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Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249,

13013 Marseille, France

E-mail: vmarkel@fresnel.fr

Abstract. This is Part II of the paper series on data-compatible T-matrix completion

(DCTMC), which is a method for solving nonlinear inverse problems. Part I of the

series contains theory and here we present simulations for inverse scattering of scalar

waves. The underlying mathematical model is the scalar wave equation and the object

function that is reconstructed is the medium susceptibility. It is shown that DCTMC

is a viable method for solving strongly nonlinear inverse problems with large data sets.
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1. Introduction

This paper is Part II of the series on solving nonlinear inverse scattering problems (ISPs)

by data-compatible T-matrix completion (DCTMC). Part I of the series [1] contains

theory and here we report initial numerical simulations for the three-dimensional

diffraction tomography with scalar waves. This problem arises, in particular, in

tomographic ultrasound imaging [2, 3] and in seismology [4–6]. We note that DCTMC

can be applied in a very similar manner to the problems of inverse electromagnetic

scattering [7–11] and diffuse optical tomography [12, 13]. However, in this paper we

probe the medium with scalar propagating waves. By doing so, we avoid, on one hand,

the additional complexity related to the vectorial nature of electromagnetic fields and,

on the other hand, the severe ill-posedness of the ISP associated with the exponential

decay of diffuse waves. Therefore, we can focus on the effects of nonlinearity of the ISP.

‡ On leave from the Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania

19104, USA
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Since, at this initial stage of research, our primary focus is on the effects of nonlinearity,

no noise has been added to the data. We have used the streamlined iteration cycle

described in Sec.5.3 of [1]. Physical constraints and checks for sparsity were applied

between Steps 1 and 2 of this algorithm.

The remainder of this paper is organized as follows. In Sec. 2, we describe the

mathematical procedure for discretization of the scalar wave equation. Technical details

of the numerical procedures, description of the targets and of the source-detector

arrangements used are given in Sec. 3. Numerical results are adduced in Sec. 4. Finally,

Sec. 5 contains a brief discussion of the obtained results.

2. Discretization of the scalar wave equation

Consider a scalar field u(r) (e.g., the pressure wave in ultrasound imaging) and the wave

equation
[

∇2 + k2ǫ(r)
]

u(r) = −4πk2q(r) , (1)

where q(r) is the source function, ǫ(r) = 1 outside of the bounded domain Ω (the sample)

and the factor −4πk2 in the right-hand side has been introduced for convenience. We

work in the frequency domain and assume that the wave number k = ω/c is fixed, where

c is the velocity of waves in free space, that is, outside of Ω.

Since we wish to implement a numerical procedure for reconstructing ǫ(r) from

external measurements, the problem must be suitably discretized and the unknown

function must be represented by a finite number of degrees of freedom (voxels). To

this end, we follow the general approach of the discrete dipole approximation that was

originally developed for Maxwell’s equations [14, 15]. A related method for the scalar

diffusion equation was described by us in [16].

We start by re-writing (1) identically as

(

∇2 + k2
)

u(r) = −4πk2 [χ(r)u(r) + q(r)] , (2)

where

χ(r) ≡ ǫ(r) − 1

4π
. (3)

This quantity can be referred to as the susceptibility of the medium. Inverting the

differential operator in the left-hand side of (2), we obtain Lippmann-Schwinger equation

u(r) = uinc(r) +

∫

G0(r, r
′)χ(r′)u(r′)d3r′ , (4)

where

uinc(r) =

∫

G0(r, r
′)q(r′)d3r′ (5)

is the incident field and

G0(r, r
′) = k2 exp (ik|r − r′|)

|r − r′| (6)
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is the free-space Green’s function of the wave equation, which satisfies

(

∇2 + k2
)

G0(r, r
′) = −4πk2δ(r − r′) . (7)

Note that the second term in the right-hand side of (4) is the scattered field uscatt(r),

that is,

uscatt(r) =

∫

G0(r, r
′)χ(r′)u(r′)d3r′ . (8)

The total field is given by a sum of the incident and scattered components, u =

uinc + uscatt.

We now proceed with discretization of the integral equation (4). Let the sample

be rectangular and discretized into cubic voxels Cn (n = 1, . . . , Nv) of volume h3 each,

where Nv is the total number of voxels. We then make the following approximation §:

χ(r) = χn AND u(r) = un IF r ∈ Cn . (9)

Here χn and un are constants. Obviously, with this approximation used, (4) can not

hold for all values of r. However, by restricting attention to the points r = rn, where rn

are the centers of the respective voxels Cn, we obtain a set of algebraic equations

un = en +
Nv
∑

m=1

χmum

∫

r∈Cm

G0(rn, r)d3r , (10)

where

en ≡ uinc(rn) . (11)

Equation (10) can be reasonably expected to have a solution, which then gives a discrete

approximation to the continuous field u(r).

In principle, we can compute the integrals in the right-hand side of (10) analytically

or numerically with any degree of precision. However, doing so is not practically useful

because there is already an approximation involved in writing (10). Therefore, the

conventional approach is to approximate the integrals by expressions that are easy to

compute if G0 is known analytically. To obtain such expressions, we consider the two

cases n 6= m and n = m separately.

For n 6= m, the standard approximation is

∫

r∈Cm

G0(rn, r)d
3r ≈ h3G0(rn, rm) , n 6= m . (12)

For n = m, the integrand contains a singularity and a more careful evaluation of the

integral is required. It is standard to assume that kh ≪ 1 (otherwise, the discretization

§ One can envisage a situation in which the first equality in (9) is not an approximation but holds

exactly. However, this can not be known a priori when solving an ISP. On the other hand, the second

equality in (9) is never exact.
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is not a valid approximation to the underlying differential equation) so that the exponent

in (6) can be approximated as

exp (ik|r − r′|) ≈ 1 + ik|r − r′| . (13)

We then obtain

∫

r∈Cn

G0(rn, r)d
3r ≈

∫ h/2

−h/2

dx

∫ h/2

−h/2

dy

∫ h/2

−h/2

dz

(

k2

√

x2 + y2 + z2
+ ik3

)

= (kh)2 (ξ + ikh) , (14)

where

ξ = log
(

26 + 15
√

3
)

− π/2 ≈ 2.38 . (15)

The imaginary part of the right-hand side of (14) is the first non-vanishing radiative

correction to the voxel polarizability. As is known for the electromagnetic case,

accounting for this correction is important to ensure energy conservation of the

scattering process [17, 18]. Note that making higher-order approximations in (13) is

known to produce higher-order dynamic corrections. For the electromagnetic case, the

relevant results are given in [19, 20]. Also, an alternative estimate of the parameter

ξ can be obtained if we replace integration over a cubic voxel by integration over a

ball of equal volume. This approach results in a much simpler integral and does not

affect the radiative correction; however, it gives a slightly different value for ξ, namely,

ξ = (9π/2)1/3 ≈ 2.42. The two approaches to computing ξ can be applicable to different

physical situations. For example, integration over a ball may be more appropriate if we

wish to describe scattering by a collection of spherical particles rather than voxelization

of a medium on a cubic grid.

