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Can photonic crystals be homogenized in higher bands?
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We consider the conditions under which photonic crystals (PCs) can be viewed as electromag-
netically homogeneous at frequencies in the higher photonic bands and, in particular, near the
higher-order Γ-points. At these frequencies, the real isofrequency lines of a PC can be very close to
a mathematical circle, just like in an isotropic homogeneous material. We however show that the
above observation is insufficient for establishing the PC homogenizability. Complex dispersion points
must be included into consideration even in the case of strictly non-absorbing materials. By ana-
lyzing the complex dispersion relations and the corresponding isofrequency surfaces, we have found
that two-dimensional PCs with C4 and C6 symmetries are not electromagnetically homogeneous in
the higher photonic bands.

I. INTRODUCTION

The theory of homogenization of periodic electromag-
netic media continues to attract significant attention1–5

due to the proposed important applications such as sub-
wavelength optical imaging6. However, some fundamen-
tal questions remain open in this field of research. Per-
haps, the most important of these questions is the follow-
ing: to what extent can the “exotic” effective parameters
obtained via one of the several recently proposed homog-
enization theories be used without restriction, like the
constitutive parameters of homogeneous natural media
are conventionally used? Indeed, while it is generally un-
derstood that homogenization is an approximate proce-
dure, the accuracy and the applicability range of a given
theory is very difficult to ascertain quantitatively.

In this paper, we investigate whether a photonic crys-
tal (PC) can be homogenized at frequencies above the
first bandgap and, particularly, near the higher Γ-points.
Answering this question is important for the following
reason. It is well known that PCs can be characterized
by negative dispersion in the higher photonic bands even
if the material from which the PC is made has no ab-
sorption. On the other hand, in purely dielectric ho-
mogeneous media, negative dispersion is obtained only
within the absorption bands. A homogeneous material
can be simultaneously transparent and characterized by
negative dispersion only if it has a nontrivial magnetic
permeability7,8. Therefore, to obtain this result by ho-
mogenizing an intrinsically non-magnetic PC, one has to
consider sufficiently large frequencies where the disper-
sion is negative9. Typically, these frequencies are above
the first bandgap of the crystal. We note that some fairly
intuitive arguments exist suggesting that a PC can be ho-
mogenized at frequencies sufficiently close to any of its
Γ-points. However, a careful consideration reveals that
the first Γ-point ω1 = 0 is fundamentally different from
the higher ones ωn > 0 (n = 2, 3, . . .). While homoge-

nization can be arbitrarily accurate near ω1, the same is
not true near any ωn with n > 1.

The above conclusion is consistent with some of the
previous numerical investigations of the homogenization
problem10–12. In fact, the work reported here is concep-
tually close to Ref. 10 and one of the main ideas on which
the present paper is based has been stated in that refer-
ence. Namely, it was noticed that the right-hand side
of the dispersion equation ω = f(q) can be expanded in
powers of the Cartesian components of q if ω is close to
one of the Γ-points ωn. Here q is the Bloch wave vec-
tor. Further, for s-polarized waves in two-dimensional
PCs with a center of symmetry, this expansion is of the
form f(q) = ωn + βxq

2
x + βyq

2
y . . ., or in the cases of

C4 and C6 symmetries that are considered in this paper,
f(q) = ωn + βq2 . . .. Here we have written explicitly the
first two non-vanishing terms of the expansion and ω is
assumed to be in the pass-band. By truncating the lat-
ter expansion at the second order, we obtain the isotropic
isofrequency line q2 = (ω−ωn)/β so that the wave num-
ber q does not depend on the direction of propagation.
Another observation made in Ref. 10 was that, for inci-
dent waves with a sufficiently large projection of the wave
vector onto the interface (which includes but is not lim-
ited to the evanescent waves), higher-order terms must
be retained in the expansion of f(q) no matter how close
the frequency is to the Γ-point, and that the resultant
law of dispersion is no longer isotropic.

Here we develop this basic idea theoretically and illus-
trate it with numerical examples of a different kind than
what was used in Ref. 10. While the latter reference
is focused on the transmission and imaging properties
of a PC slab, here we consider in detail the dispersion
relations and isofrequency surfaces. We work in a 2D
geometry and in s-polarization (one-component electric
field) so that Maxwell’s equations are reduced to a scalar
wave equation. Under these conditions, only scalar effec-
tive parameters can be introduced. The corresponding
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effective medium is isotropic and so are its isofrequency
surfaces. However, we will show that in the actual PC
the isotropy is lost in the higher photonic bands once we
include waves with sufficiently large projections of the
wave vector onto a given axis. In this case, the medium
cannot be described by local and isotropic (scalar) effec-
tive parameters. Magnetic anisotropy can be introduced
as a phenomenological adjustable parameter, but then
one would obtain either a non-symmetric magnetic ten-
sor and hence non-reciprocity, which is not physically
present in the system, or otherwise a tensor whose prin-
cipal axes do not coincide with the crystallographic axes
(e.g., for the triangular lattice), or else a tensor that is
trivially proportional to the identity (e.g., for the square
lattice).

Thus, we will view PCs whose isofrequency surfaces are
not isotropic as not electromagnetically homogeneous.
We note that the lack of isotropy can be interpreted as
an effect of nonlocality (spatial dispersion)13–15. This
effect can occur in homogeneous materials as well, al-
though in the latter case it is usually very weak. We
should keep in mind that nonlocality of medium param-
eters and anisotropy of local parameters can result in
somewhat similar phenomena but are not the same ef-
fect and should be distinguished. To complicate things
further, it is frequently stated that there exists a com-
plete physical equivalence between two alternative de-
scriptions of the electromagnetic properties of continuous
media16–19. In one description the medium is assigned a
nonlocal permittivity ε(ω,q) and a trivial permeability
µ = 1 (the so-called Landau-Lifshitz approach19). In the
other description, the medium is assigned two local pa-
rameters ε(ω) and µ(ω). We have previously argued that
the two descriptions are not physically equivalent in gen-
eral20, but it is true that in the so-called weak nonlocality
regime (usually understood as the regime in which Taylor
expansion of ε(ω,q) to second order in q is an accurate
approximation) such an equivalence exists for the refrac-
tive index of the medium (but not for the impedance).

For the purpose of this paper, it is unimportant
whether the equivalence mentioned above exists or not.
If it does exist, then a homogenizable medium should be
completely characterized by some local parameters ε(ω)
and µ(ω). Whether these local parameters correspond to
some nonlocal ε(ω,q) and µ = 1 in the alternative de-
scription is irrelevant. On the other hand, if such local
parameters do not exist, then the medium cannot be rea-
sonably homogenized and the introduction of the nonlo-
cal permittivity does not solve the problem at all because
the knowledge of ε(ω,q) for all values of its arguments
is not sufficient to solve any boundary value problems in
a finite sample20, unlike the knowledge of the local pa-
rameters ε(ω) and µ(ω). Besides, the typical applications
discussed in the literature such as subwavelength imaging
require local ε(ω) and µ(ω). Therefore, we say that, in or-
der for a PC to be homogenizable, its dispersion relation
must be (at least, approximately) the same as in a truly
homogeneous medium with some local parameters ε(ω)

and µ(ω). We emphasize that the above condition is nec-
essary but, in general, not sufficient because it does not
include the impedance. But we will show that even this
necessary condition of homogenizability does not hold in
PCs above the first bandgap.

We illustrate the theoretical arguments of this paper
with numerical examples using a rather simple but phys-
ically relevant model. As was mentioned above, we con-
sider two-dimensional PCs with a one-component electric
field polarized perpendicularly to the plane of periodic-
ity (s-polarization). Such PCs have been previously con-
sidered in the literature as homogenizable in the higher
photonic bands21–23. Similarly to these works, we neglect
frequency dispersion and absorption in the material that
makes up the PC. This is done not for computational
convenience (our codes can handle the more general case
with equal efficiency) but in order to analyze the exact
cases that were previously considered in the literature.
Besides, if we include absorption and frequency disper-
sion into the model, the higher Γ-points do not really
exist and the case for homogenizability is even harder to
make. Therefore, we have made the approximations that
are favorable rather than detrimental to the homogeniz-
ability.

We finally note that our results can be understood in
a more general framework of the uncertainty principle
of homogenization24. According to this principle, the
larger the deviation of the effective magnetic permeabil-
ity from unity (according to a given theory), the less
accurate this theory is in predicting physical observables
such as the transmission and reflection coefficients of a
composite slab.

The remainder of this paper is organized as follows.
We start with some general theoretical considerations rel-
evant to the problem at hand in Sec. II where we explain
why the circularity (or sphericity) of a real isofrequency
line is not a sufficient condition for homogenizability. Ad-
ditional mathematical details pertinent to the case of 2-
dimensional PCs are given in Sec. III. Extensive numeri-
cal examples for 2D square and triangular PCs character-
ized by C4 and C6 symmetries, respectively, are adduced
in Sec. IV. Finally, Sec. V contains a discussion of the
obtained results.

II. GENERAL CONSIDERATIONS

For Bloch wave with a nonzero fundamental harmonic
E0 (as defined in Appendix A), the dispersion equation
for a three-dimensional, intrinsically non-magnetic PC
can be written in the following general form20,25

det
[
(q× q×) + k2Σ(ω,q)

]
= 0 . (1)

Here k = ω/c is the free-space wave number and Σ(ω,q)
is a 3D tensor, which is completely determined by the PC
geometry and composition and by its two arguments ω
and q. The latter can be considered as mathematically-
independent variables and take arbitrary complex values.
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We will say that a complex vector q is the Bloch wave
vector of a PC at some frequency ω if the pair (ω,q)
satisfies (1).

