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We introduce a new variant of the number field sieve algorithm for discrete logarithms in Fpn called exTNFS. The most important modification is done in the polynomial selection step, which determines the cost of the whole algorithm: if one knows how to select good polynomials to tackle discrete logs in Fpκ , exTNFS allows to use this method when tackling Fpηκ whenever gcd(η, κ) = 1. This simple fact has consequences on the asymptotic complexity of NFS in the medium prime case, where the complexity is reduced from LQ(1/3, 3 96/9) to LQ(1/3, 3 48/9), Q = p n , respectively from LQ(1/3, 2.15) to LQ(1/3, 1.71) if multiple number fields are used. On the practical side, exTNFS can be used when n = 6 and n = 12 and this requires to update the keysizes used for the associated pairings-based cryptosystems.

Introduction

The discrete logarithm problem (DLP) is at the foundation of a series of public key cryptosystems. Over a generic group of cardinality N , the best known algorithm to solve the DLP has an exponential running time of O( √ N ). However, if the group has a special structure one can design better algorithms, as it is the case for the multiplicative group of finite fields F Q = F p n where the DLP can be solved much more efficiently than in the exponential time.

When the characteristic p is small compared to the extension degree n, the best known algorithms have quasi-polynomial time complexity [START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF][START_REF] Granger | On the powers of 2[END_REF].

DLP over fields of medium and large characteristic Recall the usual

L Q -notation, L Q ( , c) = exp c(log Q) (log log Q) 1-,
for some constants 0 ≤ ≤ 1 and c > 0. We call the characteristic p = L Q ( p , c p ) medium when 1/3 < p < 2/3 and large when 2/3 < p ≤ 1. We are in the boundary case if p = 2/3. For medium and large characteristic, in particular when Q is prime, all the state-of-art attacks are variants of the number field sieve (NFS) algorithm. Initially used for factoring, NFS was rapidly introduced in the context of DLP [START_REF] Gordon | Discrete logarithms in gf(p) using the number field sieve[END_REF][START_REF] Schirokauer | Discrete logarithms and local units[END_REF] to target prime fields. One had to wait almost one decade before the first constructions for F p n with n > 1 were proposed [START_REF] Schirokauer | Using number fields to compute logarithms in finite fields[END_REF], known today [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF] as the tower number field sieve (TNFS). This case is important because it is used to choose the key sizes for pairings based cryptosystems. Since 2006 one can cover the complete range of large and medium characteristic finite fields [START_REF] Joux | The number field sieve in the medium prime case[END_REF]. This latter approach that we denote by JLSV has the advantage to be very similar to the variant used to target prime fields, except for the first step called polynomial selection where two new methods were proposed: JLSV 1 and JLSV 2 .

In the recent years NFS in fields F p n with n > 1 has become a laboratory where one can push NFS to its limits and test new ideas which are ineffective or impossible in the factorization variant of NFS. Firstly, the polynomial selection methods were supplemented with the generalized Joux-Lercier (GJL) method [START_REF] Matyukhin | Effective version of the number field sieve for discrete logarithm in a field GF(pˆk)[END_REF][START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF], with the Conjugation (Conj) method [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] and the Sarkar-Singh (SS) method [START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF]. One can see Table 1 for a summary of the consequences of these methods on the asymptotic complexity. In particular, in all these algorithms the complexity for the medium prime case is slightly larger than that of the large prime case.

Table 1: The complexity of each algorithms in the medium and large prime cases. Each cell indicates c if the complexity is L Q (1/3, (c/9) 1 3 ). p = LQ( p) 1/3 < p < 2/3 best p = 2/3 2/3 < p < 1 TNFS [START_REF] Schirokauer | Using number fields to compute logarithms in finite fields[END_REF][START_REF] Barbulescu | The Towed Number Field Sieve[END_REF] none none 64 NFS-JLSV [START_REF] Joux | The number field sieve in the medium prime case[END_REF] 128 64 64 NFS-(Conj and GJL) [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] 96 48 64 NFS-SS [START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF] 96 48 64 exTNFS (this article) 48 48 64

Secondly, a classical idea which was introduced in the context of factorization is to replace the two polynomials f and g used in NFS by a polynomial f and several polynomials g i , i = 1, 2, . . . which play the role of g. All the currently known variants of NFS admit variants with multiple number fields (MNFS) which have a slightly better asymptotic complexity, as shown in Table 2. The discrete logarithm problem allows to have a case with no equivalent in the factorization context: instead of having a distinguished polynomial f and many sides g i all the polynomials are interchangeable [START_REF] Barbulescu | The multiple number field sieve for medium-and high-characteristic finite fields[END_REF].

