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A tutorial on Maxwell Garnett approximation.
I. Introduction
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This tutorial is devoted to the Maxwell Garnett approximation and related theories. Topics covered in the
first, introductory part of the tutorial include the Lorentz local-field correction, the Clausius-Mossotti rela-
tion and its role in the modern numerical technique known as the Discrete Dipole Approximation (DDA),
the Maxwell Garnett mixing formula for isotropic and anisotropic media, multi-component mixtures and
the Bruggeman mixing formula, and the concept of smooth field. © 2016 Optical Society of America
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1. INTRODUCTION

In 1904, Maxwell Garnett [1] has developed a simple but im-
mensely successful homogenization theory. As any such theory, it
aims to approximate a complex electromagnetic medium such a
colloidal solution of gold micro-particles in water with a homo-
geneous effective medium. The Maxwell Garnett mixing formula
gives the permittivity of this effective medium (or, simply, the
effective permittivity) in terms of the permittivities of the indi-
vidual constituents of the complex medium.

A closely related development is the Lorentz molecular the-
ory of polarization. This theory considers a seemingly different
physical system: a collection of point-like polarizable atoms or
molecules in vacuum. The goal is however the same: compute
the macroscopic dielectric permittivity of the medium made up
by this collection of molecules. A key theoretical ingredient of
the Lorentz theory is the so-called local-field correction, and
this ingredient is also used in the Maxwell Garnett theory.

The two theories mentioned above seem to start from very
different first principles. The Maxwell Garnett theory starts
from the macroscopic Maxwell’s equations, which are assumed
to be valid on a fine scale inside the composite. The Lorentz the-
ory does not assume that the macroscopic Maxwell’s equations
are valid locally. The molecules can not be characterized by
macroscopic quantities such as permittivity, contrary to small
inclusions in a composite. However, the Lorentz theory is still
macroscopic in nature. It simply replaces the description of in-
clusions in terms of internal field and polarization by a cumu-
lative characteristic called the polarizability. Within the approx-
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imations used by both theories, the two approaches are mathe-
matically equivalent.

An important point is that we should not confuse the the-
ories of homogenization that operate with purely classical and
macroscopic quantities with the theories that derive the macro-
scopic Maxwell’s equations (and the relevant constitutive pa-
rameters) from microscopic first principles, which are in this
case the microscopic Maxwell’s equations and the quantum-
mechanical laws of motion. Both the Maxwell Garnett and the
Lorentz theories are of the first kind. An example of the sec-
ond kind is the modern theory of polarization [2, 3], which com-
putes the induced microscopic currents in a condensed medium
(this quantity turns out to be fundamental) by using the density-
functional theory (DFT).

This tutorial will consist of two parts. In the first, introduc-
tory part, we will discuss the Maxwell Garnett and Lorentz
theories and the closely related Clausius-Mossotti relation from
the same simple theoretical viewpoint. We will not attempt to
give an accurate historical overview or to compile an exhaus-
tive list of references. It would also be rather pointless to write
down the widely known formulas and make several plots for
model systems. Rather, we will discuss the fundamental un-
derpinnings of these theories. In the second part, we will dis-
cuss several advanced topics that are rarely covered in the text-
books. We will also sketch a method for obtaining more general
homogenization theories in which the Maxwell Garnett mixing
formula serves as the zeroth-order approximation.

Over the past hundred years or so, the Maxwell Garnett ap-
proximation and its generalizations have been derived by many
authors using different methods. It is unrealistic to cover all
these approaches and theories in this tutorial. Therefore, we
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will make an unfortunate compromise and not discuss some
important topics. One notable omission is that we will not dis-
cuss random media [4–6] in any detail, although the first part
of the tutorial will apply equally to both random and determin-
istic (periodic) media. Another interesting development that
we will not discuss is the so-called extended Maxwell Garnett
theories [7–9] in which the inclusions are allowed to have both
electric and magnetic dipole moments.

Gaussian system of units will be used throughout the tuto-
rial.

2. LORENTZ LOCAL FIELD CORRECTION, CLAUSIUS-
MOSSOTTI RELATION AND MAXWELL GARNETT
MIXING FORMULA

The Maxwell Garnett mixing formula can be derived by dif-
ferent methods, some being more formal than the others. We
will start by introducing the Lorentz local field correction and
deriving the Clausius-Mossotti relation. The Maxwell Garnett
mixing formula will follow from these results quite naturally.
We emphasize however that this is not how the theory has pro-
gressed historically.

A. Average field of a dipole

The key mathematical observation that we will need is this: the
integral over any finite sphere of the electric field created by a
static point dipole d located at the sphere’s center is not zero
but equal to −(4π/3)d.

The above statement may appear counterintuitive to anyone
who has seen the formula for the electric field of a dipole,

Ed(r) =
3r̂(r̂ · d)− d

r3
, (1)

where r̂ = r/r is the unit vector pointing in the direction of
the radius-vector r. Indeed, the angular average of the above
expression is zero [10]. Nevertheless, the statement made above
is correct. The reason is that the expression Eq. (1) is incomplete.
We should have written

Ed(r) =
3r̂(r̂ · d)− d

r3
− 4π

3
δ(r)d , (2)

where δ(r) is the three-dimensional Dirac delta-function.
The additional delta-term in Eq. (2) can be understood from

many different points of view. Three explanations of varying
degree of mathematical rigor are given below.