Further, it is convenient to introduce the ”moments”

dn ≡ h3χnun . (16)

In terms of dn, and with the account of the integration results (12) and (14), the system

of equations (10) takes the form

dn = αn

(

en +
Nv
∑

m=1

Γ nmdm

)

, (17)

where

αn =
h3χn

1 − (kh)2(ξ + ikh)χn

(18)

is the polarizability of n-th voxel and

Γnm = (1 − δnm) G0(rn, rm) (19)

is the interaction matrix. Note that Γnm has zeros on the diagonal.
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If all polarizabilities αn are known, then equation (17) is the statement of the

forward scattering problem. Namely, given the incident field in all voxels, en, find the

moments dn by solving (17); then use the formula

uscatt(rd) =
Nv
∑

n=1

G0(rd, rn)dn (20)

[a discretized version of (8)] to find the scattered field at an arbitrary point of observation

rd. Obviously, the forward problem is linear with respect to the unknowns, dn.

The inverse problem is stated differently and is, in general, nonlinear ‖. Our goal

is to use multiple measurements of the scattered field uscatt(rd) due to multiple external

point sources of the form q(r) = δ(r − rs), where rd and rs are the positions of the

detector and the source, to find all the voxel polarizabilities αn. In the matrix form, the

ISP is stated as follows. Let us define the interaction matrix V as the Nv × Nv matrix

that contains αn on the diagonal and zeros elsewhere. Then we can re-write (17) in

matrix notations as

|d〉 = V (|e〉 + Γ |d〉) , (21)

where |d〉 and |e〉 are the vectors of the length Nv with the elements dn and en,

respectively. The formal solution to (21) is

|d〉 = (I − V Γ )−1V |e〉 = T [V ]|e〉 , (22)

where

T [V ] ≡ (I − V Γ )−1V (23)

is the T-matrix. Let us assume that we measure the scattered field at a set of points

rdk ∈ Σd, k = 1, . . . , Nd, and let fk = uscatt(rdk). Then |f〉 is a vector of the length Nd

and we can use (20) to write |f〉 = A|d〉, where Akn = G0(rdk, rn). Similarly, we have

|e〉 = B|q〉, where Bnl = G0(rn, rsl) and rsl ∈ Σs, l = 1, . . . , Ns is the set of points from

which we illuminate the medium. By turning on one source at a time and by measuring

the scattered field at all points rdk for each source, we measure all elements of the data

matrix Φkl. As follows from (22), the data matrix satisfies the equation

AT [V ]B = Φ . (24)

This is equivalent to Eqs. 4 and 8 of [1]. As in [1], the matrices A and B are obtained

directly by sampling the Green’s function G0(r, r
′), for which we have given a specific

expression (6) that corresponds to the physical problem considered. The only fine (and

slightly nontrivial) point here is the way in which the matrix Γ was obtained. For

n 6= m, we still have Γnm = G0(rn, rm), i.e., the off-diagonal matrix elements were

‖ Here we briefly summarize the statement of the nonlinear ISP for the discretized equation (17). A

more general and detailed description is given in [1]. See Fig. 1 of that reference and the related

discussion for the definition of the measurement surfaces. Also, we use the same notations as in [1]. In

particular, we use Dirac notations for the elements of finite-dimensional vector spaces.
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obtained by sampling G0. However, the diagonal elements of Γ can not be obtained

by straightforward sampling due to the singularity of G0. The discretization procedure

described above results in Γnn = 0 provided that we use the renormalized polarizabilities

αn (18) to quantify the response of individual voxels to external excitation.

The above approach to obtaining the renormalized polarizabilities is rather

standard in physics and goes back to the Lorentz’s idea of local-field correction (in

electromagnetics). However, it is useful to keep in mind that the local-field correction

and the related renormalization are mathematically related to the singularity of the

free-space Green’s function. From the purely algebraic point of view, we can point out

that the renormalization in question is a special case of the identical transformation

(I − V Γ )−1V = (I − V ′Γ ′)−1V ′

where V ′ = PV , Γ ′ = Γ − V −1(I − P−1) and P is any invertible matrix (although V −1

appears in the above expression, invertibility of V is not really required). In particular,

if Γ has the diagonal part D, then we can take P = (I − V D)−1 (assuming that this

inverse exists) and the renormalized matrix Γ ′ will have a zero diagonal.

3. Details of the numerical algorithms used

3.1. Choice of the fundamental unknowns

The above inverse problem has been formulated in terms of the unknown voxel

polarizabilities αn. However, the physical quantity of interest is the voxel permittivity

ǫn or the susceptibility χn. To relate the latter to the former, we can use (3) and (18)

to obtain in a straightforward manner

χn =
αn/h3

1 + (kh)2(ξ + ikh)(αn/h3)
. (25)

The permittivities ǫn can be trivially related to χn by using (3), and we will focus on

the latter quantities in the remainder of this paper.

Equation (25) is an analog of the Maxwell-Garnett formula written for scalar waves

(with the account of the first non-vanishing radiative correction) and its inverse is the

Clausius-Mossotti relation. It can be seen that the relation between χn and αn is itself

nonlinear. In other words, we have removed some nonlinearity of the ISP analytically.

The nonlinearity in question is solely due to the self-interaction of a given voxel and it

was accounted for by the procedure of renormalization of the polarizability. In other

words, we can view the numerator h3χn in the right-hand side of (18) as the bare

polarizability and the complete expression as the renormalized polarizability. However,

the nonlinearity of the ISP that is due to the interaction of different voxels can not be

removed so simply and we will have to deal with it numerically.

Still, the above discussion gives some validity (although not a rigorous proof) to the

proposition that it is advantageous to formulate the ISP in terms of the polarizabilities

αn rather than in terms of the susceptibilities χn. Indeed, consider the case when
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there is only one voxel and we wish to determine its properties (either α or χ) from

external measurements by means of some generic iterative scheme that is applicable to

a more general problem (e.g., involving many interacting voxels). If we view α as the

fundamental unknown, we arrive at a well-posed linear equation of the form Aα = b

(A 6= 0 and b are numbers), which can be solved in just one iteration. However, if we

view χ as the fundamental unknown, then we will be solving iteratively an equation of

the form Aχ/(1− βχ) = b, which can take several or many iterations depending on the

value of the coefficient β.

In the simulations reported below, we formulate the model and display the

reconstructions in terms of the susceptibilities χn, which we assume to be real-valued.

However, to generate the data function, we compute the set of αn’s according to

(18). Then we ”pretend” that αn’s are unknown and, viewing these quantities as the

fundamental unknowns, solve the ISP iteratively by DCTMC. In the process, we apply

a physical constraint and take account of the target sparsity (although we do not make

any a priori assumptions about the latter) as is discussed in detail below. Finally, when

the DCTMC process has converged or the maximum number of iterations has been

reached, we convert the reconstructed set of αn’s to χn’s by using (25) and display the

latter quantities in all figures.

