
HAL Id: hal-01281979
https://hal.science/hal-01281979v1

Preprint submitted on 3 Mar 2016 (v1), last revised 17 Jun 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convex Super-Resolution Detection of Lines in Images
Kévin Polisano, Laurent Condat, Marianne Clausel, Valérie Perrier

To cite this version:
Kévin Polisano, Laurent Condat, Marianne Clausel, Valérie Perrier. Convex Super-Resolution Detec-
tion of Lines in Images. 2016. �hal-01281979v1�

https://hal.science/hal-01281979v1
https://hal.archives-ouvertes.fr


Convex Super-Resolution
Detection of Lines in Images
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Abstract—In this paper, we present a new convex formulation
for the problem of recovering lines in degraded images. Following
the recent paradigm of super-resolution, we formulate a dedicated
atomic norm penalty and we solve this optimization problem by
means of a primal–dual algorithm. This parsimonious model en-
ables the reconstruction of the lines from lowpass measurements,
even in presence of a large amount of noise or blur. Furthermore,
a Prony method performed on rows and columns of the restored
image, provides a spectral estimation of line parameters, with
subpixel accuracy.

I. INTRODUCTION

Many restoration or reconstruction imaging problems are
ill-posed and must be regularized. So, they can be formulated
as convex optimization problems formed by the combination
of a data fidelity term with a norm-based regularizer. Typically,
given the data y = Ax], for some unknown image x] to
estimate and known observation operator A, one aims at
solving a problem like

Find x̂ ∈ arg min
x

‖Ax− y‖2 + λR(x), (1)

where lambda controls the tradeoff between data fidelity and
regularization and R is a convex functional, which favors some
notion of low complexity. We place ourselves in the general
framework of atomic norm minimization [1]: the sought-after
image x] is supposed to be a sparse positive combination of
the elements, called atoms and of unit norm, of an infinite
dictionary A, indexed by continuously varying parameters.
Then, R is chosen as the atomic norm ‖x‖A of the image x,
which is simply the sum of the coefficients, when the image is
expressed in terms of the atoms. Indeed, by choosing the atoms
as the kind of elements we want to promote in images, we can
estimate them from degraded measurements in a robust way,
even with infinite precision when there is no noise. Methods
achieving this goal are qualified as super-resolution methods,
because they uncover fine scale information, which was lost
in the data, beyond the Rayleigh or Nyquist resolution limit
of the acquisition system [2], [3]. In this paper, we consider
the new setting, where the atoms are lines. This approach will
provide a very high accuracy for the lines estimation, where
the Hough and the Radon transforms fail, due to their discrete
nature. Our motivation stems from the frequent presence in
biomedical images, e.g. in microscopy, of elongated structures
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Fig. 1: The image x] of three blurred lines (on the left)
and the Radon transform of x] (on the right)

like filaments, neurons, veins, which are deteriorated when
reconstructed with classical penalties.

II. PROBLEM FORMULATION

Our aim is to restore an image x] containing lines, and
to estimate the parameters— angle, offset, amplitude— of the
lines, given degraded data y. In this section, we formulate what
we precisely mean by an image containing lines. In short, x]

is a sum of perfect lines, which have been blurred and then
sampled.

We place ourselves in the quotient space P =
R/(WZ)×R, corresponding to the 2-D plane with horizontal
W−periodicity, for some integer W ≥ 1. To simplify the no-
tations, we suppose that W is odd and we set M = (W−1)/2.

The ideal continuous model. A line of infinite length, with
angle θ ∈ (−π/2, π/2] with respect to verticality, amplitude
α > 0, and offset γ ∈ R from the origin, is defined as the
distribution

(t1, t2) ∈ P 7→ αδ
(
cos(θ)t1 + sin(θ)t2 + γ

)
, (2)

where δ is the Dirac distribution. We define the distribution
s], which is a sum of K different such perfect lines, for some
integer K ≥ 1, as

s] : (t1, t2) ∈ P 7→
K∑
k=1

αkδ
(
cos(θk)t1 +sin(θk)t2 +γk

)
. (3)



In this paper, to simplify the discussion, we suppose that the
lines are rather vertical; that is, θk ∈ (−π/4, π/4], for every
k = 1, . . . ,K.