(i) A qualitative physical explanation can be obtained if we
consider two point charges q/β and −q/β separated by the
distance βh where β is a dimensionless parameter. Now let β
tend to zero. The dipole moment of the system is independent
of β and has the magnitude d = qh. The field created by these
two charges at distances r ≫ βh is indeed given by Eq. (1)
where the direction of the dipole is along the axis connecting
the two charges. But this expression does not describe the field
in the gap. It is easy to see that this field scales as −q/(β3h2)
while the volume of the region where this very strong field
is supported scales as β3h3. The spatial integral of the elec-
tric field is proportional to the product of these two factors,
−qh = −d. Then 4π/3 is just a numerical factor. �

(ii) A more rigorous albeit not a very general proof can be
obtained by considering a dielectric sphere of radius a and per-
mittivity ǫ in a constant external electric field Eext. It is known

that the sphere will acquire a dipole moment d = αEext where
the static polarizability α is given by the formula

α = a3 ǫ− 1

ǫ + 2
. (3)

This result can be obtained by solving the Laplace equation
∇ · ǫ(r)E(r) = 0 with appropriate boundary conditions at the
sphere surface and at infinity. From this solution, we can also
find that the electric field outside of the sphere is given by
Eq. (1) (plus the external field, of course) while the field inside
the sphere is constant and given by

Eint =
3

ǫ + 2
Eext . (4)

The depolarizing field Edep is by definition the difference be-
tween the internal field (the total field existing inside the
sphere) and the external (applied) field. By the superposition
principle, Eint = Eext + Edep. Thus, Edep is the field created by
the charge induced on the sphere surface. By using Eq. (4), we
find that

−Edep =
ǫ− 1

ǫ + 2
Eext =

1

a3
d . (5)

Integrating over the volume of the sphere, we obtain

∫

r<a
Edepd3r = − 4π

3
d . (6)

We can write more generally for any R ≥ a,

∫

r<R
(E− Eext)d

3r =
∫

r<R
Edd3r = − 4π

3
d . (7)

The expression in the right-hand side of Eq. (7) is the pre-factor
in front of the delta-function in Eq. (2). �

(iii) The most general derivation of the singular term in
Eq. (2) can be obtained by computing the static Green’s tensor
for the electric field,

G(r, r′) = −∇r ⊗∇r′
1

|r− r′| . (8)

Here the symbol ⊗ denotes tensor product. For example,
(a⊗ b)c = a(b · c), (a⊗ b)αβ = aαbβ, etc. The singularity origi-
nates from the double differentiation of the non-analytical term
|r− r′|. This can be easily understood if we recall that in one
dimension

∂2|x− x′|
∂x∂x′

= δ(x− x′) .

The actual evaluation of the right-hand side of Eq. (8) is
straightforward but lengthy, and we leave it for an exercise. If
we perform the differentiation accurately and then set r′ = 0,
we will find that G(r, 0)d is identical to the right-hand side of
Eq. (2). �

Now, the key approximation of the Lorentz molecular the-
ory of polarization, as well as that of the Maxwell Garnett the-
ory of composites, is that the regular part in the right-hand
side of Eq. (2) averages to zero and, therefore, it can be ignored
whereas the singular part does not average to zero and should
be retained. We will now proceed with applying this idea to a
physical problem.
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Fig. 1. (color online) A collection of dipoles in external field.
The particles are distributed inside a spherical volume either
randomly (as shown) or periodically. It is assumed however
that the macroscopic density of particles is constant inside the
sphere and equal to v−1 = N/V. Here v is the specific volume
per one particle.

B. Lorentz local field correction

Consider some spatial region V of volume V containing N ≫ 1
small particles of polarizability α each. We can refer to the par-
ticles as to “molecules”. The only important physical property
of a molecule is that it has a linear polarizability. The specific
volume per one molecule is v = V/N. We will further assume
that V is connected and sufficiently “simple”. For example, we
can consider a plane-parallel layer or a sphere. In these two
cases, the macroscopic electric field inside the medium is con-
stant, which is important for the arguments presented below.
The system under consideration is schematically illustrated in
Fig. 1.