3.2. Application of physical constraints

As discussed in [1], the iterative procedure of DCTMC can benefit from applying physical

constraints to the unknowns as a form of regularization. The physical constraints usually

stem from some a priori knowledge that is based on general physical principles. For

example, if the medium is passive (that is, non-amplifying), then Imχn ≥ 0. If it is also

known that the medium is transparent (non-absorbing), then Imχn = 0. If we view the

polarizabilities αn as the fundamental unknowns in the iterative DCTMC process, we

can apply this physical constraint in the following manner. We first notice that

Im

(

h3

αn

)

= −
[

Imχn

|χn|2
+ (kh)3

]

≤ −(kh)3 . (26)

Let’s say, a numerical iteration of DCTMC has produced a set of αn. To enforce the

condition (26), we can apply the following transformation:

αn −→ 1

Re(1/αn) − i max [−Im(1/αn), k3]
. (27)

If, in addition, we know that the sample is non-absorbing so that Imχn = 0 for all voxels

and strict equality in the last relation in (26) holds, then we can apply an even sharper

constraint by writing

αn −→ 1

Re(1/αn) − ik3
. (28)

In the simulations reported below, we have assumed that the sample is transparent

and used the constraint (28) at each iteration of DCTMC. We note that in many cases
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considered, DCTMC produces very similar results even without applying the constraint,

but then the convergence is somewhat slower. The only instances in which we found

that the physical constraint is critical were the cases with very strong nonlinearity.

3.3. Account of sparsity

In many practical cases we can expect the target to be in some sense sparse. This means

that many of the voxels have zero (or relatively small) susceptibilities χn, but we do

not know a priori where these voxels are located or how many such voxels exist in the

computational domain. We will refer to such voxels as ”noninteracting” as the moments

dn of these voxels are relatively small, do not interact effectively with the moments of

other voxels, and produce a negligible input to the scattered field.

In DCTMC, it is possible to take the sparsity into account in an adaptive manner

without actually knowing whether the target is sparse or not or where the non-

interacting voxels are located. We have used the following rather ad hoc algorithm:

1. Run 50 iterations normally.

2. Then every 20 iterations check whether some susceptibilities χn satisfy |χn| <

χmax/100, where χmax = maxn |χn|.
3. If a given voxel satisfies the above condition 3 checks in a row, the corresponding

χn is set to zero.

4. The voxels with zero χn (as determined in the previous step) are declared to be non-

interacting and are excluded from the computational domain. When this happens,

we repeat the initial setup of Sec.5.3 of [1], but now for a smaller number of

interacting voxels Nv. This results in a smaller computational time per a subsequent

iteration.

5. The process is repeated with the following modifications. After 200 iterations,

checks are made every 10 iterations, and after 400 iterations, the relative threshold

for determining a non-interacting voxel is reduced to the factor of 60, and after 600

iterations the relative threshold is reduced to the factor of 40.

The procedure of selecting the noninteracting voxels can be described as iterative

”roughening” of the target. Any iterative numerical reconstruction is expected to

produce small but nonzero values in the regions of the computational domain where

the reconstructed function is really zero. Keeping these small values in subsequent

iterations is nothing but a computational burden. The procedure described here removes

this burden without affecting the final images in a significant way as long as the

noninteracting voxels are not assigned incorrectly. In the majority of computational

experiments we have performed, such incorrect assignment did not occur. However,

in the very strong nonlinearity regime it can happen. We note however that such

occurrences can be easily ”diagnosed” by monitoring the error of the matrix equation

(24) as is illustrated below. If an incorrect assignment does occur, one can potentially

alleviate the problem by adjusting the constants used by the algorithm.
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Finally note that the homogeneous background against which the roughening is

performed can be different from zero. Thus, in optical tomography, it is conventional

to assume that the background properties of the medium are known yet different from

those of free space [13]. In this case, a more complicated Green’s function G0 must be

used. We emphasize that G0 can be computed analytically for many regular geometries

of the background medium. In this paper, we have taken the homogeneous background

to be zero with the sole purpose of being able to use the mathematically-simple function

given in (6).

3.4. Model targets and arrangement of sources and detectors

We have used two kinds of targets in the simulations, which we refer to as ”small”

and ”large”. A target of a particular kind has always the same ”shape” but can have

varying degrees of contrast. The contrast is defined in terms of the susceptibility χ(r).

Mathematically, this means that χ(r) for a given target can be written as

χ(r) = χ0Θ(r) , (29)

where 0 ≤ Θ(r) ≤ 1 is the shape function (always the same for a target of a given

kind) and χ0 > 0 is the variable amplitude. Obviously, the larger is χ0, the stronger is

the nonlinearity of the ISP. Note that all reconstructions shown below display the ratio

χn/χ0, which, ideally, should coincide with the shape function. However, we did not

use any a priori knowledge about χ0 to obtain the reconstructions. The normalization

to χ0 was performed a posteriori, which allowed us to use the same color scale in all

figures.

The small target is discretized on a 16 × 16 × 9 grid (Nv = 2, 304) and the large

target is discretized on a 30×30×15 grid (Nv = 13, 500). The shapes of both targets are

shown in Fig. 1. It can be seen that the small target contains two rectangular inclusions

in a homogeneous zero background. One inclusion is of the size 6 × 6 × 3 (in units of

h) and has Θ = 1.0 and the second inclusion is of the size 5× 5× 2 and has Θ = 0.857.

Note that the smaller and the larger inclusions touch at one corner. The large target

contains one rectangular inclusion of the size 6 × 6 × 4 and with Θ = 1 and another

inclusion of the size 10 × 10 × 6 and with Θ = 0.75. These two inclusions do not quite

touch.

The relation between the discretization step h and the free-space wave number k is

kh = 0.2 in all cases. We can use this numerical value to estimate roughly the degree

of nonlinearity of the ISP. We generally expect the ISP to be very nonlinear when the

phase shift between two waves – one propagating through an inhomogeneity (say, in the

z-direction) and another propagating through the background medium – becomes of the

order of π/2 or larger. This phase shift is given by

∆ϕ = (kh)n
(

√

1 + 4πχ0Θi − 1
)

, (30)

where n is the inhomogeneity depth in units of h, χ0 is the contrast, and Θi is the value

of the shape function inside the inhomogeneity. For example, the largest contrast we



II. Simulations 10

used for the small target is χ0 = 1.75. The shape function inside the inhomogeneity that

is n = 3 voxels deep is Θi = 0.857. This corresponds to ∆ϕ ≈ 0.66π. The nonlinearity

in this case is expected to be very strong. Of course, this analysis does not take into

account multiple scattering between different inhomogeneities. In fact, we’ll see that

the linearized reconstructions break down for a much smaller contrast, i.e., at χ0 ≈ 0.1.