Below we work in the frequency domain, so that ω is
the true mathematically-independent parameter of the
theory, although we do restrict the frequency to be real
and positive. The set of all q’s that satisfy (1) for a given
ω > 0 forms an isofrequency surface in 3D or a line in
2D. However, the words “surface” and “line” should not
be understood literally because q is in general complex.

The function Σ(ω,q) arises in various physical con-
texts13,15,26 and is sometimes interpreted as the nonlo-
cal permittivity tensor of the medium due to its explicit
dependence on q. We have shown20 that the knowl-
edge of Σ(ω,q) for all values of its arguments is insuf-
ficient for solving boundary value problems in finite sam-
ples. However, in this paper we restrict attention to
dispersion relations, and to this end the knowledge of
Σ(ω,q) is sufficient. We emphasize that introduction of
the external “impressed” current that overlaps with the
medium13,15,26 is not necessary to define Σ(ω,q) math-
ematically. Thus, equation (1) has been derived and
the function Σ(ω,q) defined algebraically for a three-
dimensional, two-component PC in Refs. 20,25 without
considering any external currents. These two references
utilize a plane-wave (Fourier) basis for all lattice-periodic
functions. In Appendix A, we present a basis-free deriva-
tion of (1) for a 2-dimensional PC with an arbitrary
lattice-periodic permittivity. In Sec. III below and in
Appendix B, we develop a perturbation expansion of
Σ(ω,q) in powers of the Cartesian components of q for
two-dimensional, two-component PCs. To this end, we
use the plane-wave basis, which allows one to obtain ex-
pressions that are directly amenable to numerical com-
putation.

We can use (1) to formally define the Γ-points. As one
could expect, the definition is confounded by the vector
nature of the electromagnetic fields. In particular, the
Γ-points can be polarization-dependent. However, the
simulations discussed below have been performed for the
special case of transverse Bloch waves, which satisfy the
condition q ·E0 = 0. Here E0 is the amplitude of the fun-
damental harmonic of the Bloch wave for a given linear
polarization state. In this case, (1) simplifies to

q2 = k2Σ(ω,q) , (2)

where q is now a two-dimensional vector orthogonal to
E0 and Σ(ω,q) is a scalar (a principal value of the tensor
Σ that corresponds to the direction of E0). Note that E0

can be an eigenvector of Σ(ω,q) for all ω and q, typically,
as a consequence of the PC symmetry. Also, we use the
same notation for the tensor and for its principal value
but this should not cause confusion since only the latter
interpretation will be used below.

In what follows, we will consider only the scalar equa-
tion (2) and assume that the two-dimensional Bloch vec-
tor q = (qx, qy) lies in the XY plane of a rectangular
frame while E0 = E0ẑ is collinear with the Z-axis. By

focusing on the special case of transverse waves, we do not
disregard any important effects but rather focus on the
essential features of the theory. It is important to keep in
mind that the above assumptions can hold in both two-
dimensional and three-dimensional PCs. However, in the
2D geometry that we use consider in detail in this paper,
even stronger conditions are satisfied: (i) not only E0

but the total electric field E(x, y) = ẑE(x, y) is collinear
with the Z-axis and (ii) the electric field E(x, y) is inde-
pendent of z. The latter two properties do not generally
hold in three-dimensional PCs.

We now proceed with the analysis of Eq. (2). We will
say that a frequency ωn or the corresponding free-space
wave number kn are the Γ-points of a PC if (2) is satisfied
for ω = ωn and q = 0. That is, the equation for the Γ-
points reads

ω2Σ(ω, 0) = 0 . (3)

The first trivial solution to this equation is ω1 = 0, unless
Σ(ω, 0) diverges at as 1/ω2 or faster. This possibility
can be safely ignored and the first (fundamental) Γ-point
exists in all PCs, even if they are made of conducting
constituents27. All higher Γ-points have ωn 6= 0 and can
be determined from the equation

Σ(ω, 0) = 0 , ω > 0 . (4)

It therefore can be seen that the nature of the first and
the higher Γ-points is quite different. At the first Γ-point,
Σ does not turn to zero; in fact, it can be readily seen that
Σ(0, 0) = n2

eff , where neff is the effective refractive index
of the medium in the homogenization limit. But higher
Γ-points all require that Σ(ωj , 0) = 0. This equality can-
not hold in any homogeneous medium (see Appendix A
for more details).

At this point, a few remarks are in order. First, purely
real Γ-points of order higher than 1 do not generally exist
in PCs with non-negligible absorption. This is so because
(4) is in this case a complex equation; both real and imag-
inary parts of (4) must be satisfied simultaneously. This
is unlikely to happen for a purely real ω. However, if, as is
frequently done in the PC literature, we assume that the
dielectric permittivity of the PC constituents is purely
real, then (4) can be expected to have real roots. This
will be discussed analytically in more detail in Sec. III
and illustrated numerically in Sec. IV.

Second, derivation of equations (1) or (2) does not re-
quire that Re(q) be in the first Brillouin zone (FBZ) of
the lattice. However, if q is a solution to one of these
equations, then q + g is also a solution, where g is any
reciprocal lattice vector. Therefore, it is sufficient to con-
sider only the solutions with Re(q) ∈ FBZ.

Third, and related to the above, homogeneous media
do not possess higher-order Γ-points in the sense of the
definition (4). It is true that the “artificially folded”
dispersion curve of a homogeneous medium, such as the
one shown in Fig. 2 of Ref. 28, crosses the vertical axis
at some frequencies ωn, and one can conclude that at
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ω = ωn we also have q = 0. This point is illustrated in
Fig. 1 where we plot the purely real isofrequency lines for
a homogeneous medium that is artificially discretized on
two-dimensional square and triangular lattices. It can be
seen that the isofrequency lines are very far from circular
and can become quasi-chaotic for large band indexes n.
This behavior distinguishes these pseudo-Γ-points from
the true Γ-points of a PC with strong interaction. Strictly
speaking, the fundamental harmonic of the Bloch wave
E0 is zero at the frequencies corresponding to these spu-
rious Γ-points, and equation (1) is not applicable in this
case. For a more detailed analysis, see Appendix A.

Returning to the question of homogenizability, we can
now see why one might expect the medium to be homog-
enizable in the vicinity of a true Γ-point. Let ω be in
the transmission band of a PC but close to a Γ-point ωn
(n > 1), say, slightly below ωn. Let us fix the frequency
and expand Σ(ω,q) in powers of q. If, as is often the
case, the PC has a center of symmetry, the expansion is
to lowest order in q of the form

Σ(ω,q) = α+βx
q2
x

k2
+βy

q2
x

k2
+. . . , α ≡ Σ(ω, 0)� 1 . (5)

In the above equation, ω is a fixed parameter and there-
fore the explicit dependence of the expansion coefficients
α, β on ω is suppressed. Also, it is easy to see that in
PCs obeying C4 or C6 symmetry, βx = βy = β. If we now
treat the first two terms in the expansion (5) as an ap-
proximation, write Σ(ω,q) ≈ α+ βq2/k2 and substitute
the result into the dispersion equation (2), we will obtain
an approximate solution to the dispersion equation, viz,

q2 = k2 α

1− β
. (6)

We remark briefly that it is rather typical to interpret
α as the effective permittivity of the medium, εeff and
1/(1 − β) as the effective permeability, µeff . This ap-
proach is discussed in detail in Ref. 20. However, since
in this paper we only consider infinite media, the break-
down of the squared refractive index n2

eff into the product
of εeff and µeff is irrelevant. What is important for our
purposes is that (6) describes a perfectly circular isofre-
quency line. Of course, circular isofrequency lines are also
characteristic of electromagnetically-homogeneous mate-
rials. The conclusion is then drawn that sufficiently close
to a Γ-point, a PC is indistinguishable from a homoge-
neous medium.

However the above line of arguments has the following
deficiency. It is not really true that all Cartesian compo-
nents of q are small near a Γ-point. A more precise state-
ment is that the scalar q2 = q · q is small. However, the
Cartesian components of q can still be arbitrarily large.
An obvious example is the vector q = (p, ip) where p is
a real number.

More specifically, we will consider the following prob-
lem. Fix the frequency and assume that the Bloch wave
vector has a known and purely real projection onto the
real axis, qx. Then compute the corresponding values of

qy that satisfy the dispersion equation. Here qy can be
real, imaginary or complex, even if the PC is made of
purely transparent components. The set of purely real
solutions (qx, qy) would form the traditional isofrequency
line. However, the dispersion equation has a solution (in
fact, infinitely many solutions) for any qx. Some of these
solutions will be complex. When qy has a nonzero imag-
inary part, the corresponding Bloch wave is evanescent.
Evanescent Bloch waves can be excited in the PC by an
incident plane wave that is either propagating or evanes-
cent in vacuum. It is important however, that the projec-
tion of the wave vector of the incident wave onto any flat
interface is equal to qx. Thus, to make sure that a ho-
mogenization theory is applicable to a sufficiently large
class of incident waves (which must necessarily include
evanescent waves), we must consider qx in the interval of
at least 0 < qx . 2k, where k = ω/c is the free space
wave number.

