zero when summed over all dipoles. In this case, each dipole "feels" the external field E ext and therefore it acquires the dipole moment d = αE ext . The total dipole moment of the object is

d tot = Nd = NαE ext . (9) 
On the other hand, if we assign the sample some macroscopic permittivity ǫ and polarization P = [(ǫ -1)/4π]E, then the total dipole moment is given by

d tot = VP = V ǫ -1 4π E . (10) 
In the above expression, E is the macroscopic electric field inside the medium, which is, of course, different from the applied field E ext . To find the relation between the two fields, we can use the superposition principle and write

E = E ext + ∑ n E n (r) , r ∈ V . ( 11 
)
Here E n (r) is the field produced by the n-th dipole and . . . denotes averaging over the volume of the sample. Of course, the individual fields E n (r) will fluctuate and so will the sum of all these contributions, ∑ n E n (r). The averaging in the righthand side of [START_REF]Equation (8) is obtained by using the expression φ(r) = [ρ(R)/|r -R|[END_REF] has been introduced since we believe that the macroscopic electric field is a suitably defined average of the fast-fluctuating "microscopic" field. We now compute the averages in [START_REF]Equation (8) is obtained by using the expression φ(r) = [ρ(R)/|r -R|[END_REF] as follows:

E n (r) = 1 V V E d (r -r n )d 3 r ≈ - 4π 3 d V , ( 12 
)
where r n is the location of the n-th dipole and E d (r) is given by [START_REF] Resta | Macroscopic polarization in crystalline dielectrics: The geometrical phase approach[END_REF]. In performing the integration, we have disregarded the regular part of the dipole field and, therefore, the second equality above is approximate. We now substitute ( 12) into ( 11) and obtain the following result:

E = E ext + ∑ n E n = E ext -N 4π 3 d V = 1 - 4π 3 α v E ext . (13) 
In the above chain of equalities, we have used d = αE ext and

V/N = v.
All that is left to do now is substitute ( 13) into (10) and use the condition that ( 9) and (10) must yield the same total dipole moment of the sample. Equating the right-hand sides of these two equations and dividing by the total volume V results in the equation

α v = ǫ -1 4π 1 - 4π 3 α v . ( 14 
)
We now solve this equation for ǫ and obtain

ǫ = 1 + 4π(α/v) 1 -(4π/3)(α/v) = 1 + (8π/3)(α/v) 1 -(4π/3)(α/v) . ( 15 
)
This is the Lorentz formula for the permittivity of a non-polar molecular gas. The denominator in [START_REF] Foldy | The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers[END_REF] accounts for the famous local field correction. The external field E ext is frequently called the local field and denoted by E L . Eq. ( 13) is the linear relation between the local field and the average macroscopic field. If we did not know about the local field correction, we could have written naively ǫ = 1 + 4π(α/v). Of course, in dilute gases, the denominator in [START_REF] Foldy | The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers[END_REF] is not much different from unity. To first order in α/v, the above (incorrect) formula and (15) are identical. The differences show up only to second order in α/v. The significance of higher-order terms in the expansion of ǫ in powers of α/v and the applicability range of the Lorentz formula can be evaluated only by constructing a more rigorous theory from which (15) is obtained as a limit. Here we can mention that, in the case of dilute gases, the local field correction plays a more important role in nonlinear optics, where field fluctuations can be enhanced by the nonlinearities. Also, in some applications of the theory involving linear optics of condensed matter (with ǫ substantially different from unity), the exact form of the denominator in [START_REF] Foldy | The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers[END_REF] turns out to be important. An example will be given in Sec. C below.

It is interesting to note that we have derived the local field correction without the usual trick of defining the Lorentz sphere and assuming that the medium outside of this sphere is truly continuous, etc. The approaches are, however, mathematically equivalent if we get to the bottom of what is going on in the Lorentz molecular theory of polarization. The derivation shown above illustrates one important but frequently overlooked fact, namely, that the mathematical nature of the approximation made by the Lorentz theory is very simple: it is to disregard the regular part of the expression [START_REF] Resta | Macroscopic polarization in crystalline dielectrics: The geometrical phase approach[END_REF]. One can state the approximation mathematically by writing E d (r) = -(4π/3)δ(r)d instead of [START_REF] Resta | Macroscopic polarization in crystalline dielectrics: The geometrical phase approach[END_REF]. No other approximation or as- sumption is needed.

C. Clausius-Mossotti relation

Instead of expressing ǫ in terms of α/v, we can express α/v in terms of ǫ. Physically, the question that one might ask is this. Let us assume that we know ǫ of some medium (say, it was measured) and know that it is describable by the Lorentz formula. Then what is the value of α/v for the molecules that make up this medium? The answer can be easily found from [START_REF] Draine | Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation[END_REF], and it reads

α v = 3 4π ǫ -1 ǫ + 2 . ( 16 
)
This equation is known as the Clausius-Mossotti relation. It may seem that [START_REF] Lax | Multiple scattering of waves[END_REF] does not contain any new information compared to [START_REF] Foldy | The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers[END_REF]. Mathematically this is indeed so because one equation follows from the other. However, in 1973, Purcell and Pennypacker have proposed a numerical method for solving boundary-value electromagnetic problems for macroscopic particles of arbitrary shape [START_REF] Purcell | Scattering and absorption of light by nonspherical dielectric grains[END_REF] that is based on a somewhat nontrivial application of the Clausius-Mossotti relation.

The main idea of this method is as follows. We know that ( 16) is an approximation. However, we expect (16) to become accurate in the limit a/h → 0, where h = v 1/3 is the characteristic inter-particle distance and a is the characteristic size of the particles. Physically, this limit is not interesting because it leads to the trivial results α/v → 0 and ǫ → 1. But this is true for physical particles. What if we consider hypothetical point-like particles and assign to them the polarizability that follows from [START_REF] Lax | Multiple scattering of waves[END_REF] with some experimental value of ǫ? It turns out that an array of such hypothetical point dipoles arranged on a cubic lattice and constrained to the overall shape of the sample mimics the electromagnetic response of the latter with arbitrarily good precision as long as the macroscopic field in the sample does not vary significantly on the scale of h (so h should be sufficiently small). We, therefore, can replace the actual sample by an array of N point dipoles. The electromagnetic problem is then reduced to solving N linear coupled-dipole equations and the corresponding method is known as the discrete dipole approximation (DDA) [START_REF] Draine | The discrete-dipole approximation and its application to interstellar graphite grains[END_REF].

One important feature of DDA is that, for the purpose of solving the coupled-dipole equations, one should not disregard the regular part of the expression (2). This is in spite of the fact that we have used this assumption to arrive at [START_REF] Lax | Multiple scattering of waves[END_REF] in the first place! This might seem confusing, but there is really no contradiction because DDA can be derived from more general considerations than what was used above. Originally, it was derived by discretizing the macroscopic Maxwell's equations written in the integral form [START_REF] Purcell | Scattering and absorption of light by nonspherical dielectric grains[END_REF]. The reason why the regular part of (2) must be retained in the coupled-dipole equations is because we are interested in samples of arbitrary shape and the regular part of (2) does not really average out to zero in this case. Moreover, we can apply DDA beyond the static limit, where no such cancellation takes place in principle. Of course, the expression for the dipole field (2) and the Clausius-Mossotti relation ( 16) must be modified beyond the static limit to take into account the effects of retardation, the radiative correction to the polarizability, and other corrections associated with the finite frequency [START_REF] Draine | Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation[END_REF] otherwise, the method will violate energy conservation and can produce other abnormalities.