We now turn to the source-detector arrangements. For the small target, we have

used the following three arrangements:

Near-field zone source-detector arrangement for the small target. In this case, the mesh

of sources is a 22×22 rectangular grid with the same spacing h as was used to discretize

the sample. The plane of sources is centered symmetrically near one of the 16 × 16

faces of the sample so that there are three rows and columns of sources extending past

the sample surface in each direction. The plane of sources is displaced by h/2 from

the physical surface of the sample. The mesh of detectors is identical in dimension

and located on the other side of the sample. Since kh/2 = 0.1, we say that, for this

particular arrangement, the source/detector planes are located in the near-field zone of

the sample. Regarding the size of the data set, we have Ns = Nd = 484 and the total

number of data points is NsNd = 234, 256. Note that the additional rows and columns of

sources and detectors extending past the sample surface are needed to achieve the best

possible linear reconstruction in the weak nonlinearity regime. Adding even more rows

and columns into the source/detector meshes does not improve this result any further.

Intermediate-field zone source-detector arrangement for the small target. In the second

arrangement, the meshes of sources and detectors are 40 × 40 and displaced from the

sample surface by 5h (from each of the two 16 × 16 faces of the sample). In this case,

there are twelve rows and columns of sources or detectors extending past the sample

surface in each direction. Since 5(kh) = 1, we say that, in this case, the sources and

detectors are placed in the intermediate-field zone of the sample. The size of the data

set for this arrangement is as follows: Ns = Nd = 1, 600 and the total number of data

points is NsNd = 2, 256, 000. Note that data sets of this size are usually considered as

problematic for solving nonlinear ISPs numerically.

Far-field zone source-detector arrangement for the small target. In the third arrange-

ment, the meshes of sources and detectors are 46 × 46 and displaced from the sample

surface by 50h (from each of the two 16 × 16 faces of the sample). In this case, there

are fifteen rows and columns of sources or detectors extending past the sample surface

in each direction. Since 50(kh) = 10, we say that, in this case, the sources and de-

tectors are placed in the far-field zone of the sample. The size of the data set for this

arrangement is as follows: Ns = Nd = 2, 116 and the total number of data points is

NsNd = 4, 477, 456. This is an even larger data set than in the case of the intermediate-

field zone source/detector arrangement. However, it is important to note that this source
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detector arrangement is very far from being optimal. Indeed, it can be seen that the

sample is illuminated by a set of quasi-plane waves with the wave vectors ki contained

in a spherical cross section of a cone with the apex angle θ ≈ 50◦ (all wave vectors

are of the same length k). The same is true for the wave vectors ko of the outgoing

waves. By performing the usual far-field analysis, we find that the linearized inverse

problem is reduced to Fourier transform of the medium where the Fourier vector ki−ko

covers a quasi-spheroid of the semiaxes az = k(1 − cos θ), ax = ay = 2k sin θ. This is a

significantly smaller region than the Ewald sphere that has the radius 2k. To reduce the

ill-posedness, one should place the sources and detectors on a surface that surrounds the

target and allow back-scattering or nearly back-scattering measurements. Alternatively,

one can consider excitation by and detection of plane waves with wave vectors ki and

ko on a sphere of the radius k and use all degrees of available freedom to make sure

that ki − ko samples the complete Ewald sphere. In this work however we only use

transmission-type measurements.

By performing many numerical experiments with the small target, we have found

that the best image quality is obtained for the near-field zone arrangement of sources and

detectors. In the weak and intermediate nonlinearity regimes, there is a slight (but not

a dramatic) loss of the reconstructed image quality when we move the source/detector

grids from the near-field zone to the intermediate-field zone. However, in the strong

nonlinearity regime, the nonlinear inversion can break down for the intermediate-zone

arrangement (in this case, due to incorrect assignment of noninteracting voxels) while,

for the near-field zone arrangement, the nonlinear reconstruction is still stable. As

was mentioned above, this problem can be overcome by adjusting the prescription for

assigning the noninteracting voxels.

When the measurement surfaces are moved further away to the far-field zone, the

image quality is further deteriorated. However, in this case there are strong grounds

to believe that starting iterations from the linearized inversion of V will provide a

much better results. This conjecture will be substantiated below when we discuss the

convergence data.

Near-field zone source-detector arrangement for the large target. We have used only

near-field arrangement for the large target at this stage of research. The grids of sources

and detectors are of the size 38×38 so that four rows and columns of sources or detectors

are extending past the sample surface in each direction. The source/detector meshes

are displaced from each of the two 30 × 30 faces of the large target by h/2, as is also

the case in the near-field zone arrangement for the small target. The data set size is

defined by the following numbers: Ns = Nd = 1, 444 and NsNd = 2, 085, 136.
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Figure 1. The shapes of the small (left) and the large (right) targets. The small

target consists of 16 × 16 × 9 voxels and is represented by 9 slices, each slice being of

the dimension 16 × 16. These slices are shown in the figure consecutively. Similarly,

the large target consists of 15 slices of the size 30 × 30 each. Even though the shape

function satisfies the condition 0 ≤ Θ ≤ 1, the color scale of this figure can be used to

represent any quantity in the range [−0.3, 1.3]. The allowances are made because the

reconstructed values of χn/χ0 can become negative or larger than unity. Note that

the color scale used in this and all other figures of this paper has two cutoffs. Values

that are smaller than −0.3 are shown by the uniform black color and values that are

larger than 1.3 are shown as white.

3.5. Methods for linearized reconstruction

Applying a nonlinear solver to an ISP is meaningful only if the linearized solution to the

same problem has failed. Therefore, we compare the results of nonlinear reconstruction

to those obtained by linearized inversion. We have used two different approaches to this

problem.

First, we have used the traditional approach of computing the pseudoinverse of

the matrix K (see Remarks 2 and 3 in [1]). This approach leads to a linear problem

whose size grows very rapidly with the size of the data set and the number of voxels.

While still feasible in the case of the small target, application of this method for the

large target is already problematic. Indeed, the matrix K for the large target has the
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total number of elements NsNdNv = 28, 149, 336, 000. Storing a matrix of this size in

computer memory requires at least 112Gb of RAM (in single precision). One can follow

the approach of [21] where we have computed the product K∗K iteratively by storing

only sufficiently small blocks of K in computer memory. Then the product K∗K was

Tikhonov-regularized by applying the operation K∗K → K∗K + λ2I and the resultant

system of equations was solved by the conjugate gradient descent. The bottleneck of

this approach is the computation of K∗K, which can still take very considerable time.

On the other hand, solving the same linearized problem by the method described

in Sec. 7 and Appendix B of [1] is a much simpler task, and this approach yields,

essentially, the same result. Indeed, in all cases we have considered, the two results

were visually indistinguishable. This fact illustrates the proposition that considering

the matrices A and B separately rather than combining them into one large matrix K

is computationally advantageous even in the linear regime. One can understand this

improvement as a result of data reduction, that is, defining a transform of the data that

is smaller in size but still contains all essential information.