The observed image. The image x] of size W × H is
obtained by sampling s] ∗ φ with unit step:

x][n1, n2] = (s] ∗ φ)(n1, n2), ∀n1 = 0, . . . ,W − 1,

n2 = 0, . . . ,H − 1, (4)

where the point spread function φ, which blurs s] before
sampling, is separable: φ(t1, t2) = ϕ1(t1)ϕ2(t2).

Let us characterize the image x] more precisely. Since φ
is separable, the function s] ∗ φ can be obtained by a first
horizontal convolution with ϕ1 and then a second vertical
convolution with ϕ2. Formally, s] ∗ φ = (s] ∗ φ1) ∗ φ2
with φ1(t1, t2) = ϕ1(t1)δ(t2) and φ2(t1, t2) = δ(t1)ϕ2(t2).
So, after the first horizontal convolution, using the fact that
δ(at) = δ(t)/|a| for any a 6= 0, we obtain the function

u] = s] ∗ φ1 : (t1, t2) ∈ P 7→
K∑
k=1

αk
cos(θk)

ϕ1

(
t1 +

tan(θk)t2 +
γk

cos(θk)

)
. (5)

We can show that, after the second vertical convolution, we
get the function

s] ∗ φ = u] ∗ φ2 : (t1, t2) ∈ P 7→
K∑
k=1

αkψk
(
cos(θk)t1 + sin(θk)t2 + γk

)
, (6)

where

ψk =

(
1

cos(θk)
ϕ1

( ·
cos(θk)

))
∗
(

1

sin(θk)
ϕ2

( ·
sin(θk)

))
(7)

if θk 6= 0 and ψk = ϕ1 else.
We can notice that eqn. (6) can also be interpreted as

follows: every line has undergone a 1-D convolution with ψk
in the direction transverse to it.

The blur model. We assume that φ has the following
properties:
• the function ϕ1 ∈ L1([0,W )) is W -periodic, bounded,

such that
∫W
0
ϕ1 = 1, and bandlimited; that is, its Fourier

coefficients (1/W )
∫W
0
ϕ1(t1)e−j2πmt1/W dt1 are zero

for every m ∈ Z with |m| ≥ (W + 1)/2 = M + 1.
The discrete filter g[n] = ϕ1(n), with these assumptions
on ϕ1, has discrete Fourier coefficients which correspond
to Fourier coefficients of ϕ1.

• ϕ2 ∈ L1(R), with
∫
R ϕ2 = 1. In addition, the discrete

filter
(
h[n] = (ϕ2 ∗ sinc)(n)

)
n∈Z, where sinc(t2) =

sin(πt2)/(πt2), has compact support of length 2S + 1,
for some S ∈ N, i.e. h[n] = 0 if |n| ≥ S + 1. Note
that this assumption is not restrictive, and that if ϕ2 is
bandlimited, we simply have h[n] = ϕ2(n).

We can also notice that if ϕ1 and ϕ2 are Gaussians and have
same variance κ2, it follows from (7) that ψk has variance
κ2
(

cos(θ)2 + sin(θ)2
)

= κ2 as well.

Now, for every k = 1, . . . ,K, the assumption θk ∈
(−π/4, π/4] yields | tan(θk)| ≤ 1. So, the function u]

given in (5), as a function of t2 at fixed t1, is bandlim-
ited: for every t1 ∈ [0,W [, the Fourier transform ω2 7→∫
R u

](t1, t2)e−jω2t2dt2, which is a distribution (sum of K
Dirac combs), is zero for every |ω2| ≥ π. Hence, it is
equivalent to perform the vertical convolution of u] with
ϕ2, with ϕ2 ∗ sinc, or with the Dirac comb γ : t2 7→∑S
n=−S h[n]δ(t2 − n), where h[n] = (ϕ2 ∗ sinc)(n). So, let

us define the image v] obtained by sampling the function u]

with unit step:

v][n1, n2] = u](n1, n2), ∀n1 = 0, . . . ,W − 1,

n2 = −S, . . . ,H − 1 + S. (8)

Then, as we have seen, we can express x] from v] using a
discrete vertical convolution with the filter h:

x][n1, n2] =

S∑
p=−S

v][n1, n2 − p]h[p], ∀n1 = 0, . . . ,W − 1,

n2 = 0, . . . ,H − 1. (9)

Altogether, we have completely and exactly characterized
the sampling process, which involves a continuous blur, using
the discrete and finite filters (g[n])W−1n=0 and (h[n])Sn=−S .