We note, however, that, if we attempt to apply DDA to the static problem of a dielectric sphere in a constant external field, we will obtain the correct result from DDA either with or without account for the point-dipole interaction. In other words, if we represent a dielectric sphere of radius R and permittivity ǫ by a large number N of equivalent point dipoles uniformly distributed inside the sphere and characterized by the polarizability ( 16), subject all these dipoles to an external field and solve the arising coupled-dipole equations, we will recover the correct result for the total dipole moment of the large sphere. We can obtain this result without accounting for the interaction of the point dipoles. This can be shown by observing that the polarizability of the large sphere, α tot , is equal to Nα, where α is given by ( 16). Alternatively, we can solve the coupled-dipole equations with the full account of dipole-dipole interaction on a supercomputer and -quite amazingly -we will obtain the same result. This is so because the regular parts of the dipole fields, indeed, cancel out in this particular geometry (as long as N → ∞, of course). This simple observation underscores the very deep theoretical insight of the Lorentz and Maxwell Garnett theories.

We also note that, in the context of DDA, the Lorentz local field correction is really important. Previously, we have remarked that this correction is not very important for dilute gases. But if we started from the "naive" formula ǫ = 1 + 4π(α/v), we would have gotten the incorrect "Clausius-Mossotti" relation of the form α/v = (ǫ -1)/4π and, with this definition of α/v, DDA would definitely not work even in the simplest geometries.

To conclude the discussion of DDA, we would like to emphasize one important but frequently overlooked fact. Namely, the point dipoles used in DDA do not correspond to any physical particles. Their normalized polarizabilities α/v are computed from the actual ǫ of material, which can be significantly different from unity. Yet the size of these dipoles is assumed to be vanishingly small. In this respect, DDA is very different from the Foldy-Lax approximation [START_REF] Foldy | The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers[END_REF][START_REF] Lax | Multiple scattering of waves[END_REF], which is known in the physics literature as, simply, the dipole approximation (DA), and which describes the electromagnetic interaction of sufficiently small physical particles via the dipole radiation fields. The coupled-dipole equations are, however, formally the same in both DA and DDA.

The Clausius-Mossotti relation and the associated coupleddipole equation (this time, applied to physical molecules) have also been used to study the fascinating phenomenon of ferroelectricity (spontaneous polarization) of nanocrystals [START_REF] Allen | Dipole interactions and electrical polarity in nanosystems: The Clausius-Mossotti and related models[END_REF], the surface effects in organic molecular films [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF], and many other phenomena wherein the dipole interaction of molecules or particles captures the essential physics.

D. Maxwell Garnett mixing formula

We are now ready to derive the Maxwell Garnett mixing formula. We will start with the simple case of small spherical particles in vacuum. This case is conceptually very close to the Lorentz molecular theory of polarization. Of course, the latter operates with "molecules", but the only important physical characteristic of a molecule is its polarizability, α. A small inclusions in a composite can also be characterized by its polarizability. Therefore, the two models are almost identical.

Consider spherical particles of radius a and permittivity ǫ, which are distributed in vacuum either on a lattice or randomly but uniformly on average. The specific volume per one particle is v and the volume fraction of inclusions is f = (4π/3)(a 3 /v). The effective permittivity of such medium can be computed by applying [START_REF] Foldy | The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers[END_REF] directly. The only thing that we will do is substitute the appropriate expression for α, which in the case considered is given by (3). We then have

ǫ MG = 1 + 2 f ǫ -1 ǫ + 2 1 -f ǫ -1 ǫ + 2 = 1 + 1 + 2 f 3 (ǫ -1) 1 + 1 -f 3 (ǫ -1) . ( 17 
)
This is the Maxwell Garnett mixing formula (hence the subscript MG) for small inclusions in vacuum. We emphasize that, unlike in the Lorentz theory of polarization, ǫ MG is the effective permittivity of a composite, not the usual permittivity of a natural material. Next, we remove the assumption that the background medium is vacuum, which is not realistic for composites. Let the host medium have the permittivity ǫ h and the inclusions have the permittivity ǫ i . The volume fraction of inclusions is still equal to f . We can obtain the required generalization by making the substitutions ǫ MG → ǫ MG /ǫ h and ǫ → ǫ i /ǫ h , which yields

ǫ MG = ǫ h 1 + 2 f ǫ i -ǫ h ǫ i + 2ǫ h 1 -f ǫ i -ǫ h ǫ i + 2ǫ h = ǫ h ǫ h + 1 + 2 f 3 (ǫ i -ǫ h ) ǫ h + 1 -f 3 (ǫ i -ǫ h ) . ( 18 
)
We will now justify this result mathematically by tracing the steps that were made to derive [START_REF] Allen | Dipole interactions and electrical polarity in nanosystems: The Clausius-Mossotti and related models[END_REF] and making appropriate modifications.

We first note that the expression (2) for a dipole embedded in an infinite host medium [19] should be modified as

E d (r) = 1 ǫ h 3r(r • d) -d r 3 - 4π 3 δ(r)d , (19) 
This can be shown by using the equation ∇

• D = ǫ h ∇ • E = 4πρ,
where ρ is the density of the electric charge making up the dipole. However, this argument may not be very convincing because it is not clear what is the exact nature of the charge ρ and how it follows from the constitutive relations in the medium. Therefore, we will now consider the argument (ii) given in Sec. A and adjust it to the case of a spherical inclusion of permittivity ǫ i in a host medium of permittivity ǫ h . The polarization field in this medium can be decomposed into two contributions, P = P h + P i , where

P h (r) = ǫ h -1 4π E(r) , P i (r) = ǫ(r) -ǫ h 4π E(r) . (20) 
Obviously, P i (r) is identically zero in the host medium while P h (r) can be nonzero anywhere. The polarization P i (r) is the secondary source of the scattered field. To see that this is the case, we can start from the equation ∇ • ǫ(r)E(r) = 0 and write

∇ • ǫ h E(r) = -∇ • [ǫ(r) -ǫ h ]E(r) = 4πρ i (r) ,
where

ρ i = -∇ • P i (note that the total induced charge is ρ = ρ i + ρ h , ρ h = -∇ • P h ).
Therefore, the relevant dipole moment of a spherical inclusion of radius a is d = r<a P i d 3 r. The corresponding polarizability α and the depolarizing field inside the inclusion E dep can be found by solving the Laplace equation for a sphere embedded in an infinite host, and are given by

α = a 3 ǫ h ǫ i -ǫ h ǫ i + 2ǫ h [compare to (3)] , (21a) 
-E dep = ǫ i -ǫ h ǫ i + 2ǫ h E ext = d ǫ h a 3 [compare to (5)]. ( 21b 
)
We thus find that the generalization of ( 7) to a medium with a non-vacuum host is

r<R (E -E ext )d 3 r = r<R E d d 3 r = - 4π 3ǫ h d . (22) 
Correspondingly, the formula relating the external and the average fields (Lorentz local field correction) now reads

E = 1 - 4π 3ǫ h α v E ext , ( 23 
)
where α is given by (21a). We now consider a spatial region V that contains many inclusions and compute its total dipole moment by two formulas:

d tot = NαE ext and d tot = V[(ǫ MG - ǫ h )/4π]E.
Equating the right-hand sides of these two expressions and substituting E in terms of E ext from [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF], we obtain the result

ǫ MG = ǫ h + 4π(α/v) 1 -(4π/3ǫ h )(α/v) . (24) 
Substituting α from (21a) and using 4πa 3 /3v = f , we obtain [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF]. As expected, one power of ǫ h cancels in the denominator of the second term in the right-hand side of ( 24), but not in its numerator.