All linearized reconstructions shown below were obtained by regularizing and

solving the equation W |υ〉 = |υexp〉 (sec. 7 of [1]). The positive-definite matrix W of this

equation was Tikhonov-regularized by the operation W → W +λ2I. The regularization

parameter λ was adjusted manually to obtain the best linear reconstruction in each case

considered. The equation was then solved by the conjugate-gradient descent method.

We note that the computational complexity of computing W (which is exactly of the

same size as K∗K, that is, Nv × Nv) is much smaller than the numerical complexity

of computing K∗K. Indeed, computing W requires only the singular vectors of the

much smaller matrices A and B. Therefore, the main computational bottleneck of the

linearized inversion is removed in this approach.

We have applied different linearization methods, including first Born, first Rytov

and mean-field approximations as described in Appendix A of [1]. The choice of a

linearization method only affects the way in which the data are computed and not

the matrices K or W . Extensive simulations have revealed that reconstructions based

on first Rytov or mean-field approximations do not provide any noticeable advantages

when compared to first Born. First Born and first Rytov reconstructions are compared

in Fig. 2 below for illustrative purposes, but in all other cases only first Born-based

reconstructions are shown.

3.6. Error measures

To quantify the convergence of the method, we use normalized root mean square errors

ηχ (error of the solution) and ηΦ (error of the equation), and the ratio of the off-diagonal

and diagonal L2 norms of the matrix V , ηV . These quantities are are defined as

η2
χ =

1

Nvχ2
0

Nv
∑

n=1

[

χ(Reconstructed)
n − χ(True)

n

]2
, (31a)
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η2
Φ

=
1

NdNsχ2
0

Nd
∑

i=1

Ns
∑

j=1

[Φij − (ATB)ij]
2 , (31b)

ηV =

∑

i,j(1 − δij)|Vij|2
∑

i |Vii|2
. (31c)

Note that ηχ is computed after Step 1 of the streamlined iteration cycle (Sec. 5.3 of [1]).

The error ηΦ is computed after Step 4 of this algorithm. After Step 5, the T-matrix is

fully data-compatible and the error in question is zero up to the numerical precision of

the computer. It should be kept in mind that ηχ can be computed only if the target is

known a priori, which in practical applications is almost never the case. However, ηΦ

can be computed even if the target is not known a priori.

Also note that in the streamlined algorithm described in Sec. 5.3 of [1] and which

we use in all simulations, a non-diagonal V is never explicitly computed. To gain access

to ηV , we have added an extra computation to the algorithm: between Step 5 and

Step 1 (just when the iteration index is increased by one), we computed V according

to Vk = (I + TkΓ )−1Tk. This computation is not needed for the algorithm to work,

and we repeated it every tenth iteration in order not to increase the computational

cost significantly. The matrices Vk obtained in this manner are somewhat ad hoc: they

are not used directly by this algorithm but rather illustrate how closely a given Tk

corresponds to a diagonal matrix Dk = D[Vk].

4. Numerical results

4.1. Small target

Reconstructed images of the small target after 900 DCTMC iterations are shown in Fig. 2

for the near-field zone arrangement of sources and detectors and for various degrees of

contrast. Images obtained by linearized inversion are also shown for comparison. It can

be seen that the linearized image reconstruction methods break down between χ0 = 0.01

and χ0 = 0.1. First Rytov approximation does not provide a visible advantage over first

Born, and the same is true for the mean-field approximation (data not shown). However,

DCTMC yields reconstructions that are close to the correct result for all values of the

contrast used. At χ0 = 1.75, the DCTMC reconstruction starts to visibly break down.

The reason for this is incorrect assignment of three noninteracting voxels, as can be seen

from the figure with sufficient magnification. The vicinity of these three voxels is also

reconstructed incorrectly. So the breakdown in this case is due to the ad hoc algorithm

for assigning the noninteracting voxels. This problem is not fatal for DCTMC as the

algorithm can be adjusted. For example, one can change the initial threshold condition

for assigning the noninteracting voxels to be 1/200 of the maximum rather than 1/100.

Note that it is possible to learn whether some noninteracting voxels have been assigned

incorrectly by looking at the convergence curve for the error ηΦ (see Fig. 5 below). Doing

so does not require any a priori knowledge of the target. A detailed discussion of the

convergence curves is given below.
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Figure 2. Linear (top and middle rows, marked FB and FR) and nonlinear (bottom

row, marked NL) reconstructions of the small target for different levels of contrast

χ0. The source/detector planes are in the near-field zone of the sample. The

quantity shown by the color scale in each plot is χn/χ0, where χn is the reconstructed

susceptibility of the n-th voxel (real under the assumptions used) and χ0 is the

amplitude of the shape function. For the linearized reconstructions, FB denotes first

Born approximation and FR denotes first Rytov approximation.

Reconstructions of the small target for the intermediate- and far-field zone

source/detector arrangements are shown in Figs. 3 and 4. In these cases, some

information contained in the evanescent waves is lost and the reconstructions look

progressively worse even in the case of weak nonlinearity. This is true for both linearized

reconstructions and DCTMC. For the strongest contrast used, χ0 = 1.75, DCTMC

reconstruction is obviously not useful in both cases. In the intermediate-field zone

arrangement, the reason for the breakdown is that the algorithm has assigned many

non-interacting voxels incorrectly. We emphasize again that the algorithm for assigning

noninteracting voxels can be adjusted, but in this work we have intentionally applied the

same prescription to all cases considered. In the case of far-field zone arrangement, the

DCTMC algorithm is not converged: not enough iterations are done to cross over from

the initial slow convergence region (discussed below) into the fast convergence regions

wherein the nonlinear problem is actually solved. Therefore, DCTMC reconstructions
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Figure 3. Same as in Fig. 2 but the source/detector planes are located in the

intermediate-field zone of the sample.

in this case are not much better than the linearized reconstructions, although some

improvement is visible for χ0 ≤ 0.175. However, this result should not be viewed

as too detrimental for the method. We believe that reconstructions in the far-field

source/detector arrangement can be substantially improved by starting off the iterations

with an initial guess for V and using the linearized inversion to this end. This conjecture

is substantiated below when we discuss the convergence data. In this paper, we start off

all reconstructions from an initial guess T and this may not provide a fair comparison

for all three source/detector arrangements for the reason that will be explained below.

The errors ηχ, ηΦ and ηV for the small target and for all source/detector

arrangements are shown in Fig. 5 as functions of the iteration number, i. We start

the discussion of convergence with the error of reconstruction, ηχ. The curves ηχ(i) all

look very similar (for a given source/detector arrangement) and are almost independent

of χ0, except for χ0 = 1.75. The latter case will be discussed separately. We now

consider the curves ηχ(i) for χ0 < 1.75. It can be seen that these curves describe

three distinct convergence regimes. The classification is obvious for the near-field zone

source/detector arrangement and can also be discerned in the intermediate-field zone

arrangement. In the far-field zone arrangement, not enough iterations are made to see

all three convergence regimes. Specifically, the convergence regions are as follows.

