
HAL Id: hal-01282034
https://hal.science/hal-01282034

Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMSDL: A declarative language for adaptive monitoring
control

Messaoud Aouadj, Thierry Desprats, Emmanuel Lavinal, Michelle Sibilla

To cite this version:
Messaoud Aouadj, Thierry Desprats, Emmanuel Lavinal, Michelle Sibilla. AMSDL: A declarative
language for adaptive monitoring control. 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2015), May 2015, Ottawa, Canada. pp. 850-853. �hal-01282034�

https://hal.science/hal-01282034
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15085

The contribution was presented at :
http://im2015.ieee-im.org/

Official URL: http://dx.doi.org/10.1109/INM.2015.7140392

To cite this version : Aouadj, Messaoud and Desprats, Thierry and Lavinal,
Emmanuel and Sibilla, Michelle AMSDL: A declarative language for adaptive
monitoring control. (2015) In: 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2015), 11 May 2015 - 15 May 2015
(Ottawa, ON, Canada).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

AMSDL: a Declarative Language for Adaptive

Monitoring Control

Messaoud Aouadj, Thierry Desprats, Emmanuel Lavinal, Michelle Sibilla

University of Toulouse

IRIT UMR 5505

118 Route de Narbonne, F-31062 Toulouse, France

Email :{Firstname.Name}@irit.fr

Abstract—More and more requirements are given on the

ability to precisely control at run time the achievement of a

network and communicating systems monitoring activity. This

paper gives an overview of AMSDL (Adaptive Monitoring

Strategy Description Language), which is a language under

development dedicated at the expression of adaptive monitoring

strategies. AMSDL will provide both the network managers and

the software developers of autonomic modules with the capacity

to easily declare, more than the resources to be managed, the

logics that will govern the dynamic monitoring behavior

according to the variations of functional, informational and

operational requirements.

Keywords—adaptive monitoring; domain specific language;

policy-based management

I. INTRODUCTION

Monitoring has become an increasingly important
functionality upon which are currently built the novel
paradigms of network and system management such as
autonomic, context-aware or software defined networking. As
a result, more requirements are made on the ability to precisely
control at run time the achievement of a monitoring activity.

Adaptive monitoring can be defined as the ability an
online monitoring function has to decide and to enforce,
without disruption, the adjustment of its behavior for
maintaining its effectiveness, with respect to the variations of
both functional requirements and operational constraints, and
possibly for improving its efficiency according to self-
optimization objectives. Previous work consisted, according to
a bottom-up approach, in the definition and in the
implementation of a control plane of a running monitoring
activity [1]. It remains however a real need to supply the
administrators and the monitoring applications developers with
tools facilitating the consideration of the dynamics, at a high
level of abstraction, which free them from details of the
underlying specific technologies.

This article is devoted to the definition and to one
implementation of AMSDL (Adaptive Monitoring Strategy
Description Language), which is a DSL (Domain Specific
Language) dedicated to the programmability of the control of
adaptive monitoring modules. AMSDL is intended to be used
mainly at the management system level, but it could also be
used in case of self-monitored devices, each time an adaptive

monitoring is required. In Section II we present the motivations
for such a language through both a classical adaptive
monitoring scenario and a brief synthesis of the state of the art.
While section III gives an overview of the proposed
architecture, section IV presents the main elements of
AMSDL. Section V describes one AMSDL implementation we
achieved and successfully tested in a Ponder2 and Java/WBEM
environment. Section VI concludes the article and opens
perspectives for this language the originality of which lies in
the importance granted to the expression of adaptation.

II. MOTIVATIONS

A. Illustrative Scenario

This section describes a use case of adaptive monitoring
that constitutes a classical pattern in the process of establishing
a diagnostics. The proposed scenario is based on monitoring
adaptations related to both polling of a managed element’s
specific properties (e.g. operational status) and to the
observation of the frequency of notifications reception (event
reporting). The underlying goal is to dynamically adapt the
polling activity according to the managed system’s health but
also, when needed, to benefit of new additional data useful in
diagnosing accurately incidents.