Finally, we make one conceptually important step, which will allow us to apply the Maxwell Garnett mixing formula to a much wider class of composites. Equation [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF] was derived under the assumption that the inclusions are spherical. But [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF] does not contain any information about the inclusions shape. It only contains the permittivities of the host and the inclusions and the volume fraction of the latter. We therefore make the conjecture that ( 18) is a valid approximation for inclusions of any shape as long as the medium is spatially-uniform and isotropic on average. Making this conjecture now requires some leap of faith, but a more solid justification will be given in the second part of this tutorial.

MULTI-COMPONENT MIXTURES AND THE BRUGGE-MAN MIXING FORMULA

Equation ( 18) can be rewritten in the following form:

ǫ MG -ǫ h ǫ MG + 2ǫ h = f ǫ i -ǫ h ǫ i + 2ǫ h . ( 25 
)
Let us now assume that the medium contains inclusions made of different materials with permittivities ǫ n (n = 1, 2, . . . , N). Then ( 25) is generalized as

ǫ MG -ǫ h ǫ MG + 2ǫ h = N ∑ n=1 f n ǫ n -ǫ h ǫ n + 2ǫ h , ( 26 
)
where f n is the volume fraction of the n-th component. This result can be obtained by applying the arguments of Sec. 2 to each component separately. We now notice that the parameters of the inclusions (ǫ n and f n ) enter the equation (26) symmetrically, but the parameters of the host, ǫ h and f h = 1 -∑ n f n , do not. That is, (26) is invariant under the permutation

ǫ n ←→ ǫ m and f n ←→ f m , 1 ≤ n, m ≤ N . (27) 
However, (26) is not invariant under the permutation

ǫ n ←→ ǫ h and f n ←→ f h , 1 ≤ n ≤ N . ( 28 
)
In other words, the parameters of the host enter (26) not in the same way as the parameters of the inclusions. It is usually stated that the Maxwell Garnett mixing formula is not symmetric.

But there is no reason to apply different rules to different medium components unless we know something about their shape, or if the volume fraction of the "host" is much larger than that of the "inclusions". At this point, we do not assume anything about the geometry of inclusions (see the last paragraph of Sec. 2D). Moreover, even if we knew the exact geometry of the composite, we would not know how to use it -the Maxwell Garnett mixing formula does not provide any adjustable parameters to account for changes in geometry that keep the volume fractions fixed. Therefore, the only reason why we can distinguish the "host" and the "inclusions" is because the volume fraction of the former is much larger than that of the latter. As a result, the Maxwell Garnett theory is obviously inapplicable when the volume fractions of all components are comparable.

In contrast, the Bruggeman mixing formula [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF], which we will now derive, is symmetric with respect to all medium components and does not treat any one of them differently. Therefore, it can be applied, at least formally, to composites with arbitrary volume fractions without causing obvious contradictions. This does not mean that the Bruggeman mixing formula is always "correct". However, one can hope that it can yield meaningful corrections to (26) under the conditions when the volume fraction of inclusions is not very small. We will now sketch the main logical steps leading to the derivation of the Bruggeman mixing formula, although these arguments involve a lot of hand-waving.

First, let us formally apply the mixing formula (26) to the following physical situation. Let the medium be composed of N kinds of inclusions with the permittivities ǫ n and volume fractions f n such that ∑ n f n = 1. In this case, the volume fraction of the host is zero. One can say that the host is not physically present. However, its permittivity still enters (26).

We know already that (26) is inapplicable to this physical situation, but we can look at the problem at hand from a slightly different angle. Assume that we have a composite consisting of N components occupying a large spatial region V such as the sphere shown in Fig. 2 and, on top of that, let V be embedded in an infinite host medium [19] of permittivity ǫ h . Then we can formally apply the Maxwell Garnett mixing formula to the composite inside V even though we have doubts regarding the validity of the respective formulas. Still, the effective permittivity of the composite inside V can not possibly depend on ǫ h since this composite simply does not contain any host material. How can these statements be reconciled?

Bruggeman's solution to this dilemma is the following. Let us formally apply (26) to the physical situation described above and find the value of ǫ h for which ǫ MG would be equal to ǫ h . The particular value of ǫ h determined in this manner is the Bruggeman effective permittivity, which we denote by ǫ BG . It is easy to see that ǫ BG satisfies the equation

N ∑ n=1 f n ǫ n -ǫ BG ǫ n + 2ǫ BG = 0 where N ∑ n=1 f n = 1 . (29) 
We can see that [START_REF] Bergman | Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material[END_REF] possesses some nice mathematical properties. In particular, if

f n = 1, then ǫ BG = ǫ n . If f n = 0, then ǫ BG does not depend on ǫ n .
Physically, the Bruggeman equation can be understood as follows. We take the spatial region V filled with the composite consisting of all N components and place it in a homogeneous infinite medium with the permittivity ǫ h . The Bruggeman effective permittivity ǫ BG is the special value of ǫ h for which the dipole moment of V is zero. We note that the dipole moment of V is computed approximately, using the assumption of noninteracting "elementary dipoles" inside V. Also, the dipole moment is defined with respect to the homogeneous background, i.e., d tot = V [(ǫ(r)ǫ h )/4π]E(r)d 3 r [see the discussion after equation [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF]]. Thus, (29) can be understood as the condition that V blends with the background and does not cause a macroscopic perturbation of a constant applied field.

We now discuss briefly the mathematical properties of the Bruggeman equation. Multiplying (29) by Π N n=1 (ǫ n + 2ǫ BG ), we obtain a polynomial equation of order N with respect to ǫ BG . The polynomial has N (possibly, degenerate) roots. But for each set of parameters, only one of these roots is the physical solution; the rest are spurious. If the roots are known analytically, one can find the physical solution by applying the condition ǫ BG | f n =1 = ǫ n and also by requiring that ǫ BG be a continuous and smooth function of f 1 , . . . , f N [START_REF] Berthier | Effective medium theory: Mathematical determination of the physical solution for the dielectric constant[END_REF]. However, if N is sufficiently large, the roots are not known analytically. In this case, the problem of sorting the solutions can be solved numerically by considering the so-called Wiener bounds [START_REF] Jansson | Selection of the physically correct solution in the n-media Bruggeman effective medium approximation[END_REF] (defined in Sec. 6 below).