Let us now place the whole system in a constant external
electric field Eext. We will neglect the electromagnetic interac-
tion of all the dipoles since we have decided to neglect the reg-
ular part of the dipole field in Eq. (2). Again, the assumption
that we use is that this field is unimportant because it averages
to zero when summed over all dipoles. In this case, each dipole
“feels” the external field Eext and therefore it acquires the dipole
moment d = αEext. The total dipole moment of the object is

dtot = Nd = NαEext . (9)

On the other hand, if we assign the sample some macroscopic
permittivity ǫ and polarization P = [(ǫ− 1)/4π]E, then the to-
tal dipole moment is given by

dtot = VP = V
ǫ− 1

4π
E . (10)

In the above expression, E is the macroscopic electric field in-
side the medium, which is, of course, different from the applied
field Eext. To find the relation between the two fields, we can
use the superposition principle and write

E = Eext +

〈

∑
n

En(r)

〉

, r ∈ V . (11)

Here En(r) is the field produced by the n-th dipole and 〈. . .〉
denotes averaging over the volume of the sample. Of course,
the individual fields En(r) will fluctuate and so will the sum
of all these contributions, ∑n En(r). The averaging in the right-
hand side of Eq. (11) has been introduced since we believe that

the macroscopic electric field is a suitably defined average of
the fast-fluctuating “microscopic” field.

We now compute the averages in Eq. (11) as follows:

〈En(r)〉 =
1

V

∫

V

Ed(r− rn)d
3r ≈ − 4π

3

d

V
, (12)

where rn is the location of the n-th dipole and Ed(r) is given
by Eq. (2). In performing the integration, we have disregarded
the regular part of the dipole field and, therefore, the second
equality above is approximate. We now substitute Eq. (12) into
Eq. (11) and obtain the following result:

E = Eext + ∑
n
〈En〉 = Eext − N

4π

3

d

V

=

(

1− 4π

3

α

v

)

Eext . (13)

In the above chain of equalities, we have used d = αEext and
V/N = v.

All that is left to do now is substitute Eq. (13) into Eq. (10)
and use the condition that Eq. (9) and Eq. (10) must yield the
same total dipole moment of the sample. Equating the right-
hand sides of these two equations and dividing by the total vol-
ume V results in the equation

α

v
=

ǫ− 1

4π

(

1− 4π

3

α

v

)

. (14)

We now solve this equation for ǫ and obtain

ǫ = 1 +
4π(α/v)

1− (4π/3)(α/v)
=

1 + (8π/3)(α/v)

1− (4π/3)(α/v)
. (15)

This is the Lorentz formula for the permittivity of a non-polar
molecular gas. The denominator in Eq. (15) accounts for the fa-
mous local field correction. The external field Eext is frequently
called the local field and denoted by EL. Equation Eq. (13) gives
us the linear relation between the local field and the average
macroscopic field.

If we did not know about the local field correction, we could
have written naively ǫ = 1 + 4π(α/v). Of course, in dilute
gases, the denominator in Eq. (15) is not much different from
unity. To first order in α/v, the above (incorrect) formula and
Eq. (15) are identical. The differences show up only to second
order in α/v. The significance of higher-order terms in the ex-
pansion of ǫ in powers of α/v and the applicability range of
the Lorentz formula can be evaluated only by constructing a
more rigorous theory from which Eq. (15) is obtained as a limit.
Here we can mention that, in the case of dilute gases, the local
field correction plays a more important role in nonlinear optics,
where field fluctuations can be enhanced by the nonlinearities.
Also, in some applications of the theory involving linear optics
of condensed matter (with ǫ substantially different from unity),
the exact form of the denominator in Eq. (15) turns out to be
important. An example will be given in Sec. C below.

It is interesting to note that we have derived the local
field correction without the usual trick of defining the Lorentz
sphere and assuming that the medium outside of this sphere
is truly continuous, etc. The approaches are however mathe-
matically equivalent if we get to the bottom of what is going
on in the Lorentz molecular theory of polarization. The deriva-
tion shown above illustrates one important but frequently over-
looked fact, namely, that the mathematical nature of the ap-
proximation made by the Lorentz theory is very simple: it is
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to disregard the regular part of the expression Eq. (2). One
can state the approximation mathematically by writing Ed(r) =
−(4π/3)δ(r)d instead of Eq. (2). No other approximation or as-
sumption is needed.

C. Clausius-Mossotti relation

Instead of expressing ǫ in terms of α/v, we can express α/v
in terms of ǫ. Physically, the question that one might ask is
this. Let us assume that we know ǫ of some medium (say, it
was measured) and know that it is describable by the Lorentz
formula. Then what is the value of α/v for the molecules that
make up this medium? The answer can be easily found from
Eq. (14) and it reads

α

v
=

3

4π

ǫ− 1

ǫ + 2
. (16)

This equation is known as the Clausius-Mossotti relation.
It may seem that Eq. (16) does not contain any new infor-

mation compared to Eq. (15). Mathematically this is indeed
so because one equation follows from the other. However,
in 1973, Purcell and Pennypacker have proposed a numerical
method for solving boundary-value electromagnetic problems
for macroscopic particles of arbitrary shape [11] that is based
on a somewhat nontrivial application of the Clausius-Mossotti
relation.