Table 2: The complexity of each algorithms using multiple number fields. Each cell indicates an approximation of c if the complexity is L Q (1/3, (c/9)

1 3 ) p = LQ( p)
1/3 < p < 2/3 best p = 2/3 2/3 < p < 1 MTNFS [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF] none none 61.93 MNFS-JLSV [START_REF] Barbulescu | The multiple number field sieve for medium-and high-characteristic finite fields[END_REF] 122.87 61.93 61.93 MNFS-(Conj and GJL) [START_REF] Pierrot | The multiple number field sieve with conjugation and generalized joux-lercier methods[END_REF] 89.45 45.00 61.93 MNFS-SS [START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF] 89.45 45.00 61.93

MexTNFS (this article) 45.00 45.00 61.93

Thirdly, when the characteristic p has a special form, as it is the case for fields in several pairings-based cryptosystems, one might speed-up the computations by variants called special number field sieve (SNFS). In Table 3 we list the asymptotic complexity of each algorithm. Once again, the medium characteristic case is harder than the large characteristic one.

Table 3: The complexity of each algorithms used when the characteristic has a special form (SNFS) Each cell indicates an approximation of c if the complexity is L Q (1/3, (c/9)

1 3 ) p = LQ( p) 1/3 < p < 2/3 2/3 < p < 1
JP [START_REF] Joux | The special number field sieve in p n -application to pairing-friendly constructions[END_REF] 64 32 STNFS [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF] none 32

SexTNFS (this article) 32 32

Our contributions Let us place ourselves in the case when the extension degree is composite with relatively prime factors, n = ηκ with gcd(η, κ) = 1. The basic idea is to use the trivial equality

F p n = F (p η ) κ .
In the JLSV algorithm, F p n is constructed as F p [x]/k(x) for an irreducible polynomial k(x) of degree n. In the TNFS algorithm F p n is obtained as R/pR where R is a ring of integers of a number field where p is inert. In our construction F p η = R/pR as in TNFS and

F p n = (R/pR)[x]/(k(x))
where k is a degree κ irreducible polynomial over F p η . Interestingly, this construction can be integrated in an algorithm, that we call the extended number field sieve (exTNFS), in which we can target F p ηκ with the same complexity as F P κ for a prime P of the same bitsize as p η . Hence we obtain complexities for composite extension degrees which are similar in the medium characteristic case to the large characteristic case. Since the previous algorithms have an "anomaly" in the case p = 2/3, where the complexity is better than in the large prime case, when n is composite we obtain a better complexity for the medium prime case than in the large prime case.

Overview We introduce the new algorithm in Section 2 and analyse its complexity in Section 3. The multiple number field variant and the one dedicated to fields of SNFS characteristic are discussed in Section 4. In Section 5 we make a precise comparison to the state-of-art algorithms at cryptographic sizes before concluding with the consequences on the key size estimations for pairing-based construction.

Extended TNFS

Setting

Throughout this paper, we target fields F Q with Q = p n where n = ηκ such that gcd(η, κ) = 1 and the characteristic p is medium or large, i.e. p > 1/3.

First we select a polynomial h(t) ∈ Z[t] of degree η which is irreducible modulo p. We put R := Z[t]/h(t) and note that R/pR F p η . Then we select two polynomials f and g with integer coefficients whose reductions modulo p have a common factor k(x) of degree κ which is irreducible over F p η . Our algorithm is unchanged if f and g have coefficients in R because in all the cases we use the number fields K f (resp. K g ) defined by f (resp. g) above the fraction field of R but this generalization is not needed for the purpose of this paper, except in a MNFS variant.

The conditions on f , g and h yield two ring homomorphisms from R[x]/f (x) (resp. R[x]/g(x)) to (R/pR)/k(x) = F p ηκ : in order to compute the reduction of a polynomial in R[x] modulo p then modulo k(x) one can start by reducing modulo f (resp. g) and continue by reducing modulo p and then modulo k(x). The result is the same if we use f as when we use g. Thus one has the commutative diagram in Figure 1 which is a generalization of the classical diagram of NFS.