III. DISPERSION EQUATION IN A
TWO-DIMENSIONAL PC

Consider a two-dimensional PC whose exact permit-
tivity ε̃(r) satisfies the periodicity relation

ε̃(r + n1a1 + n2a2) = ε̃(r) , (7)

where a1 and a2 are two primitive lattice vectors and n1,
n2 are integers. Here and below the overhead tilde will
be used to denote function obeying the lattice periodic-
ity (7). We will work in an orthogonal reference frame
whose Z-axis is perpendicular to both a1 and a2. Then
these two vectors lie in the XY plane. We will further
consider electromagnetic waves with one-component elec-
tric field Ê = (0, 0, E) and two-component magnetic field
H = (Hx, Hy, 0). In this case, Maxwell’s equations are
reduced to the scalar wave equation for the electric field[

∇2 + k2ε̃(r)
]
E(r) = 0 , (8)

where r = (x, y).
Let b1 and b2 be the primitive vectors of the reciprocal

lattice such that

aj · bk = 2πδjk . (9)

A generic reciprocal lattice vector g can be written as

g = b1n1 + b2n2 , (10)

where n1, n2 are integers. We can view g as a dis-
crete composite index, which maps one-to-one to the
pair (n1, n2). In particular, the exact permittivity of the
medium is expandable as

ε̃(r) =
∑
g

εge
ig·r , εg =

1

S[C]

∫
C
ε̃(r)e−ig·rd2r , (11)

where C is an elementary cell of the medium and S[C] is
it’s area, i.e., a2 for a square lattice or |(a1 × a2) · ẑ| in
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(a) n = 1 (b) n = 2 (c) n = 5 (c) n = 10 (d) n = 50

FIG. 1: (color online) Isofrequency lines for a two-dimensional homogeneous medium artificially discretized on a square (top)
and triangular (bottom) lattices. The band index is labeled by n. The plots depict the isofrequency lines contained in the FBZ
of the lattice and can be periodically replicated in all directions. A mathematical definition of the folding operation is given in
Eq. (34).

the more general case. For a two-component medium we
can write

ε̃(r) = εh + (εi − εh)Θ̃(r) , (12)

where εh and εi are the permittivities of the host and the
inclusions and Θ̃(r) is the lattice-periodic shape function.
Let the region of the inclusion be denoted by Ω ∈ C.
Then Θ̃(r) = 1 if r ∈ Ω and Θ̃(r) = 0 otherwise. Upon
Fourier transformation, we find that

εg = εhδg0 + ρχM(g) , (13)

where

M(g) =
1

S[Ω]

∫
Ω

e−ig·rd2r , (14a)

ρ = S[Ω]/S[C] , (14b)

χ = εi − εh . (14c)

Note that in the above equations ρ is the area fraction of
the inclusions and χ is the contrast. The function M(g)
contains information about the inclusion geometry but is
independent of χ.

Bloch-periodic functions such as the electric field E(r)
and displacement D(r) can be expanded as

E(r) =
∑
g

Ege
i(q+g)·r , (15a)

D(r) =
∑
g

Dge
i(q+g)·r (15b)

where q is the Bloch wave vector, which must be de-
termined by substituting (15) into (8). The equation
D(r) = ε̃(r)E(r) takes the form

Dg =
∑
p

εg−pEp (16)

while (8) is reduced in this case to

(g + q)2Eg = k2Dg . (17)

Combining the wave equation and constitutive relation
together we obtain the eigenproblem

(g + q)2Eg = k2
∑
p

εg−pEp , (18)

which determines the allowable values of the vector q for
each frequency ω (or for the corresponding wavenumber
k = ω/c).

Equation (18) is well known. The family of vectors q
that satisfy (18) for some fixed ω > 0 is said to form an
isofrequency line. This is however not quite right because
the Cartesian components of q can be complex and not of
the same phase. The set of q can be depicted by lines in
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a plane only if we restrict consideration to real vectors q
(or assume that qx and qy have the same complex phase).
This assumption is not always justified, so that we can
talk about isofrequency lines only in a generalized sense.

As the first and rather trivial step, let us use the par-
ticular expression for εg (13), which is specific to two-
component PCs. We will also assume that E0 6= 0 (we
are restricting ourselves to the solutions of the first kind
according to the terminology of Appendix A) and scale
all coefficients Eg by E0. Let eg = Eg/E0, so that e0 = 1.
Upon substitution of (13) into (18) and using the above
scaling, we obtain the infinite set of equations[

(g + q)2 − k2εh
]
eg = ρχk2

∑
p

M(g − p)ep . (19)

The next step is slightly less trivial. As was done by
us previously20,25, we consider the equation (19) for the
cases g = 0 and g 6= 0 separately. First, in the g = 0
case, we obtain the equation (2) in which

Σ(ω,q) = ε0 + ρχ
∑
g 6=0

M(−g)eg , (20)

where ε0 = ρεi+(1−ρ)εh is the cell-averaged permittivity
of the PC.

Note that Σ is defined by the relative amplitudes
eg = Eg/E0 with g 6= 0. Therefore, to compute Σ al-
gebraically, we must consider (19) for g 6= 0. This yields
the following set of equations

[(q+g)2 − k2εh]eg = ρχk2

×

M(g) +
∑
p6=0

M(g − p)ep

 , g 6= 0 . (21)

It is important to note that (21) is a closed (albeit an infi-
nite) set of equations with a nonzero free term ρχk2M(g).
Consequently, (21) is not an eigenproblem but rather a
linear set of equations that can be, in principle, solved
by matrix inversion.

We are interested in building a perturbation theory in
q for ω in the vicinity of one of the Γ-points ωn. Note
that, under this condition, we can expect that Σ(ω, 0) is
small but nonzero and positive (otherwise the frequency
is inside a bandgap). We can proceed as follows. Define
the following matrices and vectors:

Dgp =
(
g2 − k2εh

)
δgp , (22a)

Qgp =
(
q2 + 2q · g

)
δgp , (22b)

Mgp = M(g − p) , (22c)

bg = M(g) . (22d)

Here only Q depends on q. Also note that the normal-
ization rule 〈b|b〉 = 1/ρ− 1. We can now re-write (21) as
follows:

(Q+D − ρχk2M)|e〉 = ρχk2|b〉 . (23)

We can define the T -matrix of the problem as follows:

T =
(
D − ρχk2M

)−1
, (24)

Note that T is the matrix that we need in order to com-
pute Σ(ω, 0). Indeed, we have for q = 0

|e〉 = ρχk2T |b〉 , for q = 0 . (25)

and

Σ(ω, 0) = ε0 + (ρχk)2〈b|T |b〉
= ε0 + (ρχk)2

∑
g1,g2 6=0

M(−g1)Tg1g2
M(g2) . (26)

We thus assume that T = T (ω) has been computed at the
working frequency. Computationally, this requires trun-
cation of the basis and one matrix inversion operation.
Now the equation we intend to iterate is of the form

|e〉 = ρχk2T |b〉 − TQ|e〉 , (27)

which follows directly from (23) and (24). The formal
power series solution is of the form

|e〉 = ρχk2
∞∑
n=0

(−TQ)nT |b〉 (28)

and for Σ,

Σ = ε0 + (ρχk)2
∞∑
n=0

〈b|(−TQ)nT |b〉 (29a)

= ε0 + (ρχk)2
∞∑
n=0

σn , (29b)

where

σn = (−1)n〈b|(TQ)nT |b〉 . (30)

The coefficients σn are computed in terms of the matrix
T and Cartesian components of q in Appendix B up to
fourth order. These results show that the functional form
of the expansion (29) (up to the same order n = 4) is

Σ = β0 + β2q
2 + β4q

4 + β6q
6 + β8q

8 + δ4q
2
xq

2
y . (31)

Here the subscripts of the coefficients βn, δn are not re-
lated directly to the perturbation order. For example,
the term β8q

8 is obtained from the fourth-order term σ4.
The anisotropic term

q2
xq

2
y . (32)

is also contained in σ4. We can say that, starting from
fourth order in Q, the function Σ(ω,q) starts to bear the
traces of the underlying lattice, which is not circularly-
symmetric.

However, in the triangular lattice that obeys the C6

symmetry, the coefficient δ4 is identically zero. This is



7

(a) Term (32) (b) Term (33a)

FIG. 2: Graphical illustration of the terms (32) and (33a).
The parametric plots show the dependence of the magnitude
of each term on the direction of the (purely real) vector q.
Note that the lines shown in plots (a) and (b) are similar (but
not completely identical) to the isofrequency lines shown in
Fig. 1 for n = 1. In the latter case, the lines are deformed
(reflected) by the boundaries of the FBZ. However, in the
vicinity of the origin, the lines are identical. This is a general
manifestation of the applicable rotational symmetry group
[C4 in (a) and C6 in (b)]. Note however, that the lines shown
in this figure are not the isofrequency lines of the PC.

so because the expression (32) is not invariant with re-
spect to rotation by π/3. The simplest anisotropic terms
that are invariants of C6 arise to sixth order in Q (are
contained in σ6) and are of the form

q2
x

(
q4
x − 6q2

xq
2
y + 9q4

y

)
, (33a)

q2
y

(
q4
y − 6q2

xq
2
y + 9q4

x

)
. (33b)

The coefficients in front of these terms are rather com-
plicated and we have not computed them explicitly. The
terms (32) and (33a) are graphically illustrated in Fig. 2.

We thus see why the triangular lattice is more
amenable to homogenization: the anisotropic terms of
the form (33) appear in this case only to sixth order in
Q. However, as soon as these terms yield a noticeable
contribution to Σ, isotropy is lost very fast. This obser-
vation was made in Ref. 10 and illustrated by considering
the transmission coefficient of a PC slab. Below we will
illustrate this observation by plotting the isofrequency
lines for an extended range of qx, which includes not only
propagating incident waves (either in vacuum or in PC
or in both), but also evanescent incident waves.

IV. NUMERICAL EXAMPLES

In the simulations, we did not use any perturbative
techniques but rather solved (18) by mapping it onto a
linear eigenproblem. This approach does not involve any
approximations. However, numerical application of the
method requires some truncation of the two-dimensional
grid of the reciprocal lattice vectors. Convergence of of
results with the size of truncated grid was checked by
(i) consecutively doubling the size of this grid and (ii)

by comparison with a high-order finite difference method
(FLAME)29. We have obtained both an excellent conver-
gence with respect to the grid size and an excellent agree-
ment with the finite-difference method, which allows us
to conclude that the numerical results shown below are
accurate. By this we mean that the results obtained by
different methods or by further doubling the size of the
grid could not be visually distinguished from the results
shown below when plotted.