Initially and when the monitored system is healthy, a
polling of a global operational status of each component of the
managed system is active. An event reporting mechanism is
also activated to detect any sporadic behavior (we assume here
a fault in the managed system when a burst of notifications is
received). Following this burst detection an adaptation of the
monitoring activity is triggered. It consists in suspending the
current polling, launching a new polling mechanism to collect
more precise data, and finally in switching the mode of
observation of event listening from burst to silence. When no
more notifications are received (i.e. silent behavior detected),
another adaptation is triggered that aims to turn the system
back to its normal monitoring configuration.

Besides, the operational context of the monitoring function
can be convenient to a reduction of its execution. For example,
decrease the polling frequency in night-period or during some
underlying resources overload period, and then restore it in
case of situation reversal. In this scenario, the hypothesis is
made that a notification of such a situation change can trigger

an adjustment of the polling period that concerns the global
operational status.

B. Previous Work

In this section, we briefly mention several works that
contributed in defining some specific language that considers
the control of network and/or complex systems monitoring.

ANEMONA [2] (A NEtwork MONitoring Application) is a
simple language designed for programming network
monitoring applications. The language designers have relied on
the SNMPv3 framework and on the paradigm of policy based
management. In fact, compiling an ANEMONA program will
allow to deploy policies and to monitor the corresponding
events within the SNMPv3 framework. Its usage exclusively
concerns IP networks. M.Bennett and Al [3] described a DSL
for the NASA Constellation Launch Control System (LCS)
project. The DSL, which was implemented using the Python
programming language, provides a set of constructs for
specifying and programming test, checkout, and launch
processing applications for flight and ground systems.
EDBSLang [4] (Event Behaviour Specification and
Description Language) is a language for programmable traffic
flow monitoring for multi-service self-managing networks.
EDBSLang developing was mainly inspired and motivated by
the ODM (On-Demand Monitoring) paradigm, which is based
on the fundamental principle that the monitoring components
must be designed in a way that they can adapt their behavior
during execution. This DSL strongly depends on the On-
Demand MIB standard. Appeared in 2010, Frenetic [5] is a
DSL for the SDN (Software Defined Networking) paradigm.
Frenetic defines a sub-query language that allows subscribing
to streams of information about the network status. It also
allows programmers to control the information they receive by
using a collection of operators.

However, none of these DSLs brings a high level of
genericity such as semantics are no dependent of the monitored
domain, of the monitoring mechanisms, of the underlying
protocols, and of the management information models.
Therefore, we designed our DSL in order that, firstly it fits in
an integrated management context and it is completely
detached from any application domain, and secondly, it allows
network operators to express, in an easy and fully declarative
way, their various business needs for adaptive monitoring.
Furthermore, in order to satisfy these strong syntax constraints,
we have chosen to build our language as an external DSL,
instead of an internal one that bends and twists a host language
like Python. This choice allowed us to have more control on
the language’s expressiveness and programming logic.

III. GENERAL ARCHITECTURE

Fig. 1 illustrates the general architecture that supports the
achievement of the adaptation of a monitoring activity. In the
upper part of the figure are the contributions that concern the
governance of the monitoring activity: they facilitate the
programming of the monitoring control plane.

The monitoring governability, namely the ability to decide
if and how a monitoring activity should be adapted, is first
supported by the expression of strategies using the dedicated

AMSDL language and secondly, by a decision engine, which
in the course of the received events, and in accordance to these
strategies, can activate the achievement of the adjustments of
the monitoring activity. AMSDL was designed to favor the
representation, at a high level of abstraction, of the dynamics of
a monitoring activity. Adaptation-oriented, AMSDL proposes
instructions to declare, beyond the resources that have to be
observed for a particular functional management purpose, the
logic that governs the evolution of their monitoring according
to the changes of business requirements, or state of the
managed system, or operational context of execution. To
capture such a logic, AMSDL adopts an ECA
(Event/Condition/Action)-based style. It allows to declare
events, and when they have to trigger adaptation, to associate
them to monitoring adjustment instructions.

An AMSDL program can serve as an input to the
configuration of an engine automating the decision-making
continuum, which controls the running adaptive monitoring
activity. In practice, AMSDL high-level instructions will be
translated into low-level configurations. In this article,
AMSDL instructions are translated by our code generator
module into PonderTalk rules and Java code. However, it is
important to stress that AMSDL is not dependent on any
technology, and can perfectly be used to target different
environments by only adapting the code generator module.