After the polynomial selection, the exTNFS algorithm proceeds as all the variants of NFS, following the same steps: relations collection, linear algebra and individual logarithm. Most of these steps are very similar to the TNFS algorithms as we shall explain below. Choice of h We have to select a polynomial h(t) ∈ Z[x] of degree η which is irreducible modulo p and whose coefficients are as small as possible. As in TNFS we try random polynomials h with small coefficients and factor them in F p [t] to test irreducibility. Heuristically, one succeeds after η trials and since η ≤ 3 η we expect to find h such that h ∞ = 1. For a more rigorous description on the existence of such polynomials one can refer to [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF].

Detailed Descriptions

Polynomial Selection R[x] K f ⊃ R[x]/ f (x) R[x]/ g(x) ⊂ Kg (R/pR)[x]/ k(x) mod p mod k(x) mod p mod k(x)
Next we select f and g in Z[x] which have a common factor k(x) modulo p of degree κ which remains irreducible over F p η . It is here that we use the condition gcd(η, κ) = 1 because an irreducible polynomial k(x) ∈ F p [x] remains irreducible over F p η if and only if gcd(η, κ) = 1. If one has an algorithm to select f and g in R[x] one might drop this condition, but in this paper f and g have integer coefficients. Thus it is enough to test the irreducibility of k(x) over F p and we have the same situation as in the classical variant of NFS for non-prime fields (JLSV): JLSV 1 , JLSV 2 , Conjugation method, GJL and Sarkar-Singh. Let us present two of these methods which are important for results of asymptotic complexity.

JLSV 2 method We briefly describe the polynomial selection introduced in Section 3.2 of [START_REF] Joux | The number field sieve in the medium prime case[END_REF]. One first chooses a monic polynomial f 0 (x) of degree κ with small coefficients, which is irreducible over F p (and automatically over F p η because gcd(η, κ) = 1). Set an integer W ≈ p 1/(D+1) , where D is a parameter determined later subject to the condition D ≥ κ. Then we define f (x) := f 0 (x + W ). Take the coefficients of g(x) as the shortest vector of an LLL-reduced basis of the lattice L defined by the columns:

L := (p • x 0 , . . . , p • x κ , f (x), xf (x), . . . , x D+1-κ f (x)).
Here, f (x) denotes the vector formed by the coefficients of a polynomial f . Finally, we set k = f then we have

-deg(f ) = κ and f ∞ = O(p κ D+1 ); -deg(g) = D ≥ κ and g ∞ = O(p κ D+1 ).
Conjugation method We recall the polynomial selection method in Algorithm 4 of [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF]. First, one chooses two polynomials g 1 (x) and g 0 (x) with small coefficients such that deg g 1 < deg g 0 = κ. Next one chooses a quadratic, monic, irreducible polynomial µ(x) ∈ Z[x] with small coefficients. If µ(x) has a root δ in F p and g 0 + δg 1 is irreducible over F p (and automatically over F p η because gcd(η, κ) = 1), then set k = g 0 + δg 1 . Otherwise, one repeats the above steps until such g 1 , g 0 , and δ are found. Once it has been done, find u and v such that δ ≡ u/v (mod p) and u, v ≤ O( √ p) using rational reconstruction. Finally, we set f = Res Y (µ(Y ), g 0 (x) + Y g 1 (x)) and g = vg 0 + ug 1 . By construction we have

-deg(f ) = 2κ and f ∞ = O(1); -deg(g) = κ and g ∞ = O( √ p) = O(Q 1 2ηκ
).

The bound on f ∞ depends on the number of polynomials g 0 + δg 1 tested before we find one which is irreducible over F p . Heuristically this happens on average after 2κ trials. Since there are 3 2κ > 2κ choices of g 0 and g 1 of norm 1 we have f ∞ = 1.