The objectives. Since the ideal model s] is made up of
Diracs, the image of the Fourier transform along columns
ŵ] = F1s

], is composed of a sum of exponentials. Our goal
will be to reconstruct ŵ] from the blurred image x].
Let us further characterize the image x] in Fourier domain.
We define the image v̂] obtained by applying the 1-D discrete
Fourier transform on every column of v], defined in (8):

v̂][m,n2] =

W−1∑
n1=0

v][n1, n2]e−j2πmn1/W ,

∀m = −M, . . . ,M, n2 ∈ Z. (10)

Then, the v̂][m,n2] are the Fourier coefficients of the function
u]:

v̂][m,n2] =
1

W

∫ W

0

u](t1, n2)e−j2πmt1/W dt1,

∀m = −M, . . . ,M, n2 ∈ Z. (11)

Consequently, from (5) and (11), we obtain

v̂][m,n2] = ĝ[m]ŵ][m,n2],∀m = −M, . . . ,M, n2 ∈ Z,

ŵ][m,n2] =

K∑
k=1

αk
cos θk

ej2π(tan(θk)n2+γk/ cos(θk))m/W . (12)

Applying a 1-D Discrete Fourier transform on the first
component of x][n1, n2] = v][n1, :] ∗ h, leads to the elements
x̂][m,n2] = v̂][m, :] ∗ h. Let A denote the operator which
multiplies each vector ŵ][m, :] by the corresponding Fourier
coefficient ĝ[m] and convolves it with the filter h. Thus, we
have Aŵ] = x̂]. The image x] of the blurred lines is affected
by some noise ε, so that we observe the degraded image



y = x] + ε, with ε ∼ N (0, ζ2) and ζ is the noise level. Our
notations are explained in more details, with an illustrating
drawing, in a supplementary material available on the webpage
of the first author.

III. SUPER-RESOLUTION DETECTION OF LINES

A. Minimization Problem with Atomic Norm Regularization

We consider the extended image ŵ][m,n2] of size W×HS ,
with HS = H + 2S, taking into account the addition of S
pixels beyond the borders for the convolution by the filter
h. We introduce the dictionary A = {a(f, φ) ∈ C|I|, f ∈
[0, 1], φ ∈ [0, 2π)}, in which the atoms are [a(f, φ)]i =
ej(2πfi+φ), i ∈ I , and simply [a(f)]i = ej2πfi, i ∈ I , if φ = 0.
Then, the rows ŵm (resp. columns ŵn2

) of the matrix ŵ],
with I = {−M, . . . ,M} (resp. I = {0, . . . ,HS − 1}), can be
viewed as a sum of atoms

ŵ]n2
= ŵ][:, n2] =

K∑
k=1

cka(fn2,k), (13)(
resp.ŵ]m = ŵ][m, :] =

K∑
k=1

cka(fm,k, φm,k)T

)
, (14)

with

ck =
αk

cos θk
, fn2,k =

tan(θk)n2 + γk/ cos(θk)

W
,

φm,k =
2πγkm

cos(θk)W
, fm,k =

tan(θk)m

W
. (15)

We define for later use, the horizontal offset ηk = γk/ cos(θk),
the frequency νk = ηk/W and the coefficients dm,k =
cke

jφm,k , em,k = ejφm,k .
We now define the atomic norm, first introduced in [4], as

‖x‖A = inf{t > 0 : x ∈ tconv(A)}

= inf
c′k>0

f ′k∈[0,1]
φ′k∈[0,2π)

{∑
k

c′k : x =
∑
k

c′ka(f ′k, φ
′
k)

}
.

The Caratheodory theorem ensures that a vector x of length
N = 2M+1 is a positive combination (ck > 0) of K 6M+1
atoms a(fk) if and only if T(x) < 0, where T is the Toeplitz
operator

T : (x1, . . . , xN ) 7→


x1 x2 · · · xN
x2
∗ x1 · · · xN−1

...
...