Fig. 1. Architecture générale d’une surveillance adaptative

The adaptability of the monitoring, namely the ability to
dynamically modify at run time the behavior of a monitoring
activity, is supported by a monitoring service (Adaptable
Monitoring Service in Fig. 1), which is adaptable via an
interface. This interface is the result of five atomic operators
(i.e., add, delete, suspend, resume, update), each of them
leading to a change of the state of a monitoring activity. The
precise definition of these operators is described in [6].

The operational plane, namely the achievement of the
monitoring activity itself, is supported by a set of threads,
managed by the control plane. These threads are related to
basic monitoring mechanisms (e.g. polling, event reporting)
that are configurable. The configurability of a monitoring
mechanism refers to the ability to initially set and dynamically

modify its scope as well as the parameters that govern its
individual behavior [7]. This latest property is sine qua none
for both adaptability and governability of an adaptive
monitoring.

IV. AMSDL: A DSL DEDICATED TO ADAPTIVE MONITORING

It is for making easier the expression of monitoring control
policies that the AMSDL declarative language was designed.
AMSDL allows the monitoring application programmers to
specify with a high level of abstraction their adaptive
monitoring strategy, considering important management
business requirements and operational constraints, and
regardless of the underlying management technologies used.
The developers are more focused on essential issues such as:
What to monitor? How to organize the monitoring mode and
domain? Why, when and how to change the monitoring?
AMSDL proposes a high level of genericity while hiding to the
developers the implementation technology details and being
the most agnostic as possible of the decision-making engine,
the monitoring system and the managed system.

An AMSDL program is composed of three main parts
(described in the following paragraphs): the first one is for the
declaration of the monitored resources, the second one
concerns the events and the third one is dedicated to the
monitoring activity dynamics. As an example, the listing in
Fig. 3 gives an extract of the AMSDL specification of the
control plane of the monitoring function described in the
scenario presented in Section II.

// Monitored Resources (and Group) declaration part
MonitoredResource MyResource1 = create ("…");
MonitoredResource MyResource2 = create ("…");
MonitoredResource MyResource3 = create ("…");
// Event declaration part
Event IncidentBurstDetectedEv;
Event IncidentSilenceDetectedEv;
Event StressedOperationalContextEv;
Event UnstressedOperationalContextEv;
// Monitoring Strategy declaration part
MonitoringStrategy caseStudy {
 // Profile declaration part
 PollingProfile Hight_Accuracy {
 QoI : Accuracy = 5000,
 Completeness = "EnabledState" , Timeliness = 800 ;
 StopCondition : UnproductiveRequestThreshold = 5; }
 PollingProfile Low_Accuracy {
 QoI : Accuracy = 10000,
 Completeness = "EnabledState" , Timeliness = 800 ;
 StopCondition : UnproductiveRequestThreshold = 5; }
 EventReportingProfile Detect_Burst {
 Detect : Burst;
 DetectionCondition : DetectionInterval =10000 and
 OccurenceThreshold = 3; }
 EventReportingProfile Detect_Silence {
 Detect : Silence;
 DetectionCondition : DetectionInterval =20000 ;}
 // Monitoring instructions declaration part
Initial {
 poll MyResource1 accordingTo Hight_Accuracy ;
 listenTo MyResource2 accordingTo Detect_Burst ;
 }
Adaptation StartIncidentDiagno {
 suspend polling MyResource1 according to Hight_Accuracy ;
 poll MyResource3 accordingTo Hight_Accuracy ;
 listenTo MyResource2 accordingTo Detect_Silence
 insteadOf Detect_Burst;
 }
Adaptation StopIncidentDiagno {
 stop polling MyResource3 accordingTo Hight_Accuracy;
 resume polling MyResource1 accordingTo Hight_Accuracy;
 listenTo MyResource2 accordingTo Detect_Burst

 insteadOf Detect_Silence;
 }
Adaptation IncrPollPeriod {
 poll MyResource1 accordingTo Low_Accuracy;
 insteadOf Hight_Accuracy;
 }
Adaptation DecrPollPeriod {
 poll MyResource1 accordingTo Hight_Accuracy;
 insteadOf Low_Accuracy;
 }
 // Adaptation strategy declaration part
when IncidentBurstDetectedEv apply StartIncidentDiagno;
when IncidentSilenceDetectedEv apply StopIncidentDiagno;
when StressedOperationalContextEv apply IncrPollPeriod;
when UnstressedOperationalContextEv apply DecrPollPeriod;
 }

Fig. 2. Example of an AMSDL program

At the beginning of the program, the administrators have to
specify the object of the monitoring. They can use the
instructions MonitoredResource and MonitoredGroup. The
resource declaration statements allow programmers to bind an
identifier to a physical or a logical resource that belongs to the
monitored environment, thus making it easier to identify and
manipulate within the monitoring program.