First, there is a region of slow convergence. While DCTMC is in this regime,

the reconstructed values χn (or αn) are all very small. Therefore, it can be concluded

that the initial iterations simply solve the linearized inverse problem by the iterative

algorithm described in Sec. 7 of [1] (Richardson first-order iteration). Naturally,

convergence of this iterative process is expected to be slow because we did not use
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Figure 4. Same as in Fig. 2 but the source/detector planes are located in the far-field

zone of the sample.

Tikhonov regularization as in modified Step 5, Sec.7 of [1]. Moreover, the rate of

convergence is decreased when we move from the near-field to intermediate-field and

far-field zones. In principle, this initial slow convergence regime can be completely

avoided by solving the linearized problem directly or by a fast iterative method such as

conjugate-gradient descent, and then using the result as the initial guess for DCTMC.

As is explained in Sec. 3.5, linearized inversion can be obtained relatively fast with the

use of data reduction that is inherent in treating the matrices A and B separately rather

than combining them into one large matrix K. Note that we have already implemented

this approach and the preliminary results indicate that it works as expected; however,

a detailed investigation of this and other improvements of the method will be reported

separately.

Second, there is a region of fast convergence. Assignment of noninteracting voxels

occurs in this range of iteration indexes. If the curves are viewed with sufficient

magnification, it can be seen that they are not smooth but contain ”kinks”, that is,

points where the slope changes abruptly. This change of slope occurs when one or more

noninteracting voxels are determined correctly.

Third, there is the last region in which the rate of convergence is lower than in the

second region but still much larger than in the first, slow convergence region. Clearly, the

error ηχ(i) decreases in the third region according to an exponential law with the actual

exponent depending on the source/detector arrangement. This exponential convergence

regime sets in faster and is more pronounced in the case of near-field zone source/detector

arrangement. We note that, in this convergence regime, all noninteracting voxels have

been determined correctly and the algorithm improves its estimate of the amplitudes of
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the interacting voxels. Apparently, for the near-field zone source/detector arrangement,

the error ηχ continues to decrease to some very small values. This means that the

reconstructions can be made very precise. However, the exponential convergence can

not continue indefinitely because the error ηχ can not decrease to an arbitrarily small

value; it is bounded from below either by the ill-posedness of the inverse problem or by

round-off errors.

We note that in the case of far-field source/detector arrangement, the convergence

of Richardson iteration is too slow and 900 iterations that we have made is not enough

to see the crossover from slow to fast convergence regions. We can also conclude that,

in this case, DCTMC has not yet started to solve the nonlinear inverse problem and the

comparison with other source/detector arrangements is not entirely fair for this reason.

The above discussion is valid for the contrasts χ0 < 1.75. For χ0 = 1.75, the pattern

is quite different. Consider first the near-field zone source/detector arrangement, in

which case only three noninteracting voxels are assigned incorrectly. It can be seen

that, in the first, slow convergence region, the function ηχ(i) actually increases. These

jumps take place when noninteracting voxels are assigned incorrectly (apparently, too

early). Then there still exists the fast convergence region, wherein many noninteracting

voxels are assigned correctly. Finally, the third, exponential convergence region does not

exist for χ0 = 1.75. This is so because the incorrectly assigned noninteracting voxels

set a relatively large lower bound for the error ηχ. In the case of intermediate-field

zone source/detector arrangement, too many noninteracting voxels have been assigned

incorrectly early on so that the method is completely broken; the error ηχ increases and

fluctuates around some very large values. Finally, in the far-field arrangement, incorrect

assignment of interactive voxels occurred only for the largest contrast, χ0 = 1.75.

We next discuss the error ηΦ. This error can be computed even if the target is not

known a priori. First, we note that the dependence ηΦ(i) can also be classified into three

different regimes (slow, fast and exponential), just as it was done for ηχ(i). However,

unlike in the case of ηχ(i), the curves ηΦ(i) depend noticeably on the contrast, χ0. The

dependence is, of course, weak for small χ0. Thus, the two curves for χ0 = 0.00175 and

χ0 = 0.0175 are barely distinguishable (in each source/detector arrangement). However,

the curves for χ0 = 0.0175, χ0 = 0.175 and χ0 = 0.875 can be easily distinguished. The

difference is most pronounced in the exponential convergence region. The exponent

appears to be the same but the overall factor depends on χ0. This dependence of ηΦ

on χ0 is a manifestation of the nonlinearity of the inverse problem. Indeed, it can be

easily shown that, in the linear regime χ0 → 0, ηΦ is independent of χ0. We note

that the dependence on χ0 can also be visible in the slow convergence region of the

iteration indexes. This does not contradict the previously made observation that, in

the slow convergence regime, DCTMC solves the linearized problem iteratively. The

reason is that the definition of ηΦ involves the data matrix Φ, which, in general, is not

proportional to χ0.

It was mentioned above that the overall factor of the function ηΦ(i) in the

exponential convergence region depends on χ0. Initially, this factor increases with
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χ0. More generally, the curve ηΦ(i) for χ0 = 0.875 goes higher than the curve for

χ0 = 0.175 and the curve for χ0 = 0.175 goes higher than the curve for χ0 = 0.0175, etc.

However, at larger values of χ0, this tendency is reversed. Thus, the curve for χ0 = 1.75

starts lower than the curve for χ0 = 0.00175 even before any noninteracting voxels have

been assigned. This non-monotonous dependence of ηΦ on χ0 is a manifestation of the

rather complicated nonlinearity of the inverse problem and is suggestive of a resonance

phenomenon. That is, when we increase the value of χ0, it passes close to a pole in the

complex plane where the T-matrix has a singularity. We note that this non-monotonous

dependence was observed for the large target as well (see below).

The curves ηΦ(i) are rather interesting in the strong nonlinearity case χ0 = 1.75.

For the near-filed zone source/detector arrangement, the error χΦ initially increases

due to the incorrect assignment of the three noninteracting voxels. Then the error

drops rapidly when many noninteracting voxels are assigned correctly. Then the error

undergoes exponential decay with the same exponent as for the smaller contrasts.

Interestingly, the error ηχ in this range of iteration indexes is nearly constant while

the error ηΦ steadily decreases. This is so because ηχ is dominated at this point by the

three incorrectly assigned noninteracting voxels while the algorithm still improves the

accuracy of χn in the remaining majority of voxels. Finally, the exponential decay of

ηΦ(i) crosses over to exponential growth. Why this happens is not entirely clear; one

could expect ηΦ(i) to plateau. We can conjecture that this crossover to exponential

growth occurs due to a complex interplay of the physical constraint (that is still being

applied at each iteration) and the use of an incomplete computational domain due to the

incorrect exclusion of some of the voxels. We note in passing that the best reconstruction

result for χ0 = 1.75 would have been obtained if we stopped the iterations at i ≈ 600.