Consider the exactly-solvable case of a two-component mixture. The two solutions are in this case

ǫ BG = b ± 8ǫ 1 ǫ 2 + b 2 4 , b = (2 f 1 -f 2 )ǫ 1 + (2 f 2 -f 1 )ǫ 2 , (30) 
and the square root branch is defined by the condition 0 ≤ arg( √ z) < π. It can be verified that the solution [START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF] with the plus sign satisfies ǫ BG | f n =1 = ǫ n and also yields Im(ǫ BG ) ≥ 0, whereas the one with the minus sign does not. Therefore, the latter should be discarded. The solution [START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF] with the "+" is a continuous and smooth function of the volume fractions as long as we use the square root branch defined above and

f 1 + f 2 = 1.
If we take ǫ 1 = ǫ h , ǫ 2 = ǫ i , f 2 = f , then the Bruggeman and the Maxwell Garnett mixing formulas coincide to first order in f , but the second-order terms are different. The expansions near f = 0 are of the form

ǫ MG ǫ h = 1 + 3 ǫ i -ǫ h ǫ i + 2ǫ h f + 3 (ǫ i -ǫ h ) 2 (ǫ i + 2ǫ h ) 2 f 2 + . . . ( 31a 
)
ǫ BG ǫ h = 1 + 3 ǫ i -ǫ h ǫ i + 2ǫ h f + 9ǫ i (ǫ i -ǫ h ) 2 (ǫ i + 2ǫ h ) 3 f 2 + . . . (31b) 
Of course, we would also get a similar coincidence of expansions to first order in f if we take ǫ 2 = ǫ h , ǫ 2 = ǫ i and f 1 = f . We finally note that one of the presumed advantages of the Bruggeman mixing formula is that it is symmetric. However, there is no physical requirement that the exact effective permittivity of a composite has this property. Imagine a composite consisting of spherical inclusions of permittivity ǫ 1 in a homogeneous host of permittivity ǫ 2 . Let the spheres be arranged on a cubic lattice and have the radius adjusted so that the volume fraction of the inclusions is exactly 1/2. The spheres would be almost but not quite touching. It is clear that, if we interchange the permittivities of the components but keep the geometry unchanged, the effective permittivity of the composite will change. For examples, if spheres are conducting and the host dielectric, then the composite is not conducting as a whole. If we now make the host conducting and the spheres dielectric, then the composite would become conducting. However, the Bruggeman mixing formula predicts the same effective permittivity in both cases. This example shows that the symmetry requirement is not fundamental since it disregards the geometry of the composite. Due to this reason, the Bruggeman mixing formula should be applied with care and, in fact, it can fail quite dramatically.

ANISOTROPIC COMPOSITES

So far, we have considered only isotropic composites. By isotropy we mean here that all directions in space are equivalent. But what if this is not so? The Maxwell Garnett mixing formula [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF] can not account for anisotropy. To derive a generalization of ( 18) that can, we will consider inclusions in the form of uniformly-distributed and similarly-oriented ellipsoids.

Consider first an assembly of N ≫ 1 small noninteracting spherical inclusions of the permittivity ǫ i that fill uniformly a large spherical region of radius R. Everything is embedded in a host medium of permittivity ǫ h . The polarizability α of each inclusion is given by (21a). The total polarizability of these particles is α tot = Nα (since the particles are assumed to be not interacting). We now assign the effective permittivity ǫ MG to the large sphere and require that the latter has the same polarizability α tot as the collection of small inclusions. This condition results in equation [START_REF] Rytov | Electromagnetic properties of a finely stratified medium[END_REF], which is mathematically equivalent to [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF]. So the procedure just described is one of the many ways (and, perhaps, the simplest) to derive the isotropic Maxwell Garnett mixing formula. Now let all inclusions be identical and similarly-oriented ellipsoids with the semiaxes a x , a y , a z that are parallel to the X, Y and Z axes of a Cartesian frame. It can be found by solving the Laplace equation [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF] that the static polarizability of an ellipsoidal inclusion is a tensor α whose principal values α p are given by

α p = a x a y a z 3 ǫ h (ǫ i -ǫ h ) ǫ h + ν p (ǫ i -ǫ h ) , p = x, y, z . (32) 
Here the numbers ν p (0 < ν p < 1, ν x + ν y + ν z = 1) are the ellipsoid depolarization factors. Analytical formulas for ν p are given in [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. For spheres (a p = a), we have ν p = 1/3 for all p, so that (32) is reduced to (21a). For prolate spheroids resembling long thin needles (a x = a y ≪ a z ), we have ν x = ν y → 1/2 and ν z → 0. For oblate spheroids resembling thin pancakes (a x = a y ≫ a z ), ν x = ν y → 0 and ν z → 1.

Let the ellipsoidal inclusions fill uniformly a large ellipsoid of a similar shape, that is, with the semiaxes R x , R y , R z such that a p /a p ′ = R p /R p ′ and R p ≫ a p . As was done above, we assign the large ellipsoid an effective permittivity ǫMG and require that its polarizability αtot be equal to N α, where α is given by (32). Of course, different directions in space in the composite are no longer equivalent and we expect ǫMG to be tensorial; this is why we have used the overhead hat symbol in this notation. The mathematical consideration is, however, rather simple because, as follows from the symmetry, ǫMG is diagonal in the reference frame considered. We denote the principal values (diagonal elements) of ǫMG by (ǫ MG ) p . In the geometry considered, all tensors α, αtot , ǫMG and ν (the depolarization tensor) are diagonal in the same axes and, therefore, commute.

The principal values of αtot are given by an expression that is very similar to (32), except that a p must be substituted by R p and ǫ i must be substituted by ( ǫMG ) p . We then write αtot = N α and, accounting for the fact that Na x a y a z = f R x R y R z , obtain the following equation:

(ǫ MG ) p -ǫ h ǫ h + ν p [(ǫ MG ) p -ǫ h ] = f ǫ i -ǫ h ǫ h + ν p (ǫ i -ǫ h ) . ( 33 
)
This is a generalization of (25) to the case of ellipsoids. We now solve (33) for (ǫ MG ) p and obtain the conventional anisotropic Maxwell Garnett mixing formula, viz,

(ǫ MG ) p = ǫ h 1 + (1 -ν p ) f ǫ i -ǫ h ǫ h + ν p (ǫ i -ǫ h ) 1 -ν p f ǫ i -ǫ h ǫ h + ν p (ǫ i -ǫ h ) = ǫ h ǫ h + [ν p (1 -f ) + f ](ǫ i -ǫ h ) ǫ h + ν p (1 -f )(ǫ i -ǫ h ) . (34) 
It can be seen that (34) reduces to (18) if ν p = 1/3. In addition, (34) has the following nice properties. If ν p = 0, (34) yields

(ǫ MG ) p = f ǫ i + (1 -f )ǫ h = ǫ(r) . If ν p = 1, (34) yields (ǫ MG ) -1 p = f ǫ -1 i + (1 -f )ǫ -1 h = ǫ -1 (r)
. We will see in Sec. 5 below that these results are exact.

It should be noted that equation (34) implies that the Lorentz local field correction is not the same as given by [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. Indeed, we can use equation (34) to compute the macroscopic electric field E inside the large "homogenized" ellipsoid subjected to an external field E ext . We will then find that

E = 1 - ν 4π ǫ h α v E ext . (35) 
Here ν = diag(ν x , ν y , ν z ) is the depolarization tensor. The difference between (35) and ( 23) is not just that in the former expression α is tensorial and in the latter it is scalar (this would have been easy to anticipate); the substantial difference is that the expression (35) has the factor of ν instead of 1/3. The above modification of the Lorentz local field correction can be easily understood if we recall that the property [START_REF] Jansson | Selection of the physically correct solution in the n-media Bruggeman effective medium approximation[END_REF] of the electric field produced by a dipole only holds if the integration is extended over a sphere. However, we have derived (34) from the assumption that an assembly of many small ellipsoids mimic the electromagnetic response of a large "homogenized" ellipsoid of a similar shape. In this case, in order to compute the relation between the external and the macroscopic field in the effective medium, we must compute the respective integral over an elliptical region E rather than over a sphere. If we place the dipole d in the center of E, we will obtain

E (E -E ext )d 3 r = E E d d 3 r = - ν 4π ǫ h d . ( 36 
)
In fact, equation (36) can be viewed as a definition of the depolarization tensor ν.