The main idea of this method is as follows. We know that
Eq. (16) is an approximation. However, we expect Eq. (16) to
become accurate in the limit a/h → 0, where h = v1/3 is the
characteristic inter-particle distance and a is the characteristic
size of the particles. Physically, this limit is not interesting be-
cause it leads to the trivial results α/v → 0 and ǫ → 1. But
this is true for physical particles. What if we consider hypothet-
ical point-like particles and assign to them the polarizabilities
that follow from Eq. (16) with some experimental value of ǫ?
It turns out that an array of such hypothetical point dipoles ar-
ranged on a cubic lattice and constrained to the overall shape
of the sample mimics the electromagnetic response of the latter
with arbitrarily good precision as long as the macroscopic field
in the sample does not vary significantly on the scale of h (so h
should be sufficiently small). We, therefore, can replace the ac-
tual sample by an array of N point dipoles. The electromagnetic
problem is then reduced to solving N linear coupled-dipole equa-
tions and the corresponding method is known as the discrete
dipole approximation (DDA) [12].

One important feature of DDA is that, for the purpose of
solving the coupled-dipole equations, one should not disregard
the regular part of the formula Eq. (2). This is in spite of the fact
that we have used this assumption to arrive at Eq. (16) in the
first place! This might seem confusing, but there is really no
contradiction because DDA can be derived from more general
considerations than what was used above. Originally, it was
derived by discretizing the macroscopic Maxwell’s equations
written in the integral form [11]. The reason why the regular
part of Eq. (2) must be retained in the coupled-dipole equations
is because we are interested in samples of arbitrary shape and
the regular part of Eq. (2) does not really average out to zero
in this case. Moreover, we can apply DDA beyond the static
limit, where no such cancellation takes place in principle. How-
ever, the Clausius-Mossotti relation must be modified beyond
the static limit to take account for the radiative correction and
other corrections associated with the finite frequency [13] – oth-
erwise, the method will violate energy conservation and can
produce other abnormalities.

We note however that, if we attempt to apply the DDA to
the static problem of a dielectric sphere in a constant external
field, we will obtain the correct result from the DDA either with
or without account for the point-dipole interaction. In other
words, if we represent a dielectric sphere of radius R and per-
mittivity ǫ by a large number N of point dipoles with the same
polarizability determined by Eq. (16) and uniformly distributed
inside the sphere, subject all these dipoles to the external field
and solve the arising coupled-dipole equations, we will recover
the correct result for the total dipole moment of the large sphere.
We can obtain this result without accounting for the interaction
of the point dipoles. This can be shown by observing that the
polarizability of the large sphere, αtot, is equal to Nα, where α
is given by Eq. (16). Alternatively, we can solve the coupled-
dipole equations with the full account of the dipole-dipole in-
teraction on a supercomputer and – quite amazingly – we will
obtain the same result. This is so because the regular parts of
the dipole fields, indeed, cancel out in this particular geometry
(as long as N → ∞, of course). This simple observation un-
derscores the very deep theoretical insight of the Lorentz and
Maxwell Garnett theories.

We also note that, in the context of the DDA, the Lorentz
local-field correction is really important. Previously we have
remarked that this correction is not very important for dilute
gases. But if we started from the “naive” formula ǫ = 1 +
4π(α/v), we would have gotten an incorrect Clausius-Mossotti
relation of the form α/v = (ǫ− 1)/4π and, with this definition,
DDA would definitely not work even in the simplest geome-
tries.

To conclude this subsection, we would like to emphasize one
important but frequently overlooked point regarding the DDA.
Namely, the point dipoles used in the DDA do not correspond
to any physical particles. Their normalized polarizabilities α/v
are computed from the actual ǫ of material, which can be sig-
nificantly different from unity. Yet the size of these dipoles is
assumed to be vanishingly small. In this respect, DDA is very
different from the Foldy-Lax approximation [14, 15], which is
known in the physics literature as, simply, the dipole approxima-
tion (DA) and which describes the electromagnetic interaction
of sufficiently small physical particles via dipole radiation fields.
The coupled-dipole equations are, however, formally the same
in both DA and DDA.

D. Maxwell Garnett mixing formula

We are now ready to derive the Maxwell Garnett mixing for-
mula. We will start with the simple case of small spherical par-
ticles in vacuum. This case is conceptually very close to the
Lorentz molecular theory of polarization. Of course, the lat-
ter operates with “molecules”, but the only important physical
characteristic of a molecule is its polarizability, α. A small inclu-
sions in a composite can also be characterized by its polarizabil-
ity. Therefore, the two models are almost identical.

Consider spherical particles of radius a and permittivity ǫ,
which are distributed in vacuum either on a lattice or randomly
but uniformly on average. The specific volume per one particle
is v and the volume fraction of inclusions is f = (4π/3)(a3/v).
The effective permittivity of such medium can be computed by
applying Eq. (15) directly. The only thing that we will do is
substitute the appropriate expression for α, which in the case
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considered is given by Eq. (3). We then have

ǫMG =
1 + 2 f

ǫ− 1

ǫ + 2

1− f
ǫ− 1

ǫ + 2

=
1 +

1 + 2 f

3
(ǫ− 1)

1 +
1− f

3
(ǫ− 1)

. (17)

This is the Maxwell Garnett mixing formula (hence the sub-
script MG) for small inclusions in vacuum. We emphasize that,
unlike in the Lorentz theory of polarization, ǫMG is the effec-
tive permittivity of a composite, not the usual permittivity of a
natural material.