The solutions obtained numerically in the actual PC
will be compared to similar solutions in a truly homoge-
neous medium that is artificially discretized on the same
lattice as that of the PC and has the refractive index de-
termined from the approximate radius of the correspond-
ing quasi-circular isofrequency line. To this end, we need
to introduce the operation of “folding” of a general vec-
tor q into the FBZ of the lattice. This operation can be
formally defined as

[q]FBZ = q− (n1b1 + n2b2) , (34a)

ni = Nint
(q · ai

2π

)
. (34b)

In the above equations, Nint(z) is the nearest integer to
the complex number z. The vector q in the right-hand
side of (34a) is not restricted to the FBZ and in a homo-
geneous isotropic medium it satisfies the dispersion equa-
tion q2

x + q2
y = n2k2 where n is the index of refraction.

We can view qx as a mathematically-independent and
real-valued variable, compute qy as qy = ±

√
n2k2 − q2

x,
substitute the pair (qx, qy) obtained in the manner in the
right-hand side of (34a), and this will yield the disper-
sion equation of the artificially discretized homogeneous
medium. Examples of such folding will be shown in the
figures below, and the plots in Fig. 2 were obtained by
plotting all real-valued points [q]FBZ in the plane (qx, qy)
at the particular frequencies for which these lines cross
the origin.

A. Square lattice

Consider a two-dimensional square lattice of infinite
hollow cylinders embedded in a high-index host. The
cylinder axes are aligned with the Z-axis of a rectangu-
lar frame and we assume that the propagation is in the
XY plane so that q = (qx, qy). The lattice period is de-
noted by a and the radius of the cylinders is R = 0.33a.
The host permittivity is εh = 9.61 and the inclusions
(cylinders) are assumed to be a vacuum with εi = 1. We
thus disregard frequency dispersion either in host or in
the inclusions. This is an “inversion” of the model used
in Ref. 30 where a 2D square lattice of aluminum oxide
rods in air was considered.

We start with the purely real dispersion diagram. The
latter is obtained by setting qx = 0, computing qy for
a range of electromagnetic frequencies, and by keeping
only real solutions qy to the dispersion equation. That
is, we will disregard for the moment all complex and
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FIG. 3: (color online) Dispersion diagram for the square lat-
tice of hollow cylinders. Frequency is scanned from zero
to slightly above the second Γ-point. The variable ka/π =
ωa/πc = 2a/λ is the dimensionless frequency. The line la-
beled LL is the light line and the line labeled MG gives
the Maxwell-Garnett approximation to the dispersion curve.
Thin horizontal lines mark the frequencies at which further
simulations have been performed.

imaginary wave numbers qy (these solutions will be con-
sidered later). This approach is conventional for purely
real permittivities of the constituent material. Note that
we compute the dispersion diagram for a given propaga-
tion direction (along the Y -axis). Dispersion curves for
different propagation directions are, generally, different.
However, if a higher Γ-point exists according to definition
(4) and the function Σ(ω,q) is smooth in the vicinity of
this Γ-point (see Appendix A), then the frequency of this
Γ-point is independent of the propagation direction.

The dispersion diagram for the square lattice of hol-
low cylinders is shown in Fig. 3. The horizontal lines in
this figure mark the dimensionless frequencies at which
further simulations have been performed. The frequency
ka/π = 0.200 [Case (a)] is in the first photonic band.
The squared effective refractive index at this frequency
is n2

eff = 6.81 as determined from the formula n2
eff = qy/k.

Note that the Maxwell-Garnett homogenization result for
Case (a) is slightly different: n2

eff = 6.66. The frequency
ka/π = 0.680 [Case (b)] is in the second transmission
band, very close to and slightly below the second Γ-point.
This is the main case we are interested in. Finally, the
frequency ka/π = 0.546 [Case (c)] is at the intersection
of the second dispersion branch and the light line. One
can expect n2

eff ≈ 1 and neff ≈ −1 at this frequency, since
the dispersion in the second photonic band is negative.
However, we will see that the medium is very far from
being electromagnetically-homogeneous in cases (b) and
(c) and cannot be characterized by local effective param-

eters.

The isofrequency lines for the three frequencies noted
above are shown in Figs. 4-6. As was explained in Sec. II,
we fix the frequency and view qx as a mathematically-
independent and purely real variable, which is scanned
in some interval. For each qx considered, we find all val-
ues of qy whose imaginary parts are restricted to some
sufficiently large range.

In Fig. 4, we plot the real and imaginary parts of qy as
functions of qx. For each qx, there exist infinitely many
solutions to the dispersion equation with Re(qy) = 0 and
Im(qy) 6= 0 and we cannot display all such points in the
plots. However, the number of solutions with Re(qy) 6= 0
is finite, and all such data points are shown in the fig-
ure. Note that for each solution (qx, qy) in which both
qx and qy are real, there is also a solution (qy, qx). How-
ever, this symmetry is broken if qy has an imaginary part.
For this reason, the upper plots are not completely sym-
metric with respect to the line qy = qx (the diagonal of
the square that runs from the bottom-left to the upper-
right corner). However, the lobes in the lower-left and
upper-right corners consist of purely real solutions and
these lobes are symmetric. The line that connects these
two lobes consists of complex solutions qy with both real
and imaginary parts different from zero. Therefore, these
connecting lines are not symmetric. We note that such
complex solutions cannot be obtained in a truly homoge-
neous medium and are therefore a manifestation of the
complex structure of the PC.

Referring to the data of Fig. 4, we can conclude that
at the frequency ka/π = 0.200 the dispersion relation
in the PC is isotropic and almost indistinguishable from
the dispersion relation in a homogeneous medium with
n2 = 6.81. The correspondence holds well into the
evanescent waves. Indeed, the range of qx shown in the
figure for this frequency is 0 ≤ qx ≤ 5k and we can
expect that the PC is electromagnetically homogeneous
for −5k ≤ qx ≤ 5k (we have extended the interval to
negative values due to the obvious reflection symmetry).
In fact, the PC is electromagnetically homogeneous in
an even wider interval of qx. Indeed, the correspondence
still holds in the “reflected” segments of the curves in the
bottom plot. In homogeneous media, these reflected seg-
ments correspond to the values of |qx| > 5k, which were
folded into the “artificial” FBZ of the lattice according
to (34). The only slight discrepancy between the PC and
the homogeneous medium can be observed near the edge
of the FBZ (qx ≈ 5k). Overall, at this frequency, the PC
mimics a homogeneous medium with very high precision
and in a very wide range of illumination conditions.

Now let us move to Case (b), ka/π = 0.680. This
frequency is slightly below the second Γ-point. As one
could expect from the theoretical arguments of Sec. III,
the upper plot has a nearly circular, purely real lobe in
the lower-left corner of the frame. If only this lobe is con-
sidered, one might erroneously conclude that the disper-
sion is isotropic in the PC at the frequency ka/π = 0.680
as well and, therefore, the law of dispersion is almost
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FIG. 4: (color online) Real (upper row of plots) and imaginary (bottom row) parts of qy as functions of qx (real by definition)
for the square lattice of hollow cylinders at various values of the dimensionless frequency ka/π. Only one quadrant of the FBZ
is shown in the upper row of plots; this quadrant can be replicated by using the C4 rotational symmetry of the problem to
cover the whole FBZ. The scale of the lower horizontal axes is π/a and the scale of the upper horizontal axes is 1/k, as labeled.
All data points with Reqy = 0 (shown in the upper row) have nonzero imaginary parts except for the data point qy = 0 at
the intersection of the quasi-circular lobe and the horizontal axis. The corresponding values of qy are purely imaginary. The
imaginary parts of some of these data points are outside of the plotting range in the lower row of plots. These data points
are shown only in the upper row. Data points are labeled ’DISP’ for the actual PC and ’HMG’ for an electromagnetically
homogeneous medium that is artificially discretized on the same lattice. The HMG isofrequency lines were computed according
to (34) with n2 = 6.81 (a), n2 = 0.011 (b) and n2 = 0.91 (c). In the case (c), the choice of n2 guarantees the correct wave
number for propagation along X- or Y -axes but not for the intermediate directions.

the same as in a homogeneous medium. But a quick
purview of the scale of the upper horizontal axis reveals
that this isotropic behavior holds only in a very narrow
range −0.15 . qx/k . 0.15. In problems of transmis-
sion through a flat interface, this corresponds to incident
angles of less than about 6◦ with respect to the normal.
Outside of the above range of qx, the isotropy is lost
as can be readily seen in the bottom plot. We empha-
size that the isotropy is lost in this case for |qx| < k.
These values of qx correspond to propagating waves in
a vacuum. It is true that these waves are evanescent
in the PC but, upon transmission through a finite slab,
incoming propagating waves are always transformed into
outgoing propagating waves. Therefore, the transmission
properties of the PC at this frequency are very different
from those of any homogeneous medium. Note that, at
sufficiently large values of qx, the waves in PC switch

from being evanescent cito being propagating again (in
the upper-right corner lobe). This behavior is not char-
acteristic of any homogeneous medium. Moreover, it can
be seen that this PC is characterized by birefringence in
some range of qx even though no anisotropy is involved -
again, an effect not observed in homogeneous media. By
birefringence we mean the effect when a single value of
qx (corresponding to a fixed angle of incidence) gives rise
to transmitted waves with two real but different values of
qy (two different angles of refraction). A narrow ray inci-
dent at the interface at this angle will split into two rays
refracted at different angles even though both rays have
the same linear polarization. This phenomenon cannot
occur in any local homogeneous medium.