Thus, the specific form (34) of the anisotropic Maxwell Garnett mixing formula was obtained because of the requirement that the collection of small ellipsoidal inclusions mimic the electromagnetic response of the large homogeneous ellipsoid of the same shape. But what if the large object is not an ellipsoid or an ellipsoid of a different shape? It turns out that the shape of the "homogenized" object influences the resulting Maxwell Garnett mixing formula, but the differences are second order in f . Indeed, we can pose the problem as follows: let N ≫ 1 small, noninteracting ellipsoidal inclusions with the depolarization factors ν p and polarizability α (32) fill uniformly a large sphere of radius R ≫ a x , a y , a z ; find the effective permittivity of the sphere ǫ′ MG for which its polarizability αtot is equal to N α. The problem can be easily solved with the result

(ǫ ′ MG ) p = ǫ h 1 + 2 f 3 ǫ i -ǫ h ǫ h + ν p (ǫ i -ǫ h ) 1 - f 3 ǫ i -ǫ h ǫ h + ν p (ǫ i -ǫ h ) = ǫ h ǫ h + (ν p + 2 f /3)(ǫ i -ǫ h ) ǫ h + (ν p -f /3)(ǫ i -ǫ h ) . ( 37 
)
We have used the prime in ǫ′ MG to indicate that (37) is not the same expression as (34); note also that the effective permittivity ǫ′ MG is tensorial even though the overall shape of the sample is a sphere. As one could have expected, the expression (37) corresponds to the Lorentz local field correction [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF], which is applicable to spherical regions.

As mentioned above, ǫMG (34) and ǫ′ MG (37) coincide to first order in f . We can write ǫMG , ǫ′

MG = ǫ h 1 + f ǫ i -ǫ h ǫ h + ν p (ǫ i -ǫ h ) + O( f 2 ) . ( 38 
)
As a matter of fact, expression (37) is just one of the family of approximations in which the factors 2 f /3 and f /3 in the numerator and denominator of the first expression in (37) are replaced by (1n p ) f and n p f , where n p are the depolarization factors for the large ellipsoid. The conventional expression (34) is obtained if we take n p = ν p ; expression (37) is obtained if we take n p = 1/3. All these approximations are equivalent to first order in f . Can we tell which of the two mixing formulas (34) and ( 37) is more accurate? The answer to this question is not straightforward. The effects that are quadratic in f also arise due to the electromagnetic interaction of particles, and this interaction is not taken into account in the Maxwell Garnett approximation. Besides, the composite geometry can be more general than isolated ellipsoidal inclusions, in which case the depolarization factors ν p are not strictly defined and must be understood in a generalized sense as some numerical measures of anisotropy. If inclusions are similar isolated particles, we can use (36) to define the depolarization coefficients for any shape; however, this definition is rather formal because the solution to the Laplace equation is expressed in terms of just three coefficients ν p only in the case of ellipsoids (an infinite sequence of similar coefficient can be introduced for more general particles).

Still, the traditional formula (34) has nice mathematical properties and one can hope that, in many cases, it will be more accurate than (37). We have already seen that it yields exact results in the two limiting cases of ellipsoids with ν p = 0 and ν p = 1. This is the consequence of using similar shapes for the large sample and the inclusions. Indeed, in the limit when, say, ν x = ν y → 1/2 and ν z → 0, the inclusions become infinite circular cylinders. The large sample also becomes an infinite cylinder containing many cylindrical inclusions of much smaller radius (the axes of all cylinders are parallel). Of course, it is not possible to pack infinite cylinders into any finite sphere. We can say that the limit when ν x = ν y = 0 and ν z = 1 corresponds to the one-dimensional geometry (a layered planeparallel medium) and the limit ν x + ν y = 1 and ν z = 0 corresponds to the two-dimensional geometry (infinitely long parallel fibers of elliptical cross section). In these two cases, the overall shape of the sample should be selected accordingly: a planeparallel layer or an infinite elliptical fiber. Spherical overall shape of the sample is not compatible with the one-dimensional or two-dimensional geometries. Therefore, (34) captures these cases better than (37).

Additional nice features of (34) include the following. First, we will show in Sec. 5 that (34) can be derived by applying the simple concept of the smooth field. Second, because (34) has the correct limits when ν p → 0 and ν p → 1, the numerical values of (ǫ MG ) p produced by (34) always stay inside and sample completely the so-called Wiener bounds, which are discussed in more detail in Sec. 6 below.

We finally note that the Bruggeman equation can also be generalized to the case of anisotropic inclusions by writing [START_REF] Schmidt | Anisotropic Bruggeman effective medium approaches for slanted columnar thin films[END_REF] 

N ∑ n=1 f n ǫ n -(ǫ BG ) p (ǫ BG ) p + ν np [ǫ n -(ǫ BG ) p ] = 0 . ( 39 
)
Here ν np is the depolarization coefficient for the n-th inclusion and p-th principal axis. The notable difference between the equation (39) and the equation given in [START_REF] Schmidt | Anisotropic Bruggeman effective medium approaches for slanted columnar thin films[END_REF] is that the depolarization coefficients in (39) depend on n. In [START_REF] Schmidt | Anisotropic Bruggeman effective medium approaches for slanted columnar thin films[END_REF] and elsewhere in the literature, it is usually assumed that these coefficients are the same for all medium components. While this assumption can be appropriate in some special cases, it is difficult to justify in general. Moreover, it is not obvious that the tensor ǫBG is diagonalizable in the same axes as the tensors νn . Due to this uncertainty, we will not consider the anisotropic extensions of the Bruggeman's theory in detail.

MAXWELL GARNETT MIXING FORMULA AND THE SMOOTH FIELD

Let us assume that a certain field S(r) changes very slowly on the scale of the medium heterogeneities. Then, for any rapidlyvarying function F(r), we can write

S(r)F(r) = S(r) F(r) , (40) 
where . . . denotes averaging taken over a sufficiently small volume that still contains many heterogeneities. We will call the fields possessing the above property smooth.

To see how this concept can be useful, consider the wellknown example of a one-dimensional, periodic (say, in the Z direction) medium of period h. The medium can be homogenized, that is, described by an effective permittivity tensor ǫeff whose principal values, (ǫ eff ) x = (ǫ eff ) y and (ǫ eff ) z , correspond to the polarizations parallel (along X or Y axes) and perpendicular to the layers (along Z), and are given by

(ǫ eff ) x,y = ǫ(z) = N ∑ n=1 f n ǫ n , (41a) 
(ǫ eff ) z = ǫ -1 (z) -1 = N ∑ n=1 f n ǫ n -1 . (41b) 
Here the subscript in (ǫ eff ) x,y indicates that the result applies to either X or Y polarization and we have assumed that each elementary cell of the structure consists of N layers of the widths f n h and permittivities ǫ n , where ∑ n f n = 1. The result (41) has been known for a long time in statics. At finite frequencies, it has been established in [START_REF] Rytov | Electromagnetic properties of a finely stratified medium[END_REF] by taking the limit h → 0 while keeping all other parameters, including the frequency, fixed (in this work, Rytov has considered a more general problem of layered media with nontrivial electric and magnetic properties). Direct derivation of (41) at finite frequencies along the lines of Ref. [START_REF] Rytov | Electromagnetic properties of a finely stratified medium[END_REF] requires some fairly lengthy calculations. However, this result can be established without any complicated mathematics, albeit not as rigorously, by applying the concept of smooth field. To this end, we recall that, at sharp interfaces, the tangential component of the electric field E and the normal component of the displacement D are continuous.