Relation Collection

The elements of R = Z[x]/h(x) can be represented uniquely as polynomials of Z[x] of degree less than deg h. We proceed as in TNFS and enumerate all the pairs (a, b) ∈ Z[t] 2 of degree ≤ η -1 such that a ∞ , b ∞ ≤ A for a parameter A to be determined. We say that we obtain a relation for the pair (a, b) if

N f (a, b) := Res t (Res x (a(t) -b(t)x, f (x)), h(t)) and N g (a, b) := Res t (Res x (a(t) -b(t)x, g(x)), h(t))
are B-smooth for a parameter B to be determined (an integer is B-smooth if all its prime factors are less than B). If ι denotes a root of h in R our enumeration is equivalent to putting linear polynomials a(ι) -b(ι)x in the top of the diagram of Figure 1. One can generalize exTNFS to the case where one puts non-linear polynomials r(x) ∈ R[x] in the diagram but this is not necessary in this paper.

For each pair (a, b) we can write a linear equation and this part, although computationally negligible, demands some mathematical details.

Factor base Let α f (resp. α g ) be a root of f in K f (resp. of g in K g ), the number field it defines over the fraction field of R. Then the norm of a

(ι) - b(ι)α f (resp. a(ι) -b(ι)α g ) over Q is Res t (Res x (a(t) -b(t)x, f (x)), h(t)) (resp. Res t (Res x (a(t) -b(t)x, g(x)), h(t)
)) up to a power of l(f ) (resp. l(g)), the leading coefficient of f (resp. g). We call factor base the set of prime ideals of K f and K g which can occur in the factorization of a(ι) -b(ι)α f and a(ι) -b(ι)α g when both norms are B-smooth. By Proposition 1 in [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF] we can give an explicit description of the factor base as

F(B) := F f (B) F g (B)
where

F f (B) = q, α -γ : q is a prime in Q(ι) lying over a prime p ≤ B and f (γ) ≡ 0 (mod q) {prime ideals of K f dividing l(f )Disc(f )} .
and similarly for F g (B).

Schirokauer maps If a(ι) -b(ι)α f = q∈F f (B) q valq(a(ι)-b(ι)α f ) and a(ι) - b(ι)α g = q∈Fg(B) q valq(a(ι)-b(ι)αg) we write q∈F f (B) val q (a(ι)-b(ι)α f ) log q+ f (a, b) = q∈Fg(B) val q (a(ι)-b(ι)α g ) log q+ g (a, b)
where the log sign denotes virtual logarithms in the sense of [START_REF] Schirokauer | Discrete logarithms and local units[END_REF] and [START_REF] Joux | The number field sieve in the medium prime case[END_REF] and f and g are correction terms called Schirokauer maps which were first introduced in [START_REF] Schirokauer | Discrete logarithms and local units[END_REF].

The novelty for TNFS and exTNFS with respect to JLSV is that K f and K g are constructed as tower extensions instead of absolute extensions. On the other hand, it is more convenient to work on absolute extensions when we compute Schirokauer maps. We solve this problem by computing primitive elements θ f (resp. θ g ) of K f /Q (resp. K g /Q). For a proof we refer to Section 4.3 in [START_REF] Joux | The number field sieve in the medium prime case[END_REF].

Linear algebra and individual logarithm These two steps are unchanged with respect to the classical variant of NFS. The linear algebra step, comes after relation collection and consists in solving the linear system over F l for some prime factor l of the order of F * Q . Using Wiedemann's algorithm this has a quasi-quadratic complexity in the size of the linear system, which is equal to the cardinality of the factor base. In [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF] it is shown that the factor base has (2 + o(1))B/ log B elements, so the cost of the linear algebra is B 2+o (1) .

In the individual logarithm step one writes any desired discrete logarithm as a sum of virtual logarithms of elements in the factor base. Since the step is very similar to the corresponding step in NFS we keep the description for the Appendix.

Complexity

The complexity analysis of exTNFS follows the steps of the analysis of NFS in the case of prime fields. It is expected that the stages of the algorithm other than the relation collection and the linear algebra are negligible, hence we select parameters to minimize their cost and afterwards we check that the other stages are indeed negligible.

Let us call T the time spent in average for each polynomial r ∈ R[x] enumerated in the relation collection stage (in this paper r = a(ι) -b(ι)x), and let P f (resp. P g ) be the probability that the norm N f (resp. N g ) of r with respect to f (resp. g) is B-smooth. The number of polynomials that we test before finding each new relation is on average 1/(P f P g ), so the cost of the relations collection is #F(B)T /(P f P g ).