. . .
...

xN
∗ xN−1

∗ · · · x1

 , (16)

and < 0 denotes positive semi-definiteness, and ∗ is complex
conjugation. Also this decomposition is unique, since K 6M .
Hence,

‖ŵ]n2
‖A =

K∑
k=1

ck = ŵ][0, n2],∀n2 = 0, . . . ,HS − 1, (17)

whereas, since the dm,k are complex, we simply have

‖ŵ]m‖A 6
K∑
k=1

ck,∀m = −M, . . . ,M. (18)

Moreover, we improved the result of [5, Proposition II.1]:
Proposition 1: The atomic norm ‖ŵ]n2

‖A can be character-
ized by the following semidefinite program:

‖ŵ]m‖A = min
qm∈CHS

{
qm[0] :

[
T(qm) ŵ]m
(ŵ]m)∗ qm[0]

]
< 0

}
. (19)

The proof is in the supplementary material.
Given ŷ = x̂] + ε̂, we are looking for an image ŵ which

minimizes ‖Aŵ − ŷ‖, for some norm whose expression is
given below, and satisfies properties (17)–(18)–(19). Since ŵ
and ŷ are symmetric in the Fourier domain, we can only deal
with the right part ŵr and ŷr of the image, i.e. for m =
0, . . . ,M . We fixed a constant c greater than the oracle c] =∑K
k=1 ck. Consequently, the optimization problem is:

ŵ]r ∈ arg min
ŵr,qr

1

2
‖Aŵr − ŷr‖2, (20)

s.t



∀n2 = 0, ...,HS − 1,∀m = 0, ...,M,

ŵr[0, n2] = ŵr[0, 0] 6 c, (21a)
qr[m, 0] 6 c, (21b)
L1(ŵr[m, :], qr[m, :]) < 0, (21c)
L2(ŵr[:, n2]) < 0, (21d)

where L2 = T and the operator L1 maps (ŵm, qm) to the
matrix defined in (19). The two subspaces of MM+1,HS (C),
in which ŵr and qr lie, are called W and Q, characterizing
the fact that the entries ŵr[0, :] and qr[:, 0] are reals ; they can
be respectively endowed with the inner products:

〈ŵ1, ŵ2〉W =

HS−1∑
n2=0

ŵ1[0, n2]ŵ2[0, n2]

+ 2<

(
M∑
m=1

HS−1∑
n2=0

ŵ1[m,n2]ŵ2[m,n2]∗

)
,(22)

〈q1, q2〉Q= 2<

(
M∑
m=0

HS−1∑
n2=0

q1[m,n2]q2[m,n2]∗

)
. (23)

Let us define Lm1 : (ŵr, qr) 7→ L1(ŵr[m, :], qr[m, :]) and
Ln2
2 : (ŵr, qr) 7→ L2(ŵr[:, n2]), B the subset of the Hilbert

space H =W×Q corresponding to the boundary constraints
(21a)–(21b), and C the cone of positive matrices. Let X =
(ŵr, qr) ∈ H and ι be the indicator function of a set, then the
optimization problem (20)–(21) can be rewritten in this way:

X] = arg min
X=(ŵr,qr)∈H

{
1

2
‖Aŵr − ŷr‖2W + ιB(X)

+

M∑
m=0

ιC(L
m
1 (X)) +

HS−1∑
n2=0

ιC(L
n2
2 (X))

}
. (24)



B. Algorithm Design

The optimization problem (24) can be viewed in the frame-
work above, involving Lipschitzian, proximable and linear
composite terms [6]:

X] = arg min
X∈H

{
F (X) +G(X) +

N−1∑
i=0

Hi(Li(X))

}
, (25)

with F = 1
2‖A · −ŷr‖

2
W , with a β–Lipschitz gradient (β =

‖A‖2 = 1), G = ιB, which is proximable, and N = M +
1 + HS linear composite terms where Hi = ιC and Li ∈
{Lm1 , L

n2
2 }. We define the real 0 6 µ 6M +HS .