Next, we remove the assumption that the background
medium is vacuum, which is not realistic for composites. Let
the host medium have the permittivity ǫh and the inclusions
have the permittivity ǫi. The volume fraction of inclusions is
still equal to f . We can obtain the required generalization by
making the substitutions ǫMG → ǫMG/ǫh and ǫ→ ǫi/ǫh, which
yields

ǫMG = ǫh

1 + 2 f
ǫi − ǫh

ǫi + 2ǫh

1− f
ǫi − ǫh

ǫi + 2ǫh

= ǫh

1 +
1 + 2 f

3

ǫi − ǫh

ǫh

1 +
1− f

3

ǫi − ǫh

ǫh

. (18)

We will now justify this result mathematically by tracing the
steps that were made to derive Eq. (17) and making appropriate
modifications.

We first note that the expression Eq. (2) for a dipole embed-
ded in an infinite host medium [16] should be modified as

Ed(r) =
1

ǫh

[

3r̂(r̂ · d)− d

r3
− 4π

3
δ(r)d

]

, (19)

This can be shown by using the equation ∇ ·D = ǫh∇ · E =
4πρ, where ρ is the density of the electric charge making up the
dipole. However, this argument may not be very convincing be-
cause it is not clear what is the exact nature of the charge ρ and
how it follows from the constitutive relations in the medium.
Therefore, we will now consider the argument (ii) given in
Sec. A and adjust it to the case of a spherical inclusion of permit-
tivity ǫi in a host medium of permittivity ǫh. The polarization
field in this medium can be decomposed into two contributions,
P = Ph + Pi, where

Ph(r) =
ǫh − 1

4π
E(r) , Pi(r) =

ǫ(r)− ǫh

4π
E(r) . (20)

Obviously, Pi(r) is identically zero in the host medium while
Ph(r) can be nonzero anywhere. The polarization Pi(r) is the
secondary source of the scattered field. To see that this is the case,
we can start from the equation ∇ · ǫ(r)E(r) = 0 and write

∇ · ǫhE(r) = −∇ · [ǫ(r)− ǫh]E(r) = 4πρi(r) , (21)

where ρi = −∇ · Pi. Therefore, the relevant dipole moment of
a spherical inclusion of radius a is d =

∫

r<a Pid
3r. The corre-

sponding polarizability is given by

α = a3ǫh
ǫi − ǫh

ǫi + 2ǫh
[compare to Eq. (3)] . (22)

The depolarizing field inside the inclusion is

− Edep =
ǫi − ǫh

ǫi + 2ǫh
Eext =

d

ǫha3
[compare to Eq. (5)]. (23)

We thus find that the generalization of Eq. (7) in a medium with
a non-vacuum host is

∫

r<R
(E− Eext)d

3r =
∫

r<R
Edd3r = − 4π

3ǫh
d . (24)

Correspondingly, the formula relating the external and the av-
erage fields now reads

E =

(

1− 4π

3ǫh

α

v

)

Eext , (25)

where α is given by Eq. (22). We now consider a spatial re-
gion V that contains many inclusions and compute its total
dipole moment by two formulas: dtot = NαEext and dtot =
V[(ǫMG− ǫh)/4π]E. Equating the right-hand sides of these two
expressions and substituting E in terms of Eext from Eq. (25), we
obtain the result

ǫMG = ǫh +
4π(α/v)

1− (4π/3ǫh)(α/v)
. (26)

Substituting α from Eq. (22) and using 4πa3/3v = f , we
obtain Eq. (18). As expected, one power of ǫh cancels in the
denominator of the second term in the right-hand side of
Eq. (26), but not in its numerator. �

Finally, we make one conceptually important step, which
will allow us to apply the Maxwell Garnett mixing formula to
a much wider class of composites. Equation Eq. (17) was de-
rived under the assumption that the inclusions are spherical.
But Eq. (18) does not contain any information about the inclu-
sions shape. It only contains the permittivities of the host and
the inclusions and the volume fraction of the latter. We there-
fore make the conjecture that Eq. (17) is a valid approximation
for inclusions of any shape as long as the medium is spatially-
uniform and isotropic on average. Making this conjecture now
require some leap of faith, but a more solid justification will be
given in the second part of this tutorial.

3. VARIOUS FORMS AND GENERALIZATIONS OF THE
MAXWELL GARNETT MIXING FORMULA

A. Anisotropic particles

So far, we have considered only isotropic composites. By
isotropy we mean here that all directions in space are equiva-
lent. But what if this is not so? Equation Eq. (17) can not account
for anisotropy. However, it is easy to derive a generalization of
Eq. (17) that can. To this end, we will use ellipsoidal inclusions.