In the case of X or Y polarizations, the electric field E is tangential at all surfaces of discontinuity. Therefore, E x,y (z) is in this case smooth [26] while E z = 0. Consequently, we can write

D x,y (z) = ǫ(z)E x,y (z) = ǫ(z) E x,y (z) . (42) 
On the other hand, we expect that D x,y = ( ǫeff ) x,y E x,y . Comparing this to (42), we arrive at (41a).

For the perpendicular polarization, both the electric field and the displacement are perpendicular to the layers. The electric field jumps at the surfaces of discontinuity and, therefore, it is not smooth. But the displacement is smooth. Correspondingly, we can write

E z (z) = ǫ -1 (z)D z (z) = ǫ -1 (z) D z (z) . (43) 
Combining D z = ( ǫeff ) z E z and (43), we immediately arrive at (41b). Alternatively, the two expressions in (41) can be obtained as the limits ν p → 0 and ν p → 1 of the anisotropic Maxwell Garnett mixing formula (34). Since (41) is an exact result, (34) is also exact in these two limiting cases.

So, in the one-dimensional case considered above, either the electric field or the displacement are smooth, depending on the polarization. In the more general 3D case, we do not have such a nice property. However, let us conjecture that, for the external field applied along the axis p (= x, y, z) and to some approximation, the linear combination of the form

S p (r) = β p E p (r) + (1 -β p )D p (r) = [β p + (1 -β p )ǫ(r)]E p (r) is smooth.
Here β p is a mixing parameter. Application of (40) results in the following equalities:

E p (r) = S p (r) β p + (1 -β p )ǫ(r) -1 , (44a) 
D p (r) = S p (r) ǫ(r) β p + (1 -β p )ǫ(r) -1 . (44b) 
Comparing these two expressions, we find that the effective permittivity is given by

(ǫ eff ) p = ǫ(r)[ǫ(r) + β p /(1 -β p )] -1 ǫ(r) + β p /(1 -β p ) -1 . ( 45 
)
The above equation is, in fact, the anisotropic Maxwell Garnett mixing formula (34), if we only adjust the parameter β p correctly. To see that this is the case, let us rewrite (34) in the following rarely-used form:

(ǫ MG ) p = ǫ(r) ǫ(r) + (1/ν p -1)ǫ h -1 ǫ(r) + (1/ν p -1)ǫ h -1 . (46) 
Here ǫ(r) is equal to ǫ i with the probability f and to ǫ h with the probability 1f and the averages are computed accordingly. Expressions (45) and ( 46) coincide if we take

β p = (1 -ν p )ǫ h ν p + (1 -ν p )ǫ h . (47) 
The mixing parameter β p depends explicitly on ǫ h because the Maxwell Garnett mixing formula is not symmetric. Thus, the anisotropic Maxwell Garnett approximation (34) is equivalent to assuming that, for p-th polarization, the field [(1ν p )ǫ h + ν p ǫ(r)]E p (r) is smooth. Therefore, (34) can be de- rived quite generally by applying the concept of the smooth field. The depolarization factors ν p are obtained in this case as adjustable parameters characterizing the composite anisotropy and not necessarily related to ellipsoids.

The alternative mixing formula (37) can not be transformed to a weighted average ǫ(r)F p (r) / F p (r) , of which ( 45) and ( 46) are special cases. Therefore, it is not possible to derive (37) by introducing a smooth field of the general form F p [ǫ(r)]E p (r), at least not without explicitly solving the Laplace equation in the actual composite. Finding the smooth field for the Bruggeman equation is also problematic.

WIENER AND BERGMAN-MILTON BOUNDS

The discussion of the smooth field in the previous section is closely related to the so-called Wiener bounds on the "correct" effective permittivity ǫeff of a composite medium. Of course, introduction of bounds is possible only if ǫeff can be rigorously and uniquely defined. We will see in the second part of this tutorial that this is, indeed, the case, at least for periodic composites in the limit h → 0, h being the period of the lattice. Maxwell Garnett and Bruggeman mixing formulas give some relatively simple approximations to ǫ eff , but precise computation of the latter quantity can be complicated. Wiener bounds and their various generalizations can be useful for localization of ǫ eff or determining whether a given approximation is reasonable. For example, the Wiener bounds have been used to identify the physical root of the Bruggeman equation ( 29) for a multi-component mixture [START_REF] Jansson | Selection of the physically correct solution in the n-media Bruggeman effective medium approximation[END_REF].

In 1912, Wiener has introduced the following inequality for the principal values (ǫ eff ) p of the effective permittivity tensor of a multi-component mixture of substances whose individual permittivities ǫ n are purely real and positive [START_REF] Wiener | Die Theorie des Mischkörpers für das Feld der Stationären Strömung. Erste Abhandlung: Die Mittelwertsätze für Kraft, Polarisation und Energie[END_REF]:

ǫ -1 -1 ≤ (ǫ eff ) p ≤ ǫ , if ǫ n > 0 . ( 48 
)
It can be seen that the Wiener bounds depend on the set of {ǫ n , f n } but not on the exact geometry of the mixture. The lower and upper bounds in (48) are given by the expressions (41). The Wiener inequality is not the only result of this kind. We can also write min n (ǫ n ) ≤ (ǫ eff ) p ≤ max n (ǫ n ); sharper estimates can be obtained if additional information is available about the composite [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF]. However, all these inequalities are inapplicable to complex permittivities that are commonly encountered at optical frequencies. This fact generates uncertainty, especially when metal-dielectric composites are considered. A powerful result that generalizes the Wiener inequality to complex permittivities was obtained in 1980 by Bergman [START_REF] Bergman | Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material[END_REF] and Milton [START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF]. We will state this result for the case of a two component mixture with the constituent permittivities ǫ 1 and ǫ 2 .

Consider the complex ǫ-plane and mark the two points ǫ 1 and ǫ 2 . Then draw two lines connecting these points: one a ] and ǫ BG [formula (30)] as functions of f for 0 ≤ f ≤ straight line and another a circle that crosses ǫ 1 , ǫ 2 and the origin (three points define a circle). We only need a part of this circle -the arc that does not contain the origin. The two lines can be obtained by plotting parametrically the complex functions

η( f ) = f ǫ 1 + (1 -f )ǫ 2 and ζ( f ) = [ f /ǫ 1 + (1 -f )/ǫ 2 ] -1
for 0 ≤ f ≤ 1 and are marked in Fig. 3 as LWB (linear Wiener bound) and CWB (circular Wiener bound).

The closed area Ω (we follow the notations of Milton [START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF]) between the lines LWB and CWB is the locus of all complex points (ǫ eff ) p that can be obtained in the two-component mixture. We can say that Ω is accessible. This means that, for any point ξ ∈ Ω, there exists a composite with (ǫ eff ) p = ξ. The boundary of Ω is also accessible, as was demonstrated with the example of onedimensional medium in Sec. 5. However, all points outside Ω are not accessible -they do not correspond to (ǫ eff ) p of any twocomponent mixture with the fixed constituent permittivities ǫ 1 and ǫ 2 .