We make the usual heuristic that the proportion of smooth norms is the same as the proportion of arbitrary positive integers of the same size, so P f = Prob(N f , B) (resp P g = Prob(N g , B) ) where Prob(x, y) is the probability that an arbitrary integer less than x is y-smooth. The value of T depends on whether we use a sieving technique or we consider each value and test smoothness with ECM [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF]; if we use the latter variant we obtain 1) , so T = B o (1) . Using the algorithm of Wiedemann [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF] the cost of the linear algebra is (#F(B)) 2+o(1) = B 2+o (1) . Hence, up to an exponent 1 + o(1), we have

T = L B (1/2, √ 2)(log Q) O(
complexity(exTNFS) = B Prob(N f , B)Prob(N g , B) + B 2 . ( 1 
)
This equation is the same for NFS, TNFS, exTNFS and the corresponding SNFS variants. The differences begin when we look at the size of N f and N g which depend on the polynomial selection method. In what follows we instantiate Equation ( 1) with various cases and obtain equations which have already been analysed in the literature.

Lemma 1. Let h and f be irreducible polynomials over Z and call η := deg h and κ

:= deg(f ). Let a(t), b(t) ∈ Z[t] be polynomials of degree at most η -1 with a ∞ , b ∞ ≤ A. We put N f (a, b) := Res t (Res x (a(t) -b(t)x, f (x)), h(t)). Then we have 1. |N f (a, b)| < A η•κ f η ∞ h κ•(η-1) ∞ C(η, κ), (2) 
where C(η, κ) = (η + 1) (3κ+1)η/2 (κ + 1) 3η/2 . 2. Assume in addition that h ∞ is bounded by an absolute constant H and that p = L Q ( p , c) for some p > 1/3 and c > 0. Then

N f (a, b) ≤ E κ f η ∞ L Q (2/3, o(1)), (3) 
where

E = A η
Proof. 1. This is proven in Theorem 3 in [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF].

2. The overhead is bounded as follows

log( h κ(η-1) ∞ C(η, κ)) ≤ κη log H + 3κη log η + 3η log κ = O(log(Q) 1-p (log log Q) p ) = o(1) log(Q) 2/3 (log log Q) 1/3 . If N f = L Q (2/3) then we can forget the overhead L Q (2/3, o(1)
) as the Canfield-Erdös-Pomerance theorem states that the smoothness probability satisfies, uniformly on x and y in the validity domain, Prob(x 1+o (1) , y) = Prob(x, y) 1+o (1) .

The next statement summarizes our results.

Theorem 1. (under the classical NFS heuristics) If Q = p n is a prime power such that -p = L Q ( p , c p ) with 1/3 < p ; algorithm C conditions exTNFS-JLSV2 (64/9) 1 3 κ = o ( log Q log log Q ) 1 3
exTNFS-GJL (64/9)

1 3 κ ≤ ( 8 3 ) -1 3 ( log Q log log Q ) 1 3
exTNFS-Conj (48/9)

1 3
p < 2/3 or p = 2/3 and cp < 12

1 3 κ = 12 -1 3 ( log Q log log Q ) 1 3
SexTNFS (32/9)

1 3 κ = o ( log Q log log Q ) 1 3 p is d-SNFS with d = (2/3) 1 3 +o(1) κ ( log Q log log Q ) 1 3 MexTNFS-JLSV2 ( 92+26 √ 13 27 
)

1 3 κ = o ( log Q log log Q ) 1 3 MexTNFS-GJL ( 92+26 √ 13 27 
)

1 3 κ ≤ ( 7+2 √ 13 6 ) -1/3 ( log Q log log Q ) 1 3
MexTNFS-Conj

3+ √ 3(11+4 √ 6) 18(7+3 √ 6) 1/3 p < 2/3 or p = 2/3 and cp < ( 56+24 √ 6 12 ) 1/3 κ = (( 56+24 √ 6 12 ) -1/3 + o(1))( log Q log log Q ) 1 3
Table 4: Complexity of exTNFS variants

-n = ηκ such that gcd(η, κ) = 1 then the discrete logarithm over F Q can be solved in L Q (1/3, C)
where C and the additional conditions are listed in Table 4.