Events are the catalysts of the adaptations of the monitoring
activity. In the second part of a program, the programmer has
to define the events that are involved. AMSDL proposes a
minimal version for event definition thanks to the instruction
Event, which defines an event identifier. Fig. 2 shows the
definition of the four events that match to all the situation
changes as described in the illustrative scenario. Fig. 3 shows
other AMSDL syntactic elements that allow, if necessary, to
define attributes of an event (e.g. conveyed data within a
notification, hours in case of temporal event), or to specify the
source that produces the event, or also to specialize events by
adding the definition of a boolean expression as a simple way
to express the two first levels of an ECA policy rule.

Event <eventID> = {
 Attributes : <data>;
 TriggeredBy : <path>; }
<childEventID> is_a <fatherEventId> if (<condition)>

Fig. 3. Events declaration syntax

The last part of an AMSDL program is devoted to the
specification of the dynamic strategy that must govern the
monitoring activity. According to the syntax postponed in Fig.
4, this block is structured itself in three parts concerning
successively the definition of profiles of monitoring modes, the
specification of monitoring instructions and the expression of
the dynamics of adaptation.

MonitoringStrategy <strategyID> {
 //profiles declarations
 Initial {:
 //poll and listenTo instructions }
 Adaptation <adaptationID> {
 //poll,listenTo, stop, resume and insteadOf inst}
 …
 when <eventID> apply <adaptationID>; … }

Fig. 4. Monitoring strategy definition

The profile concept offers the programmers high level way
of expression of the configurability of the basic monitoring
mechanisms. In the current version of AMSDL, only two types
of profiles are defined, one for the polling mechanism, the
second one for event reporting mechanism. Their syntax is

presented in Fig. 5. For polling, criteria concerning the quality
of the collected information (QoI) can be specified (such as
freshness, accuracy, etc) as well as settings concerning the
stopping mode of the collect. An Event reporting profile allows
defining the modalities of detection of particular characteristics
of events reception. It is possible to configure the observation
of the arrival of events in burst mode, in silence mode, or even
in heartbeat mode while providing the temporal parameters
that control the detection. In the example reported in Fig. 2,
four profiles are defined: two for polling with a major
difference being in the temporal duration between two
successive getting operations, and two for Event reporting, the
first one defines that a burst is detected when at least 3 events
are received during a temporal window of 10s, and the second
one defines a silence when no event is received during 20s.

PollingProfile <profileID> {
 QoI : Accuracy = <integer>;
 Timeliness = <integer>; //ms
 Completeness = <string>;
 StopCondition :
 Duration | Quantity = <integer>; //ms }
EventReportingProfile <profileID> {
 Detect : <Burst | Silence | Heartbeat>;
 DetectionCondition :
 DetectionInterval = <integer> and //ms
 OccurenceThreshold = <integer> and
 TemporalAproximation = <integer> ; }

Fig. 5. Extract of the syntax for the definition of monitoring profiles

The part of an AMSDL program dedicated to the
declaration of monitoring instructions necessarily includes a
clause introduced by the keyword Initial. It then possibly
contains various blocks of adaptation instructions declared
thanks to the keyword Adaptation. The Initial clause
describes the initial state of a monitoring activity. It mentions
what are the polling and event reporting operations that have to
be initially launched, as well as their respective behavioral
profiles and their associated monitored resource. Each
Adaptation bloc allows to declare and to define an adjustment
of the monitoring via instructions for suspending, resuming or
definitively stopping a monitoring mechanism or for changing
a profile (insteadOf). The adaptations that are declared in Fig.
2 respectively refer to the four adjustments of the monitoring
activity that are presented in the scenario in Section II. Finally,
the last part is devoted at the expression of the strategy of
adaptation by associating the triggering events with the
adaptation instructions (those defined in the previous clauses).
The syntax, naturally built around the two keywords when and
apply, is faithful to the ECA policy style.