In the Case (c), ka/π = 0.546, there is obviously no
hope to approximate the the law of dispersion of the PC
by the law of dispersion of any homogeneous medium.
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The quasi-circular isotropic lobe of the isofrequency line
is severely distorted and birefringence is quite prominent
and occurs in a wide range of incident angles. As ex-
pected, the distortion is consistent with the C4 symme-
try of the problem; compare the distortion of the quasi-
circular lobe on the upper plot with the shape shown in
Fig. 2(a). Note, however, that this type of distortion is
suppressed and much less pronounced in the triangular
lattice as will be shown below.

Next, we show the purely real quasi-circular lobes of
the isofrequency lines in more detail in Fig. 5. It can
be seen that the lobe is almost indistinguishable from
a mathematical circle at the frequency ka/π = 0.200.
A distortion consistent with C4 rotational symmetry
is clearly visible at the frequency ka/π = 0.680. At
ka/π = 0.546 (far from the Γ-point), this distortion is
quite severe.

But perhaps the most clear illustration of the depar-
ture from the homogeneous behavior in the cases (b) and
(c) is shown in Fig. 6, where we plot Re(q2

y) as a func-

tion of q2
x. In a homogeneous medium, this function is

simply a straight line. This line is folded into the FBZ
of the lattice as is shown in Fig. 6(a) if the medium is
artificially discretized (we note that for the particular pa-
rameters and the lattice type considered at the moment,
the folding results only in linear segments; in a more gen-
eral case the isofrequency line can acquire curvature due
to the folding and an example will be shown below). This
behavior is reproduced with very good accuracy at the
frequency ka/π = 0.200 [Case (a)]. However, in Cases
(b) and (c) the departure from the linear behavior is ob-
vious and dramatic. We will observe a similar behavior
in a triangular lattice as well.

We finally note that the complex branches of the
isofrequency lines that connect the purely imaginary and
purely real segments of the data point sets is a peculiar
feature of the PC which cannot be reproduced in any
homogeneous medium with real refractive index. In the
latter case qy is either purely real or purely imaginary
and q2

y is always real.

B. Triangular lattice

We now turn to the case of the triangular lattice. The
primitive vectors for the real-space and reciprocal lattices
are

a1 = a(1, 0) , a2 = a(1/2,
√

3/2) ,

b1 =
2π

a
(1,−1/

√
3) , b2 =

2π

a
(0, 2/

√
3) .

At the center of each elementary cell, which is now rhom-
bic, we place a hollow cylinder of the radius R = 0.42a.
These inclusions do not cross the boundaries of the ele-
mentary cell. It can be seen that the inclusions form a
perfect triangular lattice. Since the inclusion obeys the
same symmetry as the lattice, the whole structure is C6-

symmetric. The permittivity of the host matrix is taken
to be εh = 12.25. This model was used in Ref. 31.

The FBZ of the lattice described above is a rhombus
and any of the two triangles created by drawing a rhom-
bus diagonal are equivalent. One can construct a hexagon
of two complete rhombuses touching at one corner and
two such triangles. All six triangles forming this hexagon
are equivalent and, moreover, the dispersion points can
be replicated periodically on the hexagonal lattice. It is
a common practice to plot the isofrequency lines of such
lattices inside a hexagonal region of the reciprocal lattice.
However, we do not use this approach in the paper and
limit attention to the actual FBZ of the lattice, which is
shown in all figures below.

The dispersion diagram for the direction of propaga-
tion along the Y -axis (qx = 0) is shown in Fig. 7. As pre-
viously, three special frequencies are marked by the hori-
zontal lines in Fig. 7. These frequencies are ka/π = 0.200
[Case (a)], ka/π = 0.720 [Case (b)] and ka/π = 0.650
[Case (c)]. Just as was the case for the square lattice, the
frequency (a) is in the first photonic band, the frequency
(b) is in the second band slightly below the Γ-point and
the frequency (c) is close to the intersection of the light
line and the second branch of the dispersion curve.

The complex isofrequency lines for the three frequen-
cies mentioned above are shown in Fig. 8. This figure is
analogous to Fig. 4 and the same quantities are plotted
using the same scales of the axes. However, the FBZ of a
triangular lattice is more complex geometrically. There-
fore, in the top row of plots of Fig. 8, we have shown the
complete FBZ of the lattice (the black rhombus) while in
Fig. 4, only one quarter of the FBZ was shown.

We now analyze Fig. 8 in more detail. First, focus on
the real parts of qy (the upper row of plots). The central
quasi-circular lobe and the horizontal line Re(qy) = 0 are
analogous to the similar features of the isofrequency lines
for a square lattice. The quasi-circular lobes consist of
purely real solutions while the line qy = 0 corresponds to
purely imaginary solutions. The upper and lower hori-
zontal lines in the upper row of plots correspond to com-
plex solutions that are specific to the triangular lattice.
Unlike in the case of a square lattice, these complex so-
lutions do not connect purely imaginary and purely real
segments of the complex isofrequency line (within the
FBZ). Another distinction is that the complex solutions
in a triangular lattice will appear due to folding of the
dispersion equation of an artificially discretized homoge-
neous medium. For a square lattice, the appearance of
complex solutions is the result of interaction that cannot
be obtained by artificial folding.

We can understand the appearance of the complex so-
lutions shown in Fig. 8 by replicating the central rhom-
bus of the top row of plots in all directions and not-
ing that the horizontal line qy = 0 in the central rhom-
bus will connect to the upper or lower horizontal lines
in the replicated rhombuses. We can also understand
these solutions qualitatively by considering a homoge-
neous medium artificially discretized on a triangular lat-
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FIG. 5: (color online) Purely real parts of the isofrequency contours shown in Fig. 4. The lines marked ’HMG’ are ideal circles.

FIG. 6: (color online) Isofrequency contours for the squares of the Cartesian components of Bloch wave vector q. More
precisely, Re(q2y) is plotted as a function of q2x for the same set of fixed frequencies that were considered in Figs. 4 and 5. In
a homogeneous medium artificially discretized on a square lattice, this dependence is piece-wise linear as is shown in panel
(a). For the triangular lattice, the corresponding curves consist of one liner and multiple curved segments (see an illustration
below).

tice. In the infinite (non-discretized) medium, the law
of dispersion allows for purely imaginary solutions of the
form qy = ±i

√
q2
x − n2k2 for |qx| > nk, n > 0 being the

index of refraction. Now let us fold these solutions to the
FBZ of a triangular lattice according to (34). We can
ignore the imaginary part of q for the purpose of com-
puting the integers n1, n2 that are used in this equation.
The result of the folding is

[qx]FBZ = qx −
2π

a
n1 , (35a)

[qy]FBZ = ±i
√
q2
x − n2k2 − 2π

a
√

3
(2n2 − n1) , (35b)

n1 = Nint
(qxa

2π

)
, n2 = Nint

(qxa
4π

)
. (35c)

These equations are valid for |qx| > nk. We note that the
integer index m = 2n2 − n1 can take only three values:
0,±1. Correspondingly, for the real and imaginary parts

of [qy]FBZ, we have the following results:

[Re(qy)]FBZ = m
2π

a
√

3
, m = 0,±1 , (36a)

[Im(qy)]FBZ = ±
√
q2
x − n2k2 . (36b)

We will obtain a dispersion equation containing only the
quantities [qx]FBZ and [qy]FBZ if we substitute qx in (36b)
from (35a), i.e., use the relation

q2
x =

{
[qx]FBZ +

2π

a
n1

}2

(37)

to obtain the following closed-form equation:

[Im(qy)]FBZ = ±

√{
[qx]FBZ +

2π

a
n1

}2

− n2k2 (38)

for

∣∣∣∣[qx]FBZ +
2π

a
n1

∣∣∣∣ ≥ nk .
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FIG. 7: (color online) Same as in Fig. 3 but for the triangular
lattice of hollow cylinders of the radius R = 0.42a in the host
medium of the permittivity ε = 12.25.

This equation describes a family of hyperbolas parame-
terized by n1. The first pair of these hyperbolas (cor-
responding to n1 = 0) are labeled as FA and FB in
Fig. 8. The second pair or hyperbolas (including two
branches with n1 = ±1) are labeled as SA and SB. In-
finitely many similar curves can be generated by trans-
lations along the qx-axis, which correspond to arbitrary
integer values of n1. Note that the two integers n1 and n2

that label different “reflected” branches of the solution to
the dispersion equation are subject to the selection rule
m = n1 − 2n2 = 0,±1. Therefore, for each n1, the set of
allowable values of n2 is restricted.

Thus, the FBZ folding in a triangular lattice trans-
forms purely imaginary solutions qy into complex solu-
tions [qy]FBZ, which explains the appearance of the up-
per and lower horizontal lines in the top row of plots in
Fig. 8.

Of course, the analytical folding described above is
valid only for a homogeneous medium. However, at the
frequency ka/π = 0.200, the actual dispersion relation in
the PC mimics the dispersion relation in a homogeneous
medium with n2 = 5.20 very closely. This conclusion
can be drawn from the data shown in the lower plot for
the Case (a) in Fig. 8 and is further confirmed and illus-
trated in Fig. 9. In the latter figure, we plot [Im(qy)]FBZ
as a function of [qx]FBZ (the symbol [. . .]FBZ that signi-
fies Bloch-periodicity of all data points is omitted in this
and other figures for brevity). The comparison is made
between the respective quantities obtained for the actual
PC and a homogeneous medium artificially discretized on
the same lattice. The individual hyperbolas described by
(38) are shown with green lines and the actual dispersion
solutions in the PC are shown by the red points. Both

solutions are only valid within the FBZ (between the two
vertical lines) and beyond these two lines they must be
periodically replicated. The green lines outside of the
FBZ are shown in the figure only to guide the eye (to
help visually identify individual hyperbolas).