We do not give a mathematical proof of these properties of Ω but we can make them plausible. Let us start with a onedimensional, periodic in the Z direction, two-component layered medium with some volume fractions f 1 and f 2 . The principal value (ǫ eff ) z for this geometry will correspond to a point A on the line CWB and the principal values (ǫ eff ) x = (ǫ eff ) y will correspond to a point B on LWB. The points A and B are shown in Fig. 3 for f 1 = 0.7 and f 2 = 0.3. We will then continuously deform the composite while keeping the volume fractions fixed until we end up with a medium that is identical to the original one except that it is rotated by 90 • in the XZ plane. In the end state, (ǫ eff ) x will correspond to the point A and (ǫ eff ) y = (ǫ eff ) z will correspond to the Point B. The intermediate states of this transformation will generate two continuous trajectories [the loci of the points (ǫ eff ) x and (ǫ eff ) z ] that connect A and B and one closed loop staring and terminating at B [the loci of the points (ǫ eff ) y ]. Two such curves that connect A and B (the arcs ACB and ADB) are also shown in Fig. 3. Now, let us scan f 1 and f 2 from

f 1 = 1, f 2 = 0 to f 1 = 0, f 2 = 1.
The points A and B will slide on the lines CWB and LWB from ǫ 1 to ǫ 2 , and the continuous curves that connect them will fill the region Ω completely while none of these curves will cross the boundary of Ω. On the other hand, while deforming the composite between the states A and B, we can arrive at a composite of an arbitrary three-dimensional geometry modulo the given volume fractions. Thus, for a two component medium with arbitrary volume fractions, we can state that (i) (ǫ eff ) p ∈ Ω and (ii) if ζ ∈ Ω, then there exists a composite with (ǫ eff ) p = ζ. We now discuss the various curves shown in Fig. 3 in more detail.

The curves marked as MG1, MG2 display the results computed by the Maxwell Garnett mixing formula (34) with various values of ν p , as labeled. MG1 is obtained by assuming that

ǫ h = ǫ 1 , ǫ i = ǫ 2 , f = f 2 .
We then take the expression (34) and plot (ǫ MG ) p parametrically as a function of f for 0 ≤ f ≤ 1 for three different values of ν p . MG2 is obtained in a similar fashion but using

ǫ h = ǫ 2 , ǫ i = ǫ 1 , f = f 1 .
Notice that, at each of the three values of ν p used, the curves MG1 and MG2 do not coincide because (34) is not "symmetric" in the sense of [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF]. For this reason, MG1 and MG2 can not be accurate simultaneously anywhere except in the close vicinities of ǫ 1 and ǫ 2 . Since there is no reason to prefer MG1 over MG2 or vice versa (unless f 1 or f 2 are small), MG1 and MG2 can not be accurate in general, that is for any composite that is somehow compatible with the parameters of the mixing formula. This point should be clear already from the fact that composites that are not made of ellipsoids are not characterizable mathematically by just three depolarization factors ν p .

However, in the limits ν p → 0 and ν p → 1, MG1 and MG2 coincide with each other and with either LWB or CWB. In these limits MG1 and MG2 are exact.

In Panel (a), we also plot the curve BG computed according to [START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF] with the "+" sign. This BG curve follows closely MG1 in the vicinity of ǫ 1 and MG2 in the vicinity of ǫ 2 . This result is expected since the Maxwell Garnett and Bruggeman approxima-tions coincide to first order in f : see (31) and recall that f = f 2 for MG1 and f = f 1 for MG2.

The two arcs ACB and ADB that connect the points A and B are defined by the following conditions: if continued to full circles, ACB will cross ǫ 1 and ADB will cross ǫ 2 . The arcs can also be obtained by plotting (ǫ MG ) p as given by (34) parametrically as a function of ν p for fixed f 1 and f 2 . To plot the arc ACB, we set ǫ h = ǫ 1 , ǫ i = ǫ 2 and f = f 2 in (34), just as was done in order to compute the curve MG1. However, instead of fixing ν p and varying f , we now fix f = 0.3 and vary ν p from 0 to 1. Similarly, the arc ADB is obtained by setting ǫ h = ǫ 2 , ǫ i = ǫ 1 , f = f 1 and varying ν p in the same interval.

The region delineated by the arcs ACB and ADB is denoted by Ω ′ . It is important for the following reason. Above, we have defined the region Ω, which is the locus of all points (ǫ eff ) p for the two-component mixture regardless of the volume fractions. If we fix the latter to f 1 and f 2 , the region of allowed (ǫ eff ) p can be further narrowed. It is shown in Refs. [START_REF] Bergman | Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material[END_REF][START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF] that this region is precisely Ω ′ . Note that the Maxwell Garnett approximation (34) with the same f 1 and f 2 yields the results on the boundary of Ω ′ . Conversely, any point on the boundary of Ω ′ corresponds to (34) with some ν p . The isotropic Bruggeman's solution is safely inside Ω ′ -see point E in Panel (a).

Just like Ω, the region Ω ′ is also accessible. This means that each point inside Ω ′ corresponds to a certain composite with given ǫ 1 , ǫ 2 , f 1 and f 2 . However, it is not obvious how the boundaries of Ω ′ can be accessed. Above, we have seen that the boundaries of Ω are accessed by the solutions to the homogenization problem in a very simple one-dimensional geometry wherein the smooth field S can be easily (and precisely) defined. The same is true for Ω ′ . It can be shown [START_REF] Bergman | Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material[END_REF] that the geometry for which the boundary of Ω ′ is accessed is an assembly of coated ellipsoids that are closely packed to fill the entire space. This is possible if we take an infinite sequence of such ellipsoids of ever decreasing size. Note that all major axes of the ellipsoids should be parallel, the core and the shell of each ellipsoid should be confocal, and the volume fractions of the ǫ 1 and ǫ 2 substances comprising each ellipsoid should be fixed to f 1 and f 2 . The arrangement in which ǫ 1 is the core and ǫ 2 is the shell will give one circular boundary of Ω ′ and the arrangement in which ǫ 2 is in the core and ǫ 1 is in the shell will give another boundary.

Of course, the above arrangement is a purely mathematical construct, it is not realizable in practice. However, it is interesting to note that the Maxwell Garnett mixing formula (34) turns out to be exact in this strange geometry. In the special case when the ellipsoids are spheres, the isotropic Maxwell Garnett formula [START_REF] Vanzo | Dipole-field sums, Lorentz factors and dielectric properties of organic molecular films modeled as crystalline arrays of polarizable points[END_REF] is exact. This isotropic, arbitrarily dense packaging of coated spheres of progressively reduced radiuses was considered by Hashing and Shtrikman [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF] in 1962.

We can now see why the anisotropic Maxwell Garnett mixing formula (34) is special. First, it samples the region Ω completely. In other words, any two-component mixture with ǫ 1 and ǫ 2 -type constituents has the effective permittivity principal values (ǫ eff ) p that are equal to a value (ǫ MG ) p produced by (34) with the same ǫ 1 and ǫ 2 (but perhaps with different volume fractions). Second, (34) is restricted to Ω. In other words, any value (ǫ MG ) p produced by (34) is equal to (ǫ eff ) p of some composite with the same ǫ 1 and ǫ 2 (but perhaps with different volume fractions).

To conclude the discussion of bounds, we note that Refs. [START_REF] Bergman | Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material[END_REF][START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF] contain an even stronger result. If, in addition to ǫ 1 , ǫ 2 , f 1 , f 2 , it is also known that the composite is isotropic on average, then the allowed region for ǫ eff (now a scalar) is further reduced to Ω ′′ ⊂ Ω ′ ⊂ Ω. Here Ω ′′ is delineated by yet another pair of circular arcs that connect the points C and D and, if continued to circles, also cross the points A and B. These arcs are not shown in Fig. 3.

