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COMPACT OPERATORS ON MODEL SPACES

ISABELLE CHALENDAR AND WILLIAM T. ROSS

Abstract. We give a characterization of the compact operators
on a model space in terms of asymptotic Toeplitz operators.

1. Introduction

If H2 denotes the classical Hardy space of the open unit disk D [4, 7], a
theorem of Brown and Halmos [3] says that a bounded linear operator
T on H2 is a Toeplitz operator if and only if

S∗TS = T,

where Sf = zf is the well-known unilateral shift on H2. By a Toeplitz
operator [2], we mean, for a given symbol ϕ ∈ L∞(T, m) (T is the unit
circle and m is normalized Lebesgue measure on T), the operator

Tϕ : H2 → H2, Tϕf = P (ϕf),

where P is the orthogonal projection of L2 onto H2.

This notion of “Toeplitzness” was extended in various ways. Barria
and Halmos [1] examined the so-called asymptotically Toeplitz operators
operators T on H2 for which the sequence of operators

{S∗nTSn}n>1

converges strongly. This class certainly includes the Toeplitz operators
but also includes other operators such as those in the Hankel algebra.
Feintuch [5] discovered that one need not restrict to strong convergence
of {S∗nTSn}n>1 and worthwhile classes of operators arise from the weak
and uniform (or norm) limits of this sequence. Indeed, an operator T
on H2 is uniformly asymptotically Toeplitz, i.e., S∗nTSn converges in
operator norm, if and only if

(1.1) T = T1 +K,
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where T1 is a Toeplitz operator, i.e., S∗T1S = T1, and K is a compact
operator on H2. Nazarov and Shapiro [8] examined other associated
notions of “Toeplitzness” with regards to certain composition operators
on H2.

In this paper we explore a model space setting for this “Toeplitzness”
discussion. For an inner function Θ on D (i.e., a bounded analytic
function on D whose radial boundary values are unimodular almost
everywhere on T), one can define the model space [6, 9]

KΘ = H2 ⊖ΘH2.

Beurling’s theorem [4] says that these spaces are the generic invariant
subspaces for the backward shift operator

S∗f =
f − f(0)

z

on H2. By model theory for contractions [9], certain types of Hilbert
space contractions are unitarily equivalent to compressed shifts

SΘ = PΘS|KΘ
,

where PΘ is the orthogonal projection of L2 onto KΘ.

In this model spaces setting, we examine, for a bounded operator A on
KΘ, the sequence

{S∗n
Θ ASn

Θ}n>1.

Here we have a similar result as before (see Lemma 2.6 below) in that
S∗n
Θ ASn

Θ converges in operator norm if and only if

A = A1 +K,

where K is a compact operator on KΘ and A1 satisfies S∗
ΘA1SΘ = A1.

In the analogous H2 setting, the operator T1 from (1.1) is a Toeplitz
operator. In the model space setting, the corresponding operator A1 is
severely restricted. Indeed,

A1 ≡ 0.

Thus, as the main theorem of this paper, we have the following char-
acterization of the compact operators on KΘ.

Theorem 1.2. For an inner function Θ and a bounded linear operator
A on KΘ, the following are equivalent:

(i) The sequence S∗n
Θ ASn

Θ converges in operator norm;

(ii) S∗n
Θ ASn

Θ → 0 in operator norm;

(iii) A is a compact operator.
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One can also explore the convergence of the sequence S∗n
Θ ASn

Θ in other
topologies, such as the strong/weak operator topologies. Surprisingly
what happens is entirely different from what happens in H2.

Proposition 1.3. For any inner function Θ and any bounded linear
operator A on KΘ, the sequence S∗n

Θ ASn
Θ converges to zero strongly.

In other words, the convergence of S∗n
Θ ASn

Θ in the strong or weak topol-
ogy is always true (and to the same operator) and provides no infor-
mation about A.

2. Characterization of the compact operators

The following lemma proves the implication (iii) =⇒ (ii) of Theorem
1.2.

Lemma 2.1. If K is a compact operator on KΘ then

lim
n→∞

‖S∗n
Θ KSn

Θ‖ = 0.

Proof. Let BΘ = {f ∈ KΘ : ‖f‖ 6 1} denote the closed unit ball in
KΘ. First observe that

‖Sn
Θ‖ 6 ‖SΘ‖

n 6 ‖PΘS|KΘ
‖n 6 ‖S‖n = 1.