Let τ > 0 and σ > 0 such that
1

τ
− σµ =

β

1.9
. (26)

Then the primal–dual Algorithm 1 converges to a solution
(x̂, ẑ0, ..., ẑN−1) of the problem (25) [6, Theorem 5.1].

Algorithm 1 Primal–dual splitting algorithm for (25)

Input: ŷr 1D FFT of the blurred and noisy data image y
Output: ŵ∗r solution of the optimization problem (20)–(21)

1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: x̃n+1 = proxτG(xn − τ∇F (xn)− τ

∑N−1
i=0 L∗i zi,n),

4: for i = 0 to N − 1 do
5: z̃i,n+1 = proxσH∗i (zi,n + σLi(2x̃n+1 − xn)),
6: end for
7: end for

The gradient of F is ∇F (xn) = (A∗(Aŵr,n − ŷr),0)T .
Let be PC the projection operator onto C, by Moreau identity:

proxσH∗i (u) = u− σproxHi
σ

(u
σ

)
= u− σPC

(u
σ

)
. (27)

Let be ŵav = 1
HS

∑HS
n2=1 ŵr[0, n2], we get ∀m,n2:

proxτG(ŵr, qr) =

 ŵr[0, n2] = ŵav, if ŵav 6 c,
wr[0, n2] = c, otherwise,
qr[m, 0] = c, if qr[m, 0] > c.

(28)

Let be M (1) ∈ MHS+1(C) and M (2) ∈ MM+1(C). We
give the expression of the vectors resulting from these adjoints
L∗1M1 = (w1, q1) ∈ (CHS+1)2 and L∗2M2 = w2 ∈ CM+1:

w1[k] =
1

2
(mk,HS+1 +mHS+1,k

∗),

q1[k] =


<

{
HS+1∑
i=1

m
(1)
ii

}
if k = 1,

1

2

HS+1−k∑
i=1

(m
(1)
i,k+i−1 +m

(1)
k+i−1,i

∗
) if k > 1,

w2[k] =


1

2
<

{
M+1∑
i=1

m
(2)
ii

}
if k = 1,

1

2

M+1−k∑
i=1

(m
(2)
i,k+i−1 +m

(2)
k+i−1,i

∗
) if k > 1.

Notice that in the previous algorithm, τ must be smaller
than 1.9

β , which is a limitation in terms of convergence speed.
To overcome this issue, we subsequently developed a second
algorithm, similar to Algorithm 1, but with the data fidelity
term ‖Aŵr − ŷr‖2W activated through its proximity operator,
instead of its gradient. We use this second algorithm, which
is detailed in the supplementary material, in the experiments
below, since it turned out to be faster than Algorithm 1.

C. Recovering Line Parameters by Prony Method

The goal is to estimate the parameters (θ̃k, α̃k, η̃k), which
characterize the K lines, from the solution of the minimiza-
tion problem ŵ∗r , symmetrized in ŵ∗ beforehand. Let x =
(x1, . . . , x|I|) be a complex vector, we rearrange the elements
xi in a Toeplitz matrix TK(x) of size (|I| −K) × (K + 1)
and rank K as follows

TK(x) =

xK+1 · · · x1
...

. . .
...

x|I| · · · x|I|−K

 . (31)

We describe the recovering procedure hereafter.
– From m = 1, . . . ,M ,

1) Compute f̃m,k = arg(ξ̄m,k)/(2π), where (ξm,k)k
are roots of the polynom

∑K
k=0 hm,kz

k with hm =
[hm,0, . . . , hm,K ]T being the right singular vector of
TK(ŵ∗m) with I = {0, . . . ,HS − 1}. It corresponds to
the singular value zero (the smallest value in practise).

2) Compute θ̃m,k = arctan(Wf̃m,k/m) from (15).
3) Form the matrix Ũm = [a(f̃m,1) · · · a(f̃m,K)], and

compute d̃m = [d̃m,1, . . . , d̃m,K ]T by solving the least-
squares linear system UHmUmdm = UHm ŵ

∗
m.

4) Compute c̃m,k = |d̃m,k| and α̃m,k = c̃m,k cos(θ̃m,k).
5) Compute ẽm,k = d̃m,k/|d̃m,k|.