It can be seen that, at the dimensionless frequency
ka/π = 0.200, the law of dispersion in the PC is al-
most indistinguishable from the law of dispersion in a
homogeneous medium, at least up to |Im(qy)a/π| ≤ 5,
which corresponds, approximately, to |qx/k| . 25, that
is, very far into the evanescent spectrum. Therefore, we
can claim that, at this particular frequency, the PC can
be homogenized for many practical purposes.

The situation is quite different at the other frequen-
cies considered. In Case (b) (ka/π = 0.720, just below
the second Γ-point), the dependence of Re(qy) on qx still
looks very “homogeneous”. However, as soon as we look
at Im(qy), it becomes obvious that the law of dispersion
departs from that of a homogeneous medium quite dra-
matically as soon as qx approaches the region of evanes-
cent waves (|qx| & k). Definitely, homogenization is not
possible for incident evanescent waves, and it is inaccu-
rate for propagating waves with large angles of incidence,
e.g., for θinc & 70◦. For the frequency (c) [ka/π = 0.650],
the quasi-circular lobe is much larger and appears to not
be distorted. However, the lower plot again clearly indi-
cates a lack of correspondence between the law of disper-
sion of a homogeneous medium and the law of dispersion
in the PC.

We therefore conclude that the PC is not electromag-
netically homogeneous at the frequencies (b) and (c). As-
signing the medium some effective parameters at these
frequencies can potentially be a valid approximation only
for a limited range of incident angles that, at the very
least, does not include evanescent waves.

Next, as was done above for the square lattice, we show
in Fig. 10 the quasi-circular lobes of the top row of Fig. 8
in more detail. In order to make the small deviations
from circularity more visible, we plot in this figure only
one quarter of each quasi-circular lobe. The lobes ap-
pear to be indistinguishable from mathematical circles in
Cases (a) and (b) but some small distortions consistent
with the C6 symmetry are visible in Case (c). The high
quality of the quasi-circular lobes can be explained by the
fact that the terms of the form (32) in the expansion of
Σ(ω,q) cancel because they are not compatible with the
C6 symmetry of the problem. Therefore, the distortions
result from six-order terms in the perturbation expansion
of Σ while, for a square lattice, the distortions appear in
the fourth order. However, as soon as the six-order terms
of the form (33) become non-negligible, the isotropy of
Σ(ω,q) is very quickly lost. Therefore, the high qual-
ity of the quasi-circular lobes shown in Fig. 10 is not a
sufficient condition for homogenizability.

But the most clear demonstration of non-
homogenizability of the PC at the frequencies (b)
and (c) can be obtained by considering the squares of
the Cartesian components of q. In Fig. 11, we plot
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FIG. 8: (color online) Same as in Fig. 4 but for the triangular lattice of hollow cylinders. The ’HMG’ isofrequency contours
were computed according to (34) with n2 = 5.20 (a), n2 = 0.085 (b) and n2 = 0.82 (c). In the top row of plots, the FBZ of the
lattice is shown by the black rhombus. In the lower plot (b), FA and FB mark the first pair of hyperbolas defined by Eq. 38,
and SA, SB mark the second pair of hyperbolas.

Re(q2
y) vs q2

x. In a homogeneous medium artificially
discretized on a triangular lattice, this plot consists
of one linear and several curved segments. The linear
segment corresponds to the eigenvalues that are either
purely real or purely imaginary. The curved segments
correspond to the peculiar complex eigenvalues that
are specific to the triangular lattice and described
mathematically by the equations (35) through (38).
One such curved segment is shown in every panel of
Fig. 11; other curved segments lie outside of the plot
frames. We now observe that at the frequency (a) there
is a complete correspondence between the artificially
discretized homogeneous medium and the PC. This,
of course, could have been expected from the data
shown in Figs. 8,9,10. At the frequencies (b) and (c),
the correspondence is broken in the linear segment.
In addition the curved segments in the homogeneous
medium and in the PC are completely different. The last
point is significant and deserves an additional discussion.

Let us assume that a slab of a homogeneous material
contained between two planes y = 0 and y = L is illumi-
nated by a plane wave with the incidence angle such that
qx < π/a, where a is the period of artificial discretization

in the x-direction. We can describe the medium as homo-
geneous (the traditional approach) or as a PC (by using
artificial discretization). Both approaches are mathemat-
ically equivalent and will yield the same results for all
observables. Assume that we have decided to describe
the medium as a PC. In this case, for a given purely real
qx, there will be infinitely many eigenvalues qy. However,
the incident radiation will excite only one mode, namely,
the mode with qy that corresponds to the dispersion rela-
tion of the homogeneous material. The modes with other
values of qy can be excited if we take qx to be outside of
the FBZ of the lattice. In any case, for a given qx, only
one mode is excited in the material.

In the case of an actual PC whose law of dispersion
closely mimics that of a homogeneous medium, as was
the case at the frequency (a), we can expect that the
same selection rules will work: at any given qx, only one
mode will be excited in the PC. Then the transmission
and reflection coefficients can be expected to be the same
in the PC and the homogeneous medium. This is indeed
the case in the homogenization limit25,32 a→ 0.

If we consider the PC with a constant nonzero a at
sufficiently high excitation frequencies (such as the fre-
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FIG. 9: (color online) An expanded view of Im(qy) as a func-
tion of qx for ka/π = 0.200 [Case (a)]. Here several ’reflected’
segments of the isofrequency line are shown. These segments
are obtained by folding the corresponding isofrequency line
for an infinite homogeneous medium into the FBZ of the tri-
angular lattice according to (38). The analytical lines outside
the FBZ (shown by the two vertical lines) are not the actual
solutions and are shown only to guide the eye.

quencies (b) and (c) in the above examples), there is no
reason to believe that the selection rules will work the
same way as in a homogeneous medium. In other words,
at a given qx, modes with several different values of qy can
be excited in the PC. Granted, these additional modes
have qy with nonzero imaginary parts and are therefore
exponentially decaying inside the medium. However, it
is a mistake to neglect these modes completely. Indeed,
even the fields associated with these modes are exponen-
tially decaying with y, they are not negligibly small at
the interface y = 0. Moreover, these modes do not gen-
erally average to zero over the surface of the elementary
cell. In these respect, they are different from the surface
waves discussed by us previously25,33. Therefore, excita-
tion of these additional modes will have an adverse effect
on homogenizability.

In Fig. 11, two different effects are illustrated. The
first effect is the deviation of the law of dispersion in the
PC from that in a homogeneous medium for the “funda-
mental mode” (for which q2

y is always purely real). This
effect is manifest at sufficiently large incident angles and,
in particular, for incident evanescent waves. The second,
more subtle effect is manifest even at small incident an-
gles. Namely, it can be seen that, at qx ∼ 0, the PC has
additional modes (allowable values of qy) that are dra-
matically different from the respective values in an arti-
ficially discretized homogeneous medium. Appearance of
these additional solutions can be expected to influence
the medium impedance in an angle-dependent manner

and have an additional degrading effect on the PC ho-
mogenizability.

V. DISCUSSION

The main message of this paper is that, in many ap-
plications of practical interest, it is insufficient to con-
sider only the purely real segments of the isofrequency
lines to decide whether a given photonic crystal (PC) is
electromagnetically similar to an isotropic homogeneous
medium. The purely real segments can be circular with
reasonable precision in the higher photonics bands. In
this case, all propagation directions appear to be equiv-
alent and the physical effects of the medium discrete-
ness appear to be minimized or absent. The medium
can also be characterized by negative dispersion, which
means that the real part of the Bloch wave number tends
to decrease with frequency while the imaginary part is
negligibly small. Nevertheless, the PC is not electro-
magnetically homogeneous in this case and cannot be
characterized by angle-independent, purely local effec-
tive parameters ε and µ. This conclusion can be drawn
by considering the angular dependence of the effective
parameters and by including evanescent waves into con-
sideration.

A difficulty one faces when restricting consideration to
the dispersion relation is that infinite media have no in-
terfaces and therefore it is easy to overlook the important
mathematical features of the obtained solutions. This is
exactly what happens when one restricts consideration
to purely real isofrequency lines. In this paper, we have
generalized this approach by considering two orthogonal
directions in space, X and Y , and assuming that the pro-
jection of the Bloch wave vector q on one of these axes
(X in our case) is a mathematically-independent vari-
able, which is preserved by the process of reflection and
refraction at any planar interface x = const.

The results obtained above are consistent with an ear-
lier prediction made by one of the authors regarding the
impossibility of negative refraction34. The essential as-
sumption of the above reference was that the medium in
question is electromagnetically homogeneous. However,
this requirement was not clearly defined. On the other
hand, it is a common knowledge that some discrete sys-
tems such as photonic crystals or chains of interacting
particles or resonators can be characterized by negative
dispersion. This is true, in particular, for PCs in higher
photonic bands. This may seem to contradict the conclu-
sions of Ref. 34. In the present work, we show that there
is no contradiction since PCs are not homogenizable in
the higher bands. We also define more clearly what we
mean by the requirement of homogenizability. We note
that this requirement has been stated in more mathemat-
ical detail in Ref. 32, and the impossibility of negative
refraction (in the regime when the medium is homoge-
nizable) was demonstrated in Ref. 35 for the special case
of 1D periodic media. The latter case is however compli-
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FIG. 10: (color online) Same as in Fig. 5 but for the triangular lattice. Distortions of the quasi-circular lobes are consistent
with C6 symmetry. The straight line in panel (c) makes the π/3 angle with the horizontal axis.