V. COMPILER PROTOTYPE

The definition of the AMSDL language does not impose
any specific implementation. As a proof of concept we
developed a compiler, which is able to first parse an AMSDL
source file, then to generate both ECA rules and Java code for
the policy based management engine Ponder 2 [8]. The
AMSDL compiler architecture is built on three main modules:
a lexical parser, a syntactical parser and a code generator. The
two parsers are generic (respectively implemented thanks to lex
and yacc) while the generator can be specialized for a specific
implementation of the interface of the adaptable monitoring
service. The code generator of the prototype is dedicated to the

use of a Ponder2 ECA engine. Two files are generated. The
first one contains the PonderTalk rules that represent the
adaptive monitoring policy derived from the AMSDL strategy.
The second file is a Java class devoted to the implementation
of the Action clause of an ECA rule. This class contains the
equivalent of the Initial and Adaptation clauses of the
AMSDL program. These expressions are Java RMI invocations
of the methods defined in the adaptable monitoring service
interface. We use the Java/WBEM implementation of this RMI
interface, which is detailed in [9].

We tested several use cases on the prototype. In particular,
the scenario presented in Section II was experimented, from
the compilation step to the real achievement of the monitoring
adaptations at runtime. Most importantly, with AMSDL, no
knowledge of PonderTalk or Java is required, and consequently
we were able to reduce the use case’s total number of lines of
code up to 70%.

VI. CONCLUSION ET PERSPECTIVES

The already realized efforts to provide programmers with
DSL for adaptive monitoring often end in solutions very
dependent on monitoring mechanisms, protocols, information
models or monitored system. AMSDL is a generic and
declarative language, the originality of which lies in the
emphasis of the control plane of a monitoring aiming to be
adaptive. The version of AMSDL presented in this paper can
easily be extended by integrating other basic monitoring
mechanism such as sampling. Besides, the modularity of the
proposed architecture allows to reuse most of the AMSDL
compiler as a basis for code generators targeting other de facto
standard monitoring platforms.

REFERENCES

[1] A. Moui, T. Desprats, "Towards self-adaptive monitoring framework for
integrated management", 5th Int. Conf. on Autonomous Infrastructure,
Management, and Security (AIMS), Nancy, France, June 13-17, 2011.

[2] E.P. Duarte Jr, M.A. Musicante, H.H. Fernandes, "ANEMONA : a
programming language for network monitoring applications",
International Journal of NetworkManagement, 18(4), August 2008

[3] M. Bennett, R. Borgen, K. Havelund, M. Ingham, D. Wagner,
"Development of a prototype Domain-Specific Language for monitor
and control systems", Aerospace Conf., March 2008 IEEE pp.1,18, 1-8

[4] R. Chaparadza, "A composition language for programmable traffic flow
monitoring in multi-service self-managing networks," Design and
Reliable Communication Networks, 2007. DRCN 2007. 6th
International Workshop on , vol., no., pp.1,8, 7-10 Oct. 2007

[5] N. Foster, A. Guha, M. Reitblatt, A. Story, M.J. Freedman, N.P. Katta,
C. Monsanto, J.; Reich, J. Rexford, C. Schlesinger, D. Walker, R.
Harrison, "Languages for software-defined networks," Communications
Magazine, IEEE , vol.51, no.2, pp.128,134, February 2013

[6] A. Moui, T. Desprats, E. Lavinal, M. Sibilla. "Information models for
managing monitoring adaptation enforcement", Int. Conf. on Adaptive
and Self-adaptive Systems and Applications (ADAPTIVE 12), Nice

[7] A. Moui, T. Desprats, E. Lavinal, M. Sibilla, "Managing polling
adaptability in a CIM/WBEM infrastructure", Systems and
Virtualization Management (SVM), 4th Int. DMTF Academic Alliance
Workshop on , vol., no., pp.1,6, 25-29 Oct. 2010

[8] Imperial College London, "Ponder2Project", [http://ponder2.net/]

[9] A. Moui, T. Desprats, E. Lavinal, M. Sibilla, "A CIM-based
framework to manage monitoring adaptability," Network and service
management (CNSM), 8th Int. Conference , vol., no., pp.261,265, 22-26
Oct. 2011