Consider the case when all inclusions are identical and
similarly-oriented ellipsoids with the semiaxes a1, a2, a3 that are
parallel to the axes X, Y and Z of a Cartesian frame. The polariz-
ability of all ellipsoids is in this case a tensor α̂ whose principal
values αp are given by

αp =
a1a2a3

3

ǫh(ǫi − ǫh)

ǫh + νp(ǫi − ǫh)
, p = 1, 2, 3 . (27)

Here νp are the depolarization factors. Analytical formulas for
νp are given, for example, in [17]. The Maxwell Garnett permit-
tivity of the composite is then also a tensor and its principal val-
ues are obtained by a straightforward generalization of Eq. (26):

(ǫMG)p = ǫh +
4π(αp/v)

1− (4π/3ǫh)(αp/v)
. (28)
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Substituting Eq. (27) into Eq. (28) we obtain

(ǫMG)p = ǫh

1 +
3νp + 2 f

3

ǫi − ǫh

ǫh

1 +
3νp − f

3

ǫi − ǫh

ǫh

. (29)

In the case of spherical inclusions, ν1 = ν2 = ν3 = 1/3 and
we recover the expression Eq. (18). If the inclusions are prolate
spheroids resembling long thin needles (a1 = a2 ≪ a3), we
have ν1 = ν2 = 1/2 and ν3 = 0. If the inclusions are oblate
spheroids resembling thin pancakes (a1 = a2 ≫ a3), then ν1 =
ν2 = 0 and ν3 = 1.

An interesting result is obtained if 3νp = f . This com-
bination of parameters is achievable if f ≪ 1 by using pro-
late or oblate spheroids with sufficiently small aspect ratios.
If the above equality holds for polarization p, then we obtain
(ǫMG)p = ǫi independently of ǫh.

B. Multi-component mixtures and the Bruggeman mixing for-
mula

Equation Eq. (18) can be rewritten in the following form:

ǫMG − ǫh

ǫMG + 2ǫh
= f

ǫi − ǫh

ǫi + 2ǫh
. (30)

Let us now assume that the medium contains inclusions made
of different materials with permittivities ǫn (n = 1, 2, . . . , N).
Then Eq. (30) is generalized as

ǫMG − ǫh

ǫMG + 2ǫh
=

N

∑
n=1

fn
ǫn − ǫh

ǫn + 2ǫh
, (31)

where fn is the volume fraction of n-th component. This result
can be obtained by applying the arguments of Sec. 2 to each
component separately.

We now notice that the parameters of the inclusions (ǫn and
fn) enter Eq. (31) symmetrically, but the parameters of the host,
ǫh and fh = 1 − ∑n fn, do not. That is, Eq. (31) is invariant
under the permutation

ǫn ←→ ǫm and fn ←→ fm , 1 ≤ n, m ≤ N . (32)

However, Eq. (31) is not invariant under the permutation

ǫn ←→ ǫh and fn ←→ fh , 1 ≤ n ≤ N . (33)

In other words, the parameters of the host enter Eq. (31) not in
the same way as the parameters of the inclusions. It is usually
stated that the Maxwell Garnett mixing formula is not symmet-
ric.

But there is no reason to apply different rules to different
medium components unless we know something about their
shape or the volume fraction of the “host” is much larger than
that of the “inclusions”. At this point, we do not assume any-
thing about the geometry of inclusions (see the last paragraph
of Sec. D). Moreover, even if we knew the exact geometry of the
composite, we would not know how to use it – the Maxwell Gar-
nett approximation does not provide any adjustable parameters
to account for changes in geometry that keep the volume frac-
tions fixed. Therefore, the only reason why we can distinguish
the “host” and the “inclusions” is because the volume fraction
of the former is much larger than that of the latter. As a result,
the Maxwell Garnett theory is obviously inapplicable when the
volume fractions of all components are comparable.

In contrast, the Bruggeman mixing formula [18], which we
will now derive, is symmetric with respect to all medium com-
ponents and does not treat any one of them differently. There-
fore, it can be applied, at least formally, to composites with arbi-
trary volume fractions without causing obvious contradictions.
This does not mean that the Bruggeman mixing formula is al-
ways “correct”. However, one can hope that it can yield mean-
ingful corrections to Eq. (31) under the conditions when the vol-
ume fraction of inclusions is not very small. We will now sketch
the main logical steps leading to the derivation of the Brugge-
man mixing formula, although these arguments involve a lot of
hand-waving.

First, let us formally apply Eq. (31) to the following physical
situation. Let the medium be composed of N kinds of inclu-
sions with the permittivities ǫn and volume fractions fn such
that ∑n fn = 1. In this case, the volume fraction of the host is
zero. One can say that the host is not physically present. How-
ever, its permittivity still enters Eq. (31).

We know already that Eq. (31) is inapplicable to this physical
situation, but we can look at the problem at hand from a slightly
different angle. Assume that we have a composite consisting of
N components occupying a large spatial region V such as the
sphere shown in Fig. 1 and, on top of that, let V be embedded
in an infinite host medium [16] of permittivity ǫh. Then we can
formally apply the Maxwell Garnett mixing formula to the com-
posite inside V even though we have doubts regarding the va-
lidity of the respective formulas. Still, the effective permittivity
of the composite inside V can not possibly depend on ǫh since
this composite simply does not contain any host material. How
can these statements be reconciled?