FIG. 11: (color online) Same as in Fig. 6 but for the triangular lattice that is considered in this subsection.

cated by the fact that a 1D layered medium is necessarily
anisotropic. Certain types of indefinite anisotropic media
are capable of refracting a narrow incident beam on the
same side of the normal. This phenomenon can easily
be confused with negative refraction. In this paper, we
consider a system without anisotropy (either magnetic or
electric).

It should be noted that the condition of homogenizabil-
ity based on the correspondence of the dispersion relation
(between a hypothetical homogeneous medium and the
actual PC) is a necessary but not the sufficient condi-
tion. The sufficient condition must include the medium
impedance. This cannot be done without introducing the
medium boundary into the problem. This fact was em-
phasized by us earlier in Ref. 20 using the exactly solvable
model of 1D periodic medium as an example.

A more general result closely related to the main con-

clusion of this paper can be stated in the form of an un-
certainty principle of homogenization, namely: the more
an effective magnetic permeability deviates from unity,
the less accurate the corresponding homogenization re-
sult is24.

We finally note that this work is based upon some im-
portant theoretical observations made by Li, Holt and
Efros10. We have developed these observations further
with a specific focus on dispersion relations in 2D PCs
with square and triangular lattices.
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APPENDIX A: DISPERSION RELATION IN A
BASIS-INDEPENDENT FORM

Let the lattice-periodic permittivity of the medium ε̃(r)
be a bounded, lattice periodic function, possibly a con-
stant. A Bloch mode solution to the scalar wave equation
(8) can be written in the form

E(r) = Ẽ(r) exp(iq · r) , (A1)

where q is the Bloch wave vector and Ẽ(r) 6= 0 is
a nonzero, twice-differentiable, lattice-periodic function,
which satisfies the equation

L(ω,q)Ẽ(r) = 0 (A2)

with the differential operator L(ω,q) given by

L(ω,q) = (∇+ iq)2 + k2ε̃(r) . (A3)

Recall that k = ω/c; hence the dependence of L on ω.
The other reason for this dependence is frequency disper-
sion (dependence of ε̃ on ω), which is not indicated here
explicitly but is taken into account. The requirement
that (A2) has a nontrivial solution Ẽ(r) 6= 0 defines the
dispersion equation f(ω,q) = 0. In what follows, we will
assume without proof that, if for some pair (ω,q) (A2)
has a nontrivial solution, then this solution is unique up
to multiplication by a constant. This is not generally
true in the 3D case where different polarization states
can correspond to the same pair (ω,q).

We will refer to the pairs (ω,q) for which (A2) has a
nontrivial solution as to the solutions to the dispersion
equation. Here the variables ω and q are not restricted
and can take general complex values. However, when
studying stationary processes, one is typically interested
only in solutions with purely real frequencies ω. We also
note that, if (ω,q) is a solution, then (ω,q + g) is also
a solution, where g is any reciprocal lattice vector. This
mathematical property of Bloch waves gives rise to “fold-
ing” of the solutions to the dispersion equation. It is a
rather nontrivial mathematical question how to distin-
guish between the solutions that occur due to folding
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from those that occur due to multiple scattering (inter-
action). In particular, it is quite plausible that solutions
(ω,q) and (ω,q′) of different physical origin can co-exist
at the same frequency ω (or at two very close frequen-
cies). In this Appendix, we present an approach to math-
ematical classification of these two physically-different so-
lutions.

As was done in Ref. 36, we decompose Ẽ(r) and ε̃(r)
into the constant and zero-mean components according
to

Ẽ(r) = E0 + F (r) , 〈F (r)〉C = 0 , (A4a)

ε̃(r) = ε0 + η(r) , 〈η(r)〉C = 0 . (A4b)

where 〈. . .〉C indicates averaging over the elementary cell
C. We note that E0 is the amplitude of the fundamental
harmonic of the Bloch wave. Upon substitution of the
above decomposition into (A2), we obtain[

k2(ε0 + η(r))− q2
]
E0 + L(ω,q)F (r) = 0 . (A5)

We now introduce the averaging operator O and the op-
erator P = 1 − O as projections onto the complemen-
tary subspaces of constant and zero-mean functions so
that OẼ(r) = E0, PẼ(r) = F (r) and Oε̃(r) = ε0,
P ε̃(r) = η(r). By acting on (A5) with O and P from
the left, we obtain the following two equations(

k2ε0 − q2
)
E0 + k2 〈η(r)F (r)〉C = 0 , (A6a)

η(r)E0 +W(ω,q)F (r) = 0 . (A6b)

In the first equation above we have used the equality
OLF (r) = k2Oη(r)F (r) = k2 〈η(r)F (r)〉C, which can
be proved by using cell-periodicity of F (r) and inte-
gral theorems. In the second equation, we have used
(PL)F (r) = (PLP)F (r) and defined the operator

W(ω,q) = k−2PL(ω,q)P . (A7)

We can now consider the following two different kinds of
solutions to (A6):

1. Solutions with E0 6= 0. Bloch waves E(r) with
nonzero fundamental harmonic E0 6= 0 can satisfy
wave equation (8) for a given pair (ω,q) only if
the equation W(ω,q)φ = η has a nonzero solution.

According to the assumption of uniqueness of Ẽ
stated above, this solution is unique if it exists. We
will say that φ is given in this case by the inverse
of W, viz, φ = W−1η. Then it follows from (A6b)
that F = −E0W−1η. Substituting this expression
into (A6a), we arrive at the dispersion relation (2)
in which Σ(ω,q) is given by the following basis-
independent expression:

Σ(ω,q) = ε0 −
〈
η(r)W−1(ω,q)η(r)

〉
C . (A8)

2. Solutions with E0 = 0. There can exist another
class of solutions, that is, Bloch waves with zero

fundamental harmonic. For such solutions to ex-
ist, the equation W(ω,q)φ = 0 must have a non-
trivial solution such that 〈η(r)φ(r)〉C = 0. In this
case,W(ω,q) is singular. It is easy to see that solu-
tions of this kind exist in the case of a homogeneous
medium that is artificially discretized on an arbi-
trary lattice (see below). However, solutions with
E0 = 0 (or, in practice, with E0 in some sense very
small) can also exist in inhomogeneous media with
η 6= 0.

We will say that solutions to the dispersion equation
of the first kind generate the “true” Γ-points, that is,
the Γ-points that result from multiple scattering in in-
homogeneous photonic crystals. Solutions of the second
kind are due to purely geometrical folding and generate
spurious Γ-points.

This classification can be illustrated by considering the
special case of a homogeneous medium that is artificially
discretized on an arbitrary lattice of a finite pitch. In
this case, it is easy to see that W(ω,q) is singular if
(q + g)2 = k2ε0 where g 6= 0 is any nonzero reciprocal
lattice vector, and invertible otherwise. Therefore, the
dispersion equation for the solutions of the first kind is
of the form

q2 = k2ε0 , Σ(ω,q) = ε0 (first kind) . (A9)

As could be expected, the corresponding lattice-periodic
function Ẽ(r) = E0 is just a constant. Thus, the funda-
mental harmonic is dominating in this solution.

Solutions of the second kind are of the form

(q + g)2 = k2ε0 for g 6= 0 (second kind) . (A10)

For any pair (ω,q) satisfying the above condition,

W(ω,q) is singular and we have 〈Ẽ〉C = 0. This lattice-
periodic function is dominated by higher-order harmon-
ics.

We can investigate the spurious Γ-points generated by
the solution of the second kind as follows. If Im(ε0) = 0,
equation (A10) is satisfied by a pair (ωp, 0) where ω2

p =

(cp)2/ε0 and p 6= 0 is any nonzero reciprocal lattice vec-
tor. The isofrequency line at ω = ωp is then obtained
from the equation

(q + g)2 = p2 > 0 for any g 6= 0 . (A11)

Consider for simplicity a square lattice and let p =
(2π/a)(0, 1). The corresponding frequency ωp =
2πc/a

√
ε0 is the frequency of the first spurious Γ-point

out of the infinite sequence. In principle, equation (A11)
defines an infinite number of curves but at the first Γ-
point most of these curves coincide. To obtain the com-
plete solution, we can start by taking g = p. It can be
seen that (A11) defines in this case a circular arc in the
(qx, qy) plane, and that this arc crosses the origin. On
a square lattice, there are four reciprocal vectors of the
same length 2π/a and pointing in the directions (0,±1)



18

and (±1, 0). As a result, the isofrequency line contains
four circular arcs intersecting at the origin (six arcs in
the case of the triangular lattice) as is shown in Fig. 1(a).
The arcs are truncated and reflected at the edge of the
FBZ. These additional “reflected” segments of the isofre-
quency line can be obtained by considering additional
vectors p in (A11).

The above result is quite trivial and we could have ob-
tained it without using the mathematical formalism of
this Appendix. However, the derivation is useful to show
that the formalism developed herein is consistent with
the limit of zero contrast. More importantly, it provides
us with a clue how to treat the case when E0 is in some
sense small but nonzero. Let γ = ‖F/E0‖2 where ‖ · ‖2
is the L2 norm. We believe that it is physically meaning-
ful to consider the phase and group velocities of a Bloch
wave only if γ is sufficiently small so that the fundamental
harmonic of the Bloch wave is in some sense dominant.
This condition holds if the smallest singular value of W
is sufficiently far from zero. If this is not so, then γ can
be very large or even diverge. In this case, introducing
the characteristics of a plane wave such as the phase and
group velocities is devoid of physical meaning, even if
this can be done formally by considering the dependence
q(ω). We therefore conjecture that there are two fun-
damentally different regimes of propagation, γ � 1 and
γ � 1, and in the second regime the group velocity com-
puted as, say, ∇qω does not correspond to any physically
measurable quantity and should not be invested with any
particular interpretation. It is not clear though how to
treat the borderline case γ ∼ 1; perhaps, it can only be
investigated numerically.