In Figs. 2 and 4, we compare the reconstructions after exactly the same number of

iterations, i = 900. However, below we provide a comparison of reconstructions obtained

at different iteration numbers (for the large target), one of which is deemed to be optimal

from the analysis of the ηΦ(i), for the large target (in a similar convergence regime).

For the intermediate-field zone source/detector arrangement, when many

noninteracting voxels are incorrectly determined at the early stages of the iterations,

the curve ηΦ(i) with χ0 = 1.75 appears to be chaotic and does not decay significantly.

It can be clearly distinguished from the other curves. This behavior of ηΦ(i) gives one

an unambiguous indication that the obtained DCTMC reconstruction is not useful. For

the far-field zone source/detector arrangement, not enough iterations have been made to

see this chaotic behavior but it is expected to manifest itself at larger iteration numbers.

Finally, we consider the convergence of the off-diagonal norm of V as is quantified

by ηV . This dependence is qualitatively similar to that of ηΦ. Obviously, incorrect

assignment of noninteracting voxels prevents ηV from converging to zero.
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Figure 5. Convergence data for the small target. Errors ηχ (a,b,c), ηΦ (d,e,f) and

ηD (g,h,i) are plotted vs the iteration number i for the near-field zone (NFZ: a,d,g),

intermediate-field zone (IFZ: b,e,h) and far-field zone (FFZ: c,f,i) source-detector

arrangements. The different curves correspond to different contrast χ0 as follows:

χ0 = 0.00175 (1), χ0 = 0.0175 (2), χ0 = 0.175 (3), χ0 = 0.875 (4), and χ0 = 1.75 (5).

4.2. Large target

We now turn to the large target. In this case, we have also used 900 iterations for

each nonlinearity regime but considered only the near-field zone arrangement of sources

and detectors. In Fig. 6 we show the reconstructions for five different values of the

contrast, from χ0 = 0.002 to χ0 = 2. Of course, the computational domain and the

size of the inhomogeneities are in this case larger than in the small target and we can

expect the onset of nonlinearity to occur at smaller values of the contrast. Also, the

linearized inverse problem is more ill-posed because there are voxels in the interior

of the large target that are quite far from any source or detector and not effectively

probed by incident evanescent waves. Indeed, the linearized reconstructions of the large

target are not as good as the similar reconstructions of the small target. We emphasize

that these are the best linearized reconstructions we were able to obtain by tuning

the regularization parameter. Also, and as was the case for the small target, neither

first Rytov nor the mean-field approximation provide a noticeable improvement of the

linearized reconstructions (data not shown).
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We note however that the DCTMC reconstructions of the large target in the weak

nonlinearity regime (e.g., χ0 = 0.002) are considerably better than the linearized

reconstructions. Moreover, it is not possible to improve the image quality of the

linearized reconstruction by setting to zero the amplitudes of all voxels that are less in

magnitude than, say, 1/40 of the maximum (recall that 40 is the smallest thresholding

factor used by us in this paper to determine noninteracting voxels in DCTMC).

In fact, a voxel with the reconstructed susceptibility χn = χ0/40 is not visually

distinguishable from zero in the color scheme used in this paper. Therefore, the difference

in quality between DCTMC and linearized methods is not a trivial consequence of image

”roughening”. The result may appear counter-intuitive. Indeed, in the limit χ0 → 0,

the linearized inversion methods and DCTMC are solving exactly the same problem.

However, the two approaches involve different regularization methods. In linearized

inversions, Tikhonov regularization is used. In DCTMC, regularization is afforded by

applying the physical constraint and sparsity checks at each iteration. Apparently, the

latter approach is much better at reproducing sharp edges.

As we move to the strong nonlinearity regime, the linearized reconstructions break

down. At χ0 = 0.2, the linearized reconstruction is not useful while DCTMC still

provides a quantitatively accurate result. The contrast level χ0 = 1 is borderline

for DCTMC. It can be seen that the smaller, higher contrast inhomogeneity is still

reconstructed correctly. However, the interior region of the larger inhomogeneity is not

properly reconstructed (for the most part, underestimated). The boundaries of the larger

inhomogeneity are nevertheless clearly visible. Note that we have encountered a similar

situation in the case of nonlinear inversion by inverse Born series [22]. As in the case of

the small target, the reason for the incorrect reconstruction of the larger inhomogeneity

is the incorrect assignment of noninteracting voxels. However, the reconstruction is not

yet entirely broken for the contrast χ0 = 1. At χ0 = 2, too many noninteracting voxels

have been assigned incorrectly and the resulting reconstruction is not useful.

Convergence data for the large target are shown in Fig. 7. The behavior of the errors

is qualitatively similar to what was observed in the case of the small target, although

the overall rate of convergence is obviously lower. We note that the results for χ0 = 1

and χ0 = 2 are qualitatively different from those for smaller values of the contrast. This

is explained by the incorrect assignment of noninteracting voxels at the higher levels of

contrast.

We note that the curve ηΦ(i) for the borderline case χ0 = 1 has a well pronounced

minimum at i = 590. We have observed a similar non-monotonous convergence for

the smaller target as well. Now we compare directly the reconstructions of the large

target with χ0 = 1 obtained at i = 590 (the ”optimal” iteration index) and i = 900

in Fig. 8. As expected, the result is visibly better at i = 590. The difference is not

dramatic. However, this result clearly indicates that monitoring the error ηΦ(i) is a

useful approach to deciding when the iterations should stop.

As for the off-diagonal norm of V , ηV , we see again that it converges to zero unless

some non-interacting voxels have been incorrectly assigned. At that point, there is no



II. Simulations 22

FB

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

NL

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

χ0 = 0.002 χ0 = 0.02 χ0 = 0.2 χ0 = 1.0 χ0 = 2.0

Figure 6. Same as in Fig. 2, but for the large target, near-field zone source/detector

arrangement (see Sec. 3.4), and a somewhat different set of contrasts χ0. Utilization

of first Rytov approximation for linearized reconstruction does not provide any

improvements over first Born approximation, and the corresponding results are not

shown in this figure.

diagonal matrix V that is simultaneously consistent with both the incorrectly assigned

voxels and the data, and ηV (i) ceases to decrease.