– For k = 1, . . . ,K

1) Compute the mean of all estimated angles θ̃k =
1
M

∑M
m=1 θ̃m,k and amplitudes α̃k = 1

M

∑M
m=1 α̃m,k

2) Compute the frequency ν̃k as previously from TK(ẽk)
with ẽk = (ẽm,k)m and I = {−M, . . . ,M}.

3) Compute the horizontal offset η̃k = Wν̃k/(2π)

IV. EXPERIMENTAL RESULTS

The reconstruction procedure described in the previous
section, was implemented in Matlab. Codes are available
on the webpage of the first author. We consider an im-
age of size W = H = 65, containing three lines of
parameters (θ1, η1, α1) = (−π/5, 0, 255), (θ2, η2, α2) =
(π/16,−15, 255) and (θ3, η3, α3) = (π/6, 10, 255). The first
experiment consists in the reconstruction of the lines from ŵ∗r
in absence of noise, (1) by applying the operator A on this
solution, possibly with others kernels g and h, and then taking
the 1D inverse Fourier transform ; and (2) by applying the
Prony method to recover parameters of the lines, in the aim
to display these one as vectorial lines. We run the algorithm
for 106 iterations. Results of relative errors for the solution ŵr
and the estimated parameters are given Fig. 2 (a) and Table
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Fig. 2: (a) Decrease of the relative errors ‖ŵr−ŵ
]‖W

‖ŵ]‖W and ‖Aŵr−ŷr‖W‖ŷr‖W for the first experiment, (b) Lines affected by a strong
noise level (ζ = 200) for the second experiment, (c) Lines degraded by a strong blur (κ = 8) for the third experiment. In red,
the recovered lines by the Prony Method.

TABLE I: Errors on line parameters recovered by the proposed method.

Experiment 1 Experiment 2 Experiment 3

∆θ/θ (10−7, 3.10−6, 7.10−7) (10−2, 6.10−2, 9.10−2) (6.10−7, 9.10−5, 8.10−6)

∆α/α (10−7, 10−7, 10−7) (10−2, 9.10−2, 2.10−1) (4.10−5, 2.10−5, 2.10−5)

∆η (4.10−6, 7.10−6, 7.10−6) (5.10−2, 4.10−2, 3.10−2) (5.10−5, 10−4, 3.10−4)

I, where ∆θi/θi = |θi − θ̃i|/|θi|, ∆αi/αi = |αi − α̃i|/|αi|
and ∆ηi = |ηi − η̃i|. Although the algorithm is quite slow to
achieve high accuracy, we insist on the fact that convergence
to the exact solution x] is guaranteed, when the lines are not
too close to each other. The purpose of the second experiment
is to highlight the robustness of the method in presence of a
strong noise level. With c = 700 and only 2.103 iterations, we
are able to completely remove noise and to estimate the line
parameters with an error of 10−2. For both first experiments,
we do not depict the estimated images, because it is strictly
identical to the one in Fig. 1. Finally, the last experiment for
105 iterations, illustrates the efficiency of the method even
in presence of a large blur, yielding an error of 10−4. We
emphasize that our algorithm has an accuracy which could
not be achieved by detecting peaks of the Hough or Radon
transform. These methods are relevant for giving a coarse
estimation of line parameters. They are robust to strong noise,
but completely fail with a strong blur, which prevents peaks
detection (see supplementary material).

V. CONCLUSION

We provided a new formulation for the problem of re-
covering lines in degraded images using the framework of
atomic norm minimization. A primal–dual splitting algorithm
has been used to solve the convex optimization problem. We
applied it successfully to the deblurring of images, recovering
lines parameters by the Prony method, and we showed the
robustness of the method for strong blur and strong noise
level. We insist on the novelty of our approach, which is

to estimate lines with parameters (angle, offset, amplitude)
living in a continuum, with perfect reconstruction in absence
of noise, without being limited by the discrete nature of the
image, nor its finite size. In a future work, we will study the
separation conditions under which perfect reconstruction can
be guaranteed, we will extend the method with no angle and
periodicity restriction, and we will apply it, for instance, to
inpainting problems.
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