It should be noted that the above discussion is applica-
ble to the case of s-polarization when the scalar electric
field is smooth. For the p-polarization, the electric field
can jump at the discontinuities of ε̃(r), and a more care-
ful analysis is required. We also note that the condition
on γ stated above is closely related to the concept of the
smooth field introduced in Ref. 25.

APPENDIX B: COMPUTATION OF THE
EXPANSION COEFFICIENTS σn

In this Appendix, we compute the expansion coeffi-
cients σn according to (30) up to fourth order in Q. The
derivations are valid for PCs with C4 and C6 symmetries
(with some notable differences explained below). How-
ever, the derivations are not valid for a more general angle
between a1 and a2 and we have not performed a pertur-
bative analysis of what happens when the angle slightly
deviates from π/4 or π/3.

The results are written in terms of the Cartesian com-
ponents of q and some q-independent coefficients. These
coefficients can be computed if T is known. The matrix
T is defined in (24) and can be computed algebraically
by one operation of matrix inversion. Therefore, all ex-
pressions given below are directly amenable to numerical

computation.
Note that the order in Q is not the same as the order

in q. Also note that terms of the form

(−1)jq2j〈b|T j+1|b〉 (B1)

are generated in all orders of the expansion. These terms
are, of course, perfectly isotropic. However, starting from
fourth order, more complicated terms appear in the ex-
pansion.

In the formulas of this Appendix, we will use the fol-
lowing notations:

(i) The symbol ◦ denotes direct (Hadamard) product
of two matrices, e.g., (A ◦B)ij = AijBij .

(ii) The matrices G, Gxx, etc., are defined in terms of
the reciprocal lattice vectors as follows:

(Gαβ)gp = gαpβ , α, β = x, y ; (B2a)

Ggp =
∑
α

Gαα = g · p . (B2b)

(iii) In all expressions shown below we imply that, for
example, q6 = (q2

x + q2
y)3, etc.

a. Zeroth order. We start with zero order (n = 0),
which is rather trivial:

σ0 = 〈b|T |b〉 =
∑
g1,g2

M(−g1)Tg1g2
M(g2) . (B3)

Thus, σ0 is a q-independent constant. Obviously,
Σ(ω, 0) = ε0 + (ρχk)2σ0(k), where we have indicated the
dependence of σ0 on k explicitly.

b. First order. Here we have

σ1 = −
∑

g1,g2,g

M(−g1)Tg1g

(
q2 + 2q · g

)
× Tgg2

M(g2) . (B4)

The contribution of the second term in the brackets is
zero due to the symmetry [σn(−q) = σn(q)]. Therefore,

σ1 = −q2
∑
g1,g2

M(−g1)T 2
g1g2

M(−g2)

= −q2〈b|T 2|b〉 . (B5)

c. Second order. Here we have

σ2 =
∑
{g}

M(−g1)Tg1g2
Tg2g3

Tg3g4
M(g4)

×
[
q2 + 2(q · g2)

] [
q2 + 2(q · g3)

]
, (B6)

where
∑
{g} denotes summation over all relevant indexes.

We now expand the product of the square brackets and
notice that the terms linear in q sum to zero for the rea-
son of inversion symmetry. The two terms that produce
nonzero result upon summation are

q4 and 4(q · g2)(q · g3) . (B7)
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The first of these generates the result of the form (B1)
and the second term requires some additional considera-
tion. We can write

(q · g2)(q · g3) = (qxg2x + qyg2y)(qxg3x + qyg3y)

= q2
xg2xg3x + q2

yg2yg3y + qxqy(g2xg3y + g2yg3x) .

The term proportional to qxqy sums to zero due the in-
version symmetry. Moreover, from the symmetry prop-
erties of both triangular and square lattices, we find that
summation of the coefficients in front of q2

x and q2
y must

yield the same result. Indeed, if this were not so, we
would have received a term of the form βxq

2
x +βyq

2
y with

βx 6= βy, describing an ellipse of unequal semiaxes, which
is inconsistent with both C4 and C6 symmetries. There-
fore, we can replace the above expression (inside the sum-
mation) by

1

2
(q2
x + q2

y)(g2xg3x + g2yg3y) =
1

2
q2(g2 · g3) .

Collecting everything together, we find that

σ2 = q4〈b|T 3|b〉+ 2q2〈b|T (T ◦G)T |b〉 . (B8)

We thus see that all terms generated in the second order
are still circularly-symmetric.

d. Third order. Here we have

σ3 = −
∑
{g}

M(−g1)Tg1g2
Tg2g3

Tg3g4
Tg4g5

M(g5)

×
[
q2 + 2(q · g2)

] [
q2 + 2(q · g3)

] [
q2 + 2(q · g4)

]
.

(B9)

After expanding the brackets and keeping only the terms

that do not sum to zero, we find that σ3 = σ
(a)
3 + σ

(b)
3

where

σ
(a)
3 = −q6〈b|T 4|b〉 (B10)

is of the form (B1) and

σ
(b)
3 = −4q2

∑
{g}

M(−g1)Tg1g2
Tg2g3

Tg3g4
Tg4g5

M(g5)

× [(q · g2)(q · g3) + (q · g2)(q · g4) + (q · g3)(q · g4)] .
(B11)

We can use the same transformation as was used in the
second order to transform the terms of the form (q·g2)(q·
g3) to the form (1/2)q2(g2 · g3). We thus obtain

σ
(b)
3 = 2(qh)4

[
〈b|T 2(T ◦G)T |b〉

+ 〈b|T (T 2 ◦G)T |b〉+ 〈b|T (T ◦G)T 2|b〉
]
. (B12)

The first and last terms in this expression are in fact
equal but are written separately for symmetry of expres-
sion. Still, all expressions arising to third order in Q are
circularly-symmetric.

e. Fourth order. In the fourth order, we can write

σ4 = σ
(a)
4 + σ

(b)
4 + σ

(c)
4 , (B13)

where the expressions for σ
(a)
4 and σ

(b)
4 are obtained in the

manner very similar to what was done above. Omitting
the intermediate steps, we write the final result for these
two terms, viz,

σ
(a)
4 = q8〈b|T 5|b〉 (B14)

σ
(b)
4 = 2q6[
〈b|T (T ◦G)T 3|b〉+ 〈b|T 3(T ◦G)T |b〉

+〈b|T (T 2 ◦G)T 2|b〉+ 〈b|T 2(T 2 ◦G)T |b〉
+〈b|T 3(T ◦G)T |b〉+ 〈b|T 2(T ◦G)T 2|b〉

]
. (B15)

Note that the terms appearing on each line of the above
expression are pair-wise equal. The expressions (B14)
and (B15) could, in fact, be anticipated and are directly
analogous to the expressions (B10) and (B12). A simple
diagrammatic technique can be devised to generate sim-
ilar expressions that appear in the higher orders of the
perturbation theory.

However, σ
(c)
4 is a term of a different kind and it is

the first term we encounter that does not obey the cir-
cular symmetry and is consistent with C4 (but not C6)
symmetry. The term is

σ
(c)
4 = 16

∑
{g}

M(−g1)Tg1g2
. . . Tg5g6

M(g6)

× (q · g2)(q · g3)(q · g4)(q · g5) . (B16)

We cannot use the same trick as was used above to trans-
form the factor

P = (q · g2)(q · g3)(q · g4)(q · g5) (B17)

to the form βq4 where β is a scalar expressible in terms of
the dot products gi ·gj . Indeed, let us write the factor P
in terms of Cartesian components of all vectors involved:

P = (qxg2x + qyg2y)(qxg3x + qyg3y)

× (qxg4x + qyg4y)(qxg5x + qyg5y)

= P ′ + q4
xg2xg3xg4xg5x + q4

yg2yg3yg4yg5y

+q2
xq

2
y

[
g2xg3xg4yg5y + g2yg3yg4xg5x

+g2xg3yg4xg5y + g2yg3xg4yg5x

+g2xg3yg4yg5x + g2yg3xg4xg5y

]
. (B18)

Here P ′ is the term that sums to zero by symmetry. We
can introduce the notations ∆ = P −P ′ and Πx, Πy, Πxy

(definition of the last three quantities will be clear from
the next equation) and write

∆ = Πxq
4
x + Πyq

4
y + Πxyq

2
xq

2
y (B19)
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Now, if it happens so that∑
{g}

F [{g}]Πx =
∑
{g}

F [{g}]Πy =
1

2

∑
{g}

F [{g}]Πxy ,

(B20)
where F [{g}] is the coefficient appearing on the first line

of (B16), then we would obtain the result σ
(c)
4 = βq4.

This is what we can expect to happen in triangular lat-
tices with C6 symmetry. However, there is no general or
obvious reason why the second equality in (B20) should
hold in the case of C4 symmetry, and there are sufficient
grounds to believe that it does not. As a result, the func-
tion ∆(q) and the summation result

∑
{g} F [{g}]∆(q)

are not circularly-symmetric.

We can write the result for σ
(c)
4 in a form similar to

that used in lower orders if we account for the identity
q4
x + q4

y = q4 − 2q2
xq

2
y. Then

σ
(c)
4 = 8

[
q4 − 2(q2

xq
2
y)
]

×
[
〈b|T (T ◦Gx)T (T ◦Gx)T |b〉+ (Gx → Gy)

]
+ q2

xq
2
y

×
[
〈b|T (T ◦Gx)T (T ◦Gy)T |b〉+ (Gx ↔ Gy)

+〈b|T (T ◦Gxy)T (T ◦Gxy)T |b〉+ (Gxy → Gyx)

+〈b|T (T ◦Gxy)T (T ◦Gyx)T |b〉+ (Gxy ↔ Gyx)
]
.

(B21)