In the rest of this section we prove this statement. In any case in the table, one shares the conditions κ = o ( log Q log log Q )

1 3 or κ ≤ c( log Q log log Q ) 1 3
for some constant c > 0. These are equivalent to say that P = p η = L Q ( P ) for some P ≥ 2/3.

exTNFS-JLSV 2

In this section we assume that n has a factor κ such that

κ = o log(Q) log log(Q) 1/3 . Let us introduce h ∞ = O(1)
and the values of f ∞ , g ∞ ≈ p κ/(D+1) coming from the JLSV 2 method (Section 2.2) in Equation ( 2). Then we get

|N f (a, b)| < A ηκ (p κ D+1 ) η 1+o(1) = E κ P κ D+1 1+o(1) , (4) 
|N g (a, b)| < A ηD (p κ D+1 ) η 1+o(1) = E D P κ D+1 1+o(1) , (5) 
where we set E := A η and P := |R/pR| = p η . One recognizes the expressions for the norms in the large prime case [18, Appendix A.3.], where P = p and κ = n. We conclude that we have the same complexity: complexity(exTNFS with JLSV 2 ) = L Q (1/3, 3 64/9).

exTNFS-GJL

We relax a bit the condition from the previous section: we assume that n has a factor κ such that

κ ≤ (8/3) -1 3 log(Q) log log(Q) 1/3 .
Recall the characteristics of our polynomials:

h ∞ = O(1) and deg h = η; f ∞ = O(1) and deg f = d + 1 for a parameter d ≥ κ; g ∞ ≈ p κ/(d+1) and deg g = d.
We inject these values in Equation ( 2) and we get

|N f (a, b)| < E d+1 L Q (2/3, o(1)), (6) 
|N g (a, b)| < E d Q 1/(d+1) L Q (2/3, o(1)), (7) 
where we set E := A η and P := |R/pR| = p η . We recognize the expression in the first equation of Section 4.2 in [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF], so complexity(exTNFS with GJL) = L Q (1/3, 3 64/9).

exTNFS-Conj

We propose here a variant of NFS which combines exTNFS with the Conjugation method of polynomial selection.

Let us consider the case when n = ηκ with

κ = 1 12 1/3 + o(1) log(Q) log log(Q) 1/3 .
As before, evaluating the values coming from the Conjugation method (Section 2.2) in Equation (2), we have

|N f (a, b)| < E 2κ L Q (2/3, o(1)), (8) 
|N g (a, b)| < E κ (p κη ) 1/(2κ) L Q (2/3, o(1)). (9) 
When we combine Equations ( 8) and ( 9) we obtain

|N f (a, b)| • |N g (a, b)| < E 3κ Q (1+o(1))/(2κ) .
But this is Equation ( 5) in [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] when t = 2. The rest of the computations are identical as in point 3. of Theorem 1 in [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF], so complexity(exTNFS-Conj) = L Q (1/3, (48/9) 1/3 ). We consider the case when n = ηκ, gcd(η, κ)

Variants

= 1 with κ = o log Q log log Q 1/3
and p is d-SNFS. In this case exTNFS is unchanged: we select h, f and g three polynomials with integer coefficients so that h is irreducible modulo p, deg h = η and h ∞ = O(1); f and g have a common factor k(x) modulo p which is irreducible of degree κ.

Choice of f and g using the method of Joux and Pierrot Find a polynomial S of degree κ -1 with coefficients in {-1, 0, 1} so that k(x) = x κ + S(x) -u is irreducible modulo p. Since the proportion of irreducible polynomials in F p of degree κ is 1/κ and there are 3 κ choices we expect this step to succeed. Then we

set g = x κ + S(x) -u f = Π(x κ + S(x)).
If f is not irreducible over Z[x], which arrives with negligible probability, start over. Note that g is irreducible modulo p and that f is a multiple of g modulo p.

By construction we have:

-deg(g) = κ and g ∞ = u = p 1/d ; -deg(f ) = κd and f ∞ = 2 d Π ∞ = O(2 d ).
Let us compute the analysis of this particular case of exTNFS. We inject these values in Equations ( 2) and obtain

|N f (a, b)| ≤ E κd L Q (2/3, o(1)) |N g (a, b)| ≤ E κ P 1/d L Q (2/3, o(1)),
where E := A η and P := |R/pR| = p η . We recognize the size of the norms in the analysis by Joux and Pierrot [19, Section 6.3.], so we obtain the same complexity as in their paper: complexity(exTNFS for SNFS primes) = L Q (1/3, (32/9) 1/3 ).