SCALING LAWS

Maxwell Garnett and Bruggeman theories give some approximations to the effective permittivity of a composite ǫeff . Wiener and Bergman-Milton bounds discussed in the previous section do not provide approximations or define ǫeff precisely but rather restrict it to a certain region in the complex plane. However, the very possibility to derive approximations or to place bounds on ǫeff relies on the availability of an unambiguous definition of this quantity. We will sketch an approach to defining and computing ǫeff in the second part of this tutorial. Now we note that this definition is expected to satisfy the following two scaling laws [START_REF] Bohren | Do extended effective-medium formulas scale properly?[END_REF].

The first law is invariance under coordinate rescaling r → βr, where β > 0 is an arbitrary real constant. In other words, the result should not depend on the physical size of the heterogeneities. Of course, one can not expect a given theory to be valid when the heterogeneity size is larger than the wavelength. Therefore, the above statement is not about the physical applicability of a given theory. Rather, it is about the mathematical properties of the theory itself. We can say that any standard theory is obtained in the limit h → 0, where h is the characteristic size of the heterogeneity, say, the lattice period. The result of taking this limit is, obviously, independent of h.

The second law is the law of unaltered ratios: if every ǫ n of a composite medium is scaled as ǫ n → βǫ n , then the effective permittivity (as computed by this theory) should scale similarly, viz, ǫeff → β ǫeff .

Theories (either exact or approximate) that satisfy the above two laws can be referred to as standard. It is easy to see that the Maxwell Garnet and the Bruggeman theories are standard. On the other hand, the so-called extended homogenization theories that consider magnetic and higher-order multipole moments of the inclusions do not generally satisfy the scaling laws.

SUMMARY AND OUTLOOK

The sections 2,3,4, we have covered the material that one encounters in standard textbooks. Sections 5,6,7 contain somewhat less standard but, still, mathematically simple material. The tutorial could end here. However, we can not help noticing that the arguments we have presented are not complete and not always mathematically rigorous. There are several topics that we need to discuss if we want to gain a deeper understanding of the homogenization theories in general and of the Maxwell Garnett mixing formula in particular.

First, the standard expositions of the Maxwell Garnett mixing formula and of the Lorentz molecular theory of polarization rely heavily on the assumption that polarization field P(r) = [(ǫ(r) -1)/4π]E(r) is the dipole moment per unit volume. But this interpretation is neither necessary for defining the constitutive parameters of the macroscopic Maxwell's equations nor, generally, correct. The physical picture based on the polarization being the density of dipole moment is in many cases adequate, but in some other cases it can fail. We've been careful to operate only with total dipole moments of macroscopic objects. Still, this point requires some additional discussion.

Second, the Lorentz local field correction relies on integrating the electric field of a dipole over spheres or ellipsoids of finite radius. It can be assumed naively that, since the integral is convergent for some finite integration regions, it also converges over the whole space. But this assumption is mathematically incorrect. The integral of the electric field of a static dipole taken over the whole space does not converge to any result. Therefore, if we arbitrarily deform the surface that bounds the integration domain, we would obtain an arbitrary integration result. In fact, we have already seen that this result depends on whether the surface is spherical or ellipsoidal. This dependence, in turn, affects the Lorentz local field correction. Consequently, developing a more rigorous mathematical formalism that does not depend on evaluation of divergent integrals is desirable.

Third, we have worked mostly within statics. We did discuss finite frequencies in the sections devoted to smooth field and Wiener and Bergman-Milton bounds, but not in any substantial detail. However, the theory of homogenization is almost always applied at high frequencies. In this case, equation ( 2) is not applicable; a more general formula must be used. Incidentally, the integral of the field of an oscillating dipole diverges even stronger than that of a static dipole. It is also not correct to use the purely static expression for the polarizabilities at finite frequencies.

The above topics will be addresses in the second part of this tutorial.
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 1 Fig. 1. (color online) Illustration of the set-up used in the derivation (i) of the equation (2). The dipole moment of the system of two charges in the Z-direction is d z = qh. The electric field in the mid-point P is E z (P) = -8q/β 3 h 2 . The oval shows the region of space were the strong field is supported; its volume scales as β 3 h 3 . Note that rigorous integration of the electric field of a truly point charge is not possible due to a divergence. In this figure, the charges are shown to be of finite size. In this case, a small spherical region around each charge gives a zero contribution to the integral.

2 Fig. 3 .

 23 Fig.3. (color online) Illustration of the Wiener and Bergman-Milton bounds for a two-component mixture with ǫ 1 = 1.5 + 1.0i and ǫ 2 = -4.0 + 2.5i. Curves MG1, MG2 and BG are parametric plots of the complex functions (ǫ MG ) p [formula (34)] and ǫ BG [formula(30)] as functions of f for 0 ≤ f ≤ 1 and three different values of ν p , as labeled. Arcs ACB and ADB are parametric plots of (ǫ MG ) p as a function of ν p for fixed f and different choice of the host medium (hence two different arcs). Notations: LWB -linear Wiener bound; CWB -circular Wiener bound; MG1 -Maxwell Garnett mixing formula in which ǫ h = ǫ 1 , ǫ i = ǫ 2 and f = f 2 ; MG2 -same but for ǫ h = ǫ 2 , ǫ i = ǫ 1 and f = f 1 , BG -symmetric Bruggeman mixing formula; A, B, C, D, E mark the points on CWB, LWB, MG1, MG2, BG curves for which f 1 = 0.7 and f 2 = 0.3. Point E and curve BG are shown in Panel (a) only. Only the curves MG1 and MG2 depend on ν p . The region Ω (delineated by LWB and CWB) is the locus of all points (ǫ eff ) p that are attainable for the twocomponent mixture regardless of f 1 and f 2 ; Ω ′ (between the two arcs ACB and ADB) is the locus of all points that are attainable for this mixture and f 1 = 0.7, f 2 = 0.3.

  [START_REF]is not the same person as the founder of the classical theory of electromagnetism James Clerk Maxwell (1831-1879). The approximation was published in the following two papers: "Colours in metal glasses and in metallic films[END_REF] and three different values of ν p , as labeled. Arcs ACB and ADB are parametric plots of (ǫ MG ) p as a function of ν p for fixed f and different choice of the host medium (hence two different arcs). Notations: LWB -linear Wiener bound; CWB -circular Wiener bound; MG1 -Maxwell Garnett mixing formula in which ǫ h = ǫ 1 , ǫ i = ǫ 2 and f = f 2 ; MG2 -same but for ǫ h = ǫ 2 , ǫ i = ǫ 1 and f = f 1 , BG -symmetric Bruggeman mixing formula; A, B, C, D, E mark the points on CWB, LWB, MG1, MG2, BG curves for which f 1 = 0.7 and f 2 = 0.3. Point E and curve BG are shown in Panel (a) only. Only the curves MG1 and MG2 depend on ν p . The region Ω (delineated by LWB and CWB) is the locus of all points (ǫ eff ) p that are attainable for the twocomponent mixture regardless of f 1 and f 2 ; Ω ′ (between the two arcs ACB and ADB) is the locus of all points that are attainable for this mixture and f 1 = 0.7, f 2 = 0.3.
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