5. Discussion

We have provided an initial numerical investigation of data-compatible T-matrix

completion (DCTMC), which is an iterative numerical method for solving nonlinear

inverse problems with large data sets. The method was implemented for the scalar wave

equation of the form (2). We have used physical constraints and sparsity checks for

regularization and improving the convergence rate of DCTMC. In many of the cases

we have considered, DCTMC provided quantitatively accurate reconstructions whilst

any linearized inversion (including those based on first Born, first Rytov or mean-field

approximations) have failed. This provides us with a proof-of-principle demonstration of



II. Simulations 23

(5)
(4)
(3)

(2)
(1)

ηχ

i

10

1

10−1

10−2

ηΦ

i

10−2

10−3

10−4

ηV

i

8006004002001

10

1

10−1

10−2

Figure 7. Convergence data for the large target. The different curves correspond to

different contrast χ0 as follows: χ0 = 0.002 (1), χ0 = 0.02 (2), χ0 = 0.2 (3), χ0 = 1

(4) and χ0 = 2 (5).
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Figure 8. Comparison of the reconstructions of the large target with χ0 = 1 (Case

4 in Fig. 7) for different numbers of iterations imax, as labeled. Reconstruction with

imax = 490 is marginally better than the reconstruction with imax = 900.
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the method’s utility. However, when the target contrast was increased beyond a certain

point, DCTMC reconstructions were broken as well. The reason for this breakdown

is incorrect and too early assignment of noninteracting voxels. This is not a flaw of

the DCTMC method itself but an artifact of the ad hoc prescription that was used

to identify the noninteracting voxels. In principle, we can remove the sparsity checks

from the algorithm altogether. This will definitely fix the problem associated with the

incorrect assignment of noninteracting voxels, but in this case DCTMC convergence in

the severe nonlocality regime can be slow. Therefore, appropriate sparsity checks are

needed to balance the rate of convergence and the possibility of incorrect restriction of

the computational domain. A reasonable approach to obtaining this balance appears to

involve monitoring the error ηΦ (31b) and adjusting the parameters in the prescription

for identifying noninteracting voxels.

The main conclusion of this paper is that DCTMC is a viable method for solving

strongly nonlinear inverse problems with extremely large data sets. Even though we

did not use supercomputers or any massively parallel computational platforms, we

have succeeded in solving a strongly nonlinear inverse problem with more than 2 · 106

data points. Still, many questions regarding DCTMC improvement, optimization and

applicability remain to be investigated either theoretically or numerically. Some of these

topics for future research are listed below.

• It makes sense to use the linearized reconstruction as the initial guess for DCTMC.

We have already implemented this approach in a number of cases and it appears

to work as expected (by removing the slow convergence region completely), but a

more systematic investigation is needed.

• It is obvious from the general reciprocity principle that interchanging the source

and detector does not change the measurement. However, a somewhat counter-

intuitive fact is that inclusion of an equation in which the source and detector

are interchanged in (24) is not a redundant operation, unless we explicitly enforce

symmetry of the T-matrix (in the real-space representation). But as was discussed

in [1], this is not done in DCTMC. The ”experimental” T-matrix Texp is not

symmetric in the real-space representation and is not mathematically expected

to be such. Under the circumstances, inclusion of the data points trivially obtained

by source-detector interchange (this does not require any additional physical

measurements) does provide an additional useful information about the T-matrix.

The role of this information on the iterative image reconstruction needs to be

investigated. We did obtain a preliminary indication that including this more

”complete” data set results in a better starting point for the iterations (a more

useful ”experimental” T-matrix) and can cut the computational time significantly.

• So far, we did not investigate in much detail various approaches to regularization. It

is obvious that, as the target size increases and as the source and detector surfaces

are moved to the far-field zone of the sample, the inverse problem becomes more ill-

posed. We can attempt a combination of Tikhonov regularization of the type that
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was discussed in Sec.7 of [1], physical constraints and potentially other methods.

However, complicated interaction between different types of regularization can exist

and a much more careful study of this question is required.

• There are questions of computational efficiency and inclusion of larger targets.

A combination of methods described in the points above is expected to increase

the rate of convergence or reduce the number of necessary iterations. Improving

the computational bottleneck (currently, the matrix inversion in the operation of

transforming V to T ) is another important goal for future research. We note that

some approximate approaches to speeding up this operations have been proposed

by Jakobsen and Ursin [6] and these approaches can be utilized by DCTMC.

• Finally, it would be interesting to apply the method to other physical models and

correspondingly to other free-space Green’s functions G0. Of particular interest is

the Green’s function of the diffusion equation, which can be obtained from (6) by

the analytical continuation k → ik.

Acknowledgments

This work has been carried out thanks to the support of the A*MIDEX project (No.

ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government

program, managed by the French National Research Agency (ANR) and was also

supported by the US National Science Foundation under Grant DMS 1115616 and by

the US National Institutes of health under Grant P41 RR002305. The authors are

grateful to J.C.Schotland and A.Yodh for very useful discussions.

References

[1] Levinson H W and Markel V A 2014 Inverse Problems Submitted

[2] Bronstein M M, Bronstein A M, Zibulevski M and Azhari H 2002 IEEE Trans. Med. Imag. 21

1395–1401

[3] DeVore G R and Polanko B 2005 J. Ultrasound

[4] Liu Q and Gu Y J 2012 Tectonophysics 16 31

[5] Jakobsen M 2012 Stud. Geophys. Geod. 56 1

[6] Jakobsen M and Ursin B 2015 J. Geophys. Eng. 12 400

[7] Carney P S, Frazin R A, Bozhevolnyi S I, Volkov V S, Boltasseva A and Schotland J C 2004 Phys.

Rev. Lett. 92 163903

[8] Belkebir K, Chaumet P C and Sentenac A 2005 J. Opt. Soc. Am. A 22 1889–1897

[9] Belkebir K, Chaumet P C and Sentenac A 2006 J. Opt. Soc. Am. A 23 586–595

[10] Bao G and Li P 2007 Opt. Lett. 32 1465–1467

[11] Mudry E, Chaumet P C, Belkebir K and Sentenac A 2012 Inverse Problems 28 065007

[12] Boas D A, Brooks D H, Miller E L, DiMarzio C A, Kilmer M, Gaudette R J and Zhang Q 2001

IEEE Signal Proc. Mag. 18 57–75

[13] Arridge S R and Schotland J C 2009 Inverse Problems 25 123010

[14] Purcell E M and Pennypacker C R 1973 Astrophys. J. 186 705–714

[15] Draine B and Flatau P 1994 J. Opt. Soc. Am. A 11 1491–1499

[16] Markel V A 2007 J. Quant. Spectrosc. Radiat. Transfer 103 428–429

[17] Draine B T 1988 Astrophys. J. 333 848–872



II. Simulations 26

[18] Markel V A 1992 J. Mod. Opt. 39 853–861

[19] Lakhtakia A 1992 Optik 91 134–137

[20] Draine B T and Goodman J 1993 Astrophys. J. 405 685–697

[21] Ban H Y, Busch D R, Pathak S, Moscatelli F A, Machida M, C S J, Markel V A and Yodh A G

2013 J. Biomed. Opt. 18 026016

[22] Markel V A, O’Sullivan J A and Schotland J C 2003 J. Opt. Soc. Am. A 20 903–912