Bruggeman’s solution this dilemma is the following. Let
us formally apply Eq. (31) to the physical situation described
above and find the value of ǫh for which ǫMG would be equal
to ǫh. The particular value of ǫh determined in this manner is
the Bruggeman effective permittivity, which we denote by ǫBG.
It is easy to see that ǫBG satisfies the equation

N

∑
n=1

fn
ǫn − ǫBG

ǫn + 2ǫBG
= 0 where

N

∑
n=1

fn = 1 . (34)

We can see that Eq. (34) possesses some nice mathematical prop-
erties. In particular, if fn = 1, then ǫBG = ǫn. If fn = 0, ǫBG does
not depend on ǫn.

Physically, the Bruggeman equation can be understood as
follows. We take the spatial region V filled with the composite
consisting of all N components and place it in a homogeneous
infinite medium with the permittivity ǫh. The Bruggeman ef-
fective permittivity ǫBG is the special value of ǫh for which the
dipole moment of V is zero. We note that the dipole moment
of V is computed approximately, using the assumption of non-
interacting “elementary dipoles” inside V. Also, the dipole mo-
ment is defined withe respect of the homogeneous background,
i.e., dtot =

∫

V
[(ǫ(r)− ǫh)/4π]E(r)d3r [see the discussion after

equation Eq. (20)]. Thus, Eq. (34) can be understood as the con-
dition that V blends with the background and does not cause a
macroscopic perturbation of a constant applied field.

We now discuss briefly the mathematical properties of
the Bruggeman mixing formula. By multiplying Eq. (34) by
ΠN

n=1(ǫn + 2ǫBG), we obtain a polynomial equation of order N
with respect to ǫBG. The polynomial has N (possibly, degen-
erate) roots, some of which can be spurious. If we knew the
analytical form of all roots, we would discard the solutions that
do not satisfy the condition ǫBG = ǫn if fn = 1. However, if the
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order of the polynomial is large and the roots are known only
numerically, the problem of sorting out the spurious solutions
can become nontrivial.

Consider the exactly-solvable case of a two-component mix-
ture with f1 = f and f2 = 1− f . The two solutions are in this
case

ǫBG =
1

4

[

b±
√

8ǫ1ǫ2 + b2

]

, (35)

where

b = (3 f − 1)ǫ1 + (2− 3 f )ǫ2 (36)

and the square root branch is defined by the condition 0 ≤
arg(
√

z) < π. It can be verified that the solution Eq. (35) with
the plus sign satisfies the above condition (and also yields ǫBG

with a non-negative imaginary part) while the one with the mi-
nus sign does not. Therefore, the latter should be discarded.

The Bruggeman and the Maxwell Garnett mixing formulas
coincide to first order in f , but the second-order terms are dif-
ferent. Thus, for the two-component mixture considered above,
the expansions near f = 0 are of the form

ǫMG

ǫ2
= 1 + 3

ǫ1 − ǫ2

ǫ1 + 2ǫ2
f + 3

(ǫ1 − ǫ2)
2

(ǫ1 + 2ǫ2)2
f 2 + . . . (37a)

ǫBG

ǫ2
= 1 + 3

ǫ1 − ǫ2

ǫ1 + 2ǫ2
f + 9ǫ1

(ǫ1 − ǫ2)
2

(ǫ1 + 2ǫ2)3
f 2 + . . . (37b)

We finally note that one of the presumed advantages of the
Bruggeman mixing formula is that it is symmetric. However,
there is no physical requirement that the exact effective permit-
tivity of a composite has this property. Imagine a composite
consisting of spherical inclusions of permittivity ǫ1 in a homo-
geneous host of permittivity ǫ2. Let the spheres be arranged on
a cubic lattice and have the radius adjusted so that the volume
fraction of the inclusions is exactly 1/2. The spheres would be
almost but not quite touching. It is clear that, if we interchange
the permittivities of the components but keep the geometry un-
changed, the effective permittivity of the composite will change.
For examples, if spheres are conducting and the host dielectric,
then the composite is not conducting as a whole. If we now
make the host conducting and the spheres dielectric, then the
composite would become conducting. However, the Brugge-
man mixing formula predicts the same effective permittivity
in both cases. This example shows that the symmetry require-
ment is not fundamental since it disregards the geometry of the
composite. Due to this reason, the Bruggeman mixing formula
should be applied with care and, in fact, it can fail quite dramat-
ically.

C. Maxwell Garnett formula and the smooth field

Let us assume that a certain field S(r) changes very slowly on
the scale of the medium heterogeneities. Then, for any rapidly-
varying function F(r), we can write

〈S(r)F(r)〉 = 〈S(r)〉〈F(r)〉 , (38)

where 〈. . .〉 denotes averaging taken over a sufficiently small
volume that still contains many heterogeneities. We will call
the fields possessing the above property smooth.

To see how this concept can be useful, consider some well-
known results for one-dimensional periodic (say, in the direc-
tion Z) media [19]. The medium can be homogenized, that is,

described by an effective permittivity tensor ǫ̂eff whose two dif-

ferent principal values, ǫ
‖
eff and ǫ⊥eff correspond to the polariza-

tions parallel (along X or Y axes) and perpendicular (along Z)

to the layers. The results established in [19] is ǫ
‖
eff = 〈ǫ(z)〉 and

ǫ⊥eff = 〈ǫ−1(z)〉−1. These two results can be obtained without
any complicated mathematics by applying the concept of the
smooth field. To this end, we recall that, at sharp interfaces,
the tangential component of the electric field E and the normal
component of the displacement D are continuous.