From here we see that

‖S∗n
Θ KSn

Θ‖ = sup
f∈BΘ

‖S∗n
Θ KSn

Θf‖

6 sup
g∈BΘ

‖S∗n
Θ Kg‖

6 sup
h∈K(BΘ)

‖S∗n
Θ h‖.(2.2)

Second, note that S∗n → 0 strongly. Indeed, if f =
∑

k>0 akz
k ∈ H2,

then

‖S∗nf‖2 =
∑

k>n+1

|ak|
2 → 0 n → ∞.

Thus since S∗n
Θ = S∗n|KΘ

(since KΘ is S∗-invariant), we see that

(2.3) S∗n
Θ → 0 strongly.

Let ǫ > 0 be given and let h ∈ K(BΘ). Since S∗n
Θ → 0 strongly, there

exists an nh,ǫ such that ‖S∗n
Θ h‖ < ǫ/2 for all n > nh,ǫ. The continuity
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of the operator S∗nh,ǫ implies that there exists a rh,ǫ such that for all q
belonging to

B(h, rh,ǫ) = {q ∈ KΘ : ‖q − h‖ < rh,ǫ}

we have ‖S∗nh,ǫq‖ < ǫ.

Again using the fact that ‖S∗
Θ‖ 6 1, we see that for all q ∈ B(h, rh,ǫ)

and all n > nh,ǫ we have

(2.4) ‖S∗n
Θ q‖ = ‖S

∗(n−nh,ǫ)
Θ S

∗nh,ǫ

Θ q‖ 6 ‖S
∗nh,ǫ

Θ q‖ < ǫ.

Moreover, we have

K(BΘ) ⊂
⋃

h∈K(BΘ)

B(h, rh,ǫ).

The compactness of K(BΘ) implies that there exists h1, . . . , hN (N =

Nǫ) belonging to K(BΘ) such that

K(BΘ) ⊂

N⋃

k=1

B(hk, rhk,ǫ).

For all n > max{nh1,ǫ, . . . , nhN ,ǫ} we use (2.4) along with (2.2) to see
that

‖S∗n
Θ h‖ < ǫ ∀h ∈ K(BΘ).

This proves the lemma. �

Remark 2.5. Important to the proof above was the fact that S∗n
Θ → 0

strongly (see (2.3)). One can show that SΘ is unitarily equivalent to

S∗
Ψ, where Ψ is the inner function defined by Ψ(z) = Θ(z) [6, p. 303].

From here we see that Sn
Θ → 0 strongly. This detail will be important

at the end of the paper in the proof of Theorem 1.3.

Lemma 2.6. Suppose T is a bounded operator on KΘ such that S∗n
Θ TSn

Θ

converges in norm. Then T = T1 +K, where K is a compact operator
on KΘ and T1 is a bounded operator on KΘ satisfying S∗

ΘT1SΘ = T1.

Proof. Let A be a bounded operator on KΘ such that

‖S∗n
Θ TSn

Θ − A‖ → 0.

Then

‖S
∗(n+1)
Θ TSn+1

Θ − S∗

ΘASΘ‖ = ‖S∗

Θ(S
∗n
Θ TSn

Θ − A)SΘ‖

6 ‖S∗n
Θ TSn

Θ −A‖ → 0.

This implies that

(2.7) S∗

ΘASΘ = A.
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From here it follows that

(2.8) S∗n
Θ TSn

Θ −A = S∗n
Θ (T − A)Sn

Θ, n > 0.

Define

Pn := Sn
ΘS

∗n
Θ and Qn := I − Pn = I − Sn

ΘS
∗n
Θ

and observe that

Pn(T − A)Pn = (T −A)

−Qn(T − A) +Qn(T − A)Qn − (T −A)Qn.(2.9)

Furthermore by (2.8) we have

‖Pn(T −A)Pn‖ = ‖Sn
ΘS

∗n
Θ (T − A)Sn

ΘS
∗n
Θ ‖

6 ‖S∗n
Θ (T −A)Sn

Θ‖

= ‖S∗n
Θ TSn

Θ − A‖ → 0.

If

kλ(z) =
1−Θ(λ)Θ(z)

1− λz
, λ, z ∈ D,

is the reproducing kernel for KΘ, then [10, p. 497] gives us the well-
known operator identity

SΘS
∗

Θ = I − k0 ⊗ k0.

Iterating the above n times we get

Sn
ΘS

∗n
Θ = I −

n−1∑

j=0

Sj
Θk0 ⊗ S∗j

Θ k0.

In other words,

Qn = I − Pn =

n−1∑

j=0

Sj
Θk0 ⊗ S∗j

Θ k0

is a finite rank operator.