In the case of parallel polarization, the electric field E is tan-
gential and continuous at the surfaces where different layers
touch. Therefore, E(z) is in this case smooth. Consequently, we
can write

〈D(z)〉 = 〈ǫ(z)E(z)〉 = 〈ǫ(z)〉〈E(z)〉 . (39)

We also can say that 〈D〉 = ǫ̂eff〈E〉. Comparing this to Eq. (39),

we conclude that ǫ
‖
eff = 〈ǫ(z)〉.

For the perpendicular polarization, both the electric field
and the displacement are perpendicular to the layers. The elec-
tric field jumps at the surfaces of discontinuity and, therefore,
it is not smooth. But the displacement is smooth. Correspond-
ingly, we can write

〈E(z)〉 = 〈ǫ−1(z)D(z)〉 = 〈ǫ−1(z)〉〈D(z)〉 . (40)

From this, we immediately find that ǫ⊥eff = 〈ǫ−1〉−1.
So in the one-dimensional case considered above, either

the electric field or the displacement are smooth, depending
on the polarization. In the more general 3D case, we do not
have such a nice property. However, let us conjecture that,
to some approximation, the linear combination of the form
S(r) = pE(r) + (1 − p)D(r) = [p + (1 − p)ǫ(r)]E(r), where
p is a mixing parameter, is smooth for any polarization of the
electric field. Application of Eq. (38) results in the following
equalities:

〈E〉 = 〈S〉
〈

[p + (1− p)ǫ]−1
〉

, (41a)

〈D〉 = 〈S〉
〈

ǫ [p + (1− p)ǫ]−1
〉

. (41b)

Comparing these two expressions and assuming that the
medium is isotropic (which we already did when we intro-
duced the polarization-independent ansatz for S(r)), we find
that the effective permittivity is given by

ǫeff =

〈

ǫ[ǫ + p/(1− p)]−1
〉

〈

[ǫ + p/(1− p)]−1
〉 . (42)

The above equation is, in fact, the Maxwell Garnett mixing for-
mula, if we only adjust the parameter p correctly. To see that
this is the case, let us rewrite Eq. (18) in the following rarely-
used form:

ǫMG =

〈

ǫ(ǫ + 2ǫh)
−1

〉

〈

(ǫ + 2ǫh)
−1

〉 . (43)

Here we assume that ǫ(r) is equal to ǫi with the probability f
and to ǫh with the probability 1− f and the averages are com-
puted accordingly. Therefore, (42) and (43) coincide if we take
p = 2ǫh/(1 + 2ǫh).

Thus, the Maxwell Garnett approximation is equivalent to
assuming that the field S(r) = [(ǫ(r) + 2ǫh)/(1 + 2ǫh)]E(r) is
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smooth. The mixing parameter p depends explicitly on the per-
mittivity of the host because the Maxwell Garnett mixing for-
mula is not symmetric.

It is not easy to find the smooth field for the Bruggeman ap-
proximation. The linear ansatz used above will not work; a
more general nonlinear functional of the fields must be consid-
ered.

4. SUMMARY AND OUTLOOK

The above sections cover the material that one encounters in
standard textbooks. The tutorial could end here. However, we
can not help noticing that the arguments we have presented are
not complete and not mathematically rigorous. There are sev-
eral topics that we need to discuss if we want to gain a deeper
understanding of the homogenization theories in general and
of the Maxwell Garnett mixing formula in particular.

First, the standard expositions of the Maxwell Garnett mix-
ing formula and of the Lorentz molecular theory of polarization
rely heavily on the assumption that polarization field P(r) =
[(ǫ(r)− 1)/4π]E(r) is the dipole moment per unit volume. But
this interpretation is neither necessary for defining the consti-
tutive parameters of the macroscopic Maxwell’s equations nor,
generally, correct. We’ve been careful to operate only with total
dipole moments of macroscopic objects. Still, this point requires
some additional discussion.

Second, the Lorentz local-field correction relies on integrat-
ing the electric field of a dipole over spheres of finite radius.
It is assumed that, since the integral is zero for any finite ra-
dius R, the integral over the whole space is converging. But
this statement is mathematically incorrect. The integral of the
electric field of a static dipole taken over the whole space does
not converge to any result. Therefore, if we deform the spher-
ical surface that bounds the integration domain to some other
shape, we would obtain an arbitrary integration result.

Third, we have worked exclusively within statics. But the
theory is almost always applied to high frequencies. In this case,
equation Eq. (2) is not applicable; a more general formula must
be used. Incidentally, the integral of the field of an oscillating
dipole diverges even stronger than that of a static dipole. It is
also not correct to use the purely static expression for the polar-
izabilities at finite frequencies.

The above topics will be addresses in the second part of this
tutorial.
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