By (2.9) this means that

Fn := −Qn(T − A) +Qn(T − A)Qn − (T −A)Qn

is a finite rank operator which converges in norm to A − T . Hence
A− T a compact operator and, by (2.7), A satisfies S∗

ΘASΘ = A. �
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So far we know from Lemma 2.1 that every compact operator K on
KΘ satisfies

lim
n→∞

‖S∗n
Θ KSn

Θ‖ = 0.

Furthermore, from Lemma 2.6 we see that an operator A for which
S∗n
Θ ASn

Θ converges in operator norm can be written as A = A1 + K
where K is compact and A1 satisfies S∗

ΘA1SΘ = A1. To complete the
proof of Theorem 1.2, we need to show that

S∗

ΘASΘ = A ⇐⇒ A ≡ 0.

This is done with the following result.

Proposition 2.10. Suppose A is a bounded operator on KΘ. Then
S∗
ΘASΘ = A if and only if A ≡ 0.

Proof. Recall that

kλ(z) =
1−Θ(λ)Θ(z)

1− λz
is the kernel function for KΘ. There is also the “conjugate kernel”

k̃λ(z) =
Θ(z)−Θ(λ)

z − λ

which also belongs to KΘ [10, p. 495]. The proof depends on the
following kernel function identities from [10, p. 496]:

SΘk̃λ = λk̃λ −Θ(λ)k0,

SΘkλ =
1

λ
kλ −

1

λ
k0.

This gives us

(Ak̃λ)(z) = 〈S∗

ΘASΘk̃λ, kz〉

= 〈ASΘk̃λ, SΘkz〉

= 〈A(λk̃λ −Θ(λ)k0),
1

z
kz −

1

z
k0〉

=
λ

z
(Ak̃λ)(z)−

Θ(λ)

z
(Ak0)(z)−

λ

z
(Ak̃λ)(0) +

Θ(λ)

z
(Ak0)(0).

Re-arrange the above identity:

(Ak̃λ)(z)(1 −
λ

z
) = −

Θ(λ)

z
(Ak0)(z)−

λ

z
(Ak̃λ)(0) +

Θ(λ)

z
(Ak0)(0).

Multiply through by z:

(z − λ)(Ak̃λ)(z) = −Θ(λ)(Ak0)(z)− λ(Ak̃λ)(0) + Θ(λ)(Ak0)(0).
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Divide by (z − λ) and re-arrange:

(2.11) (Ak̃λ)(z) = −Θ(λ)

(
(Ak0)(z)− (Ak0)(λ)

z − λ

)
− λ

(Ak̃λ)(0)

z − λ
.

Observe that the functions

(Ak̃λ)(z) and
(Ak0)(z)− (Ak0)(λ)

z − λ

belong to KΘ for all λ ∈ D. This means that

λ
(Ak̃λ)(0)

z − λ

must also belong to KΘ for all λ ∈ D which means (since there is an
obvious pole at z = λ) that

(2.12) (Ak̃λ)(0) = 0.

The identity in (2.11) can now be written as

(2.13) (Ak̃λ)(z) = −Θ(λ)

(
(Ak0)(z)− (Ak0)(λ)

z − λ

)
.

Plug in z = 0 into the previous identity and use (2.12) to see that

0 = (Ak̃λ)(0) =
Θ(λ)

λ
((Ak0)(0)− (Ak0)(λ)), λ ∈ D.

Since Θ is not the zero function, we get

(2.14) (Ak0)(λ) = (Ak0)(0), λ ∈ D.

Plus this into (2.13) to get that

Ak̃λ = 0 ∀λ ∈ D.

But since the linear span of these conjugate kernels form a dense subset

in KΘ (the conjugation operator f 7→ f̃ is isometric and involutive [10,
p. 495]), we see that A must be the zero operator. �

Proof of Proposition 1.3. For any f, g,∈ KΘ and n > 0 we have

(2.15) |〈S∗nASnf, g〉| = |〈Sn
Θf, A

∗Sn
Θg〉| 6 ‖Sn

Θf‖‖A
∗Sn

Θg‖.

Taking the supremum in (2.15) over g ∈ KΘ with ‖g‖ 6 1, and using
the fact that ‖SΘ‖ 6 1, we get

(2.16) ‖S∗nASnf‖ 6 ‖Sn
Θf‖‖A

∗‖.

From Remark 2.5, we conclude that the right hand side of (2.15) goes
to zero as n → ∞. Thus S∗n

Θ ASn
Θ → 0 strongly. �
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