The multiple polynomial variants (MexTNFS)

Virtually every variant of NFS can be accelerated using multiple polynomials and exTNFS makes no exception. The multiple variant of exTNFS is as follows: choose f and g which have a common factor k(x) modulo p which is irreducible of degree κ using any of the methods given in Section 2.2. Next we set f 1 = f and f 2 = g and select other V -2 irreducible polynomials

f i := µ i f 1 + ν i f 2 where µ i = η-1 j=0 µ i,j ι j and ν i = η-1 j=0 ν i,j ι j are elements of R = Z[t]/hZ[t] such that µ i ∞ , ν i ∞ ≤ V 1 2η where V = L Q (1/3, c v )
is a parameter which will be selected later. Denote α i a root of f i for i = 1, 2, . . . , V .

Once again the complexity depends on the manner in which the polynomials f and g are selected.

MexTNFS-JLSV 2 Barbulescu and Pierrot [8, Section 5.3.] analysed the complexity of MNFS with JLSV 2 , so we only need to check that the size of the norm is the same for NFS and exTNFS for each polynomial f i with 1 ≤ i ≤ V . By construction we have:

-deg(f 1 ) = κ and f 1 ∞ = p κ D+1 ; -deg(f i ) = D ≥ κ and f i ∞ = V 1 2η p κ D+1 for 2 ≤ i ≤ V .
As before, we inject these values in Equations ( 2) and obtain [START_REF] Pierrot | The multiple number field sieve with conjugation and generalized joux-lercier methods[END_REF] studied the multiple polynomial variant of NFS when the Conjugation method or GJL are used. To show that we obtain the same complexities we need to show that the norm with respect to each polynomial is the same as in the classical NFS, except for a factor L Q (2/3, o(1)), which boils down to testing again that (V

|N f1 (a, b)| < E κ (p κη ) 1 D+1 L Q (2/3, o(1)) |N fi (a, b)| < E D (p κη ) 1 D+1 L Q (2/3, o(1)) for 2 ≤ i ≤ V. We emphasize that (V 1 2η ) η = V 1 2 = L Q (1/3, c v /2) = L Q (2/3, o(1)

MexTNFS-Conj and GJL Pierrot

1 2η )η = L Q (2/3, o(1)) which is always true. When P = p η = L Q (2/3, c P ) such that c P > ( 7+2 √ 13 6 
) 1/3 and t is the number of coefficients of the enumerated polynomials r, then the complexity obtained is L Q (1/3, C(t, c P )) where

C(t, c P ) = 2 c P t + 20 9(c P t) 2 + 2 3 c P (t -1).
The best case is when c P = ( 56+24 √ 6 12

) 1/3 and t = 2 (linear polynomials):

complexity(best case of MexTNFS-Conj) = L Q   1/3, 3 + 3(11 + 4 √ 6) 18(7 + 3 √ 6) 1/3   ,
where the second constant being approximated by 1.71.

Comparison and examples

NFS, TNFS and exTNFS have the same main lines:

we compute a large number of integer numbers; we factor these numbers to test if they are B-smooth for some parameter B; we solve a linear system depending on the previous steps.

If we reduce the size of the integers computed in the algorithm we reduce the work needed to find a subset of integers which are B-smooth, which further allows us to adapt the other parameters so that the linear algebra is also cheap. A precise analysis is complex because in some variants one tests smoothness using ECM while in others one can sieve (which is faster). Nevertheless, as a first comparison we use the criterion in which one must minimize the bitsize of the product of the norms.

Precise comparison when p is arbitrary

Each method of polynomial selection has a different expression of the norm bitsize, which depends on the number t of coefficients of the polynomials r(x) that are enumerated during the relation collection. Let us reproduce Table 2 in [START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF], which we extend with TNFS and exTNFS:

Method norms product conditions NFS-JLSV1 E 4n t Q t-1 n NFS-JLSV2 E 2(n+D) t Q t-1 D+1 D ≥ n NFS-GJL E 2(2r+1) t Q t-1 r+1 r ≥ n NFS-Conj E 6n t Q t-1 2n NFS-SS E 2η(2r+1) t Q t-1 η(r+1) n = ηκ, r ≥ κ TNFS E 2(d+1) t Q 2(t-1) d+1 n small exTNFS-JLSV1 E 4κ t Q t-1 κ n = ηκ, gcd(η, κ) = 1, η small exTNFS-JLSV2 E 2(κ+D) t Q t-1 D+1 n = ηκ, gcd(η, κ) = 1, η small, r ≥ κ exTNFS-GJL E 2(2r+1) t Q t-1 r+1 n = ηκ, gcd(η, κ) = 1, η small, r ≥ κ exTNFS-Conj E 6κ t Q (t-1) 2κ n = ηκ, gcd(η, κ) = 1, η small exTNFS-SS E 2d(2r+1) t Q t-1 d(r+1) n = dηκ, gcd(η, κ) = 1, η small, r ≥ κ
Table 5: Comparison of norm sizes.

Note that the method of Sarkar and Singh requires that n is composite. The settings based on TNFS (TNFS, exTNFS-GJL etc) have an overhead due to the combinatorial factor which is not written in this table, so we add the condition that the degree of the intermediate number field must be small. Finally, exTNFS requires the additional condition that κ and η are relatively prime.

Extrapolation E The parameter E depends on the implementation of NFS and might be different for one variant to another. Let us take for example three computations with NFS which tackle various problems of the same bitsize:

-Danilov and Popovyan [START_REF] Danilov | Factorization of rsa-180[END_REF] factored a 180-digit RSA modulus using log 2 E ≈ 30 (although the size of the pairs (a, b) in theirs computations is not written explicitly, one can compute E using the range of special-q's and the default cardinality of the sieving space per special-q, which is 2 30 ); -Bouvier et al. [START_REF] Bouvier | Discrete logarithms in GF(p) -180 digits[END_REF] computed discrete logarithms in a 180-digit field F p using log 2 E ≈ 30 (computed from other parameters). -Barbulescu et al. [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] computed discrete logarithms in a 180-digit field F p 2 using log 2 E ≈ 29.

We see that in the first approximation E depends only on the bitsize of the field that we target and has the same value as in the factoring variant of NFS. Let us extrapolate E from the pair (log 2 Q = 600, log 2 E = 30) using the formula

E = cL Q (1/3, (8/9) 1/3 ).
Since exTNFS requires that gcd(η, κ) = 1, the first case to study is n = 6.

The case of fields F p 6 When n = 6 we can use the general methods

-NFS-JLSV 1 (bitsize E 24 t Q t-1
6 , best values of t are 3 and 2) -NFS-GJL with r equal to its optimal value, 6 (bitsize

E 26 t Q t-1
7 , best values of t are 3 and 2 ) -TNFS with deg f = 5, its optimal value for this range of fields (bitsize

E 12 t Q t-1 3 , best value of t is 2)
as well as the methods which exploit the fact that n is composite -Sarkar-Singh (NFS-SS) with η = 2 and r = 3, best value so that r ≥ n/η for this range of fields, (E 8 ) respectively η = 3 and r = 2, best value so that r ≥ n/η for this range of fields, (bitsize

28 t Q t- 1 
E 30 t Q t-1
9 , best t are 4 and 3 ) -exTNFS with η = 2 or η = 3 and one of two methods for selecting f and g

• exTNFS-GJL with η = 3, r = 2 its best value so that r ≥ n/η, (bitsize

E 10 t Q t-1 3 , best value of t is 2 ) • exTNFS-GJL with η = 2, r = 3 its best value so that r ≥ n/η, (E 14 t Q t-1 4 , best values of t are 3 and 2 ) • exTNFS-Conj with η = 2 (bitsize E 18 t Q t-1 6 , best values of t is 2). • exTNFS-Conj with η = 3 (bitsize E 12 t Q t-1
4 , best values of t are 3 and 2).

We plot the values of the norms product in Figure 2. Note that exTNFS with the Conjugation method seems to be the best choice for fields between 300 and 1000 bits.

For even more insight enter into details on a specific field. The bitsize of Q = p 6 is 608 and its number of decimal digits is 182. Since the parameter E can only be chosen after an effective computation we are bound to make the hypothesis that it will have a similar value as in a series of record computations with NFS having the same input size:

In the following log 2 E = 30. Let us make a list with the norm sizes obtained with each version of NFS:

1. NFS-JLSV 1 . We take for example f = x 6 -1772453850905517 and g = 1772453850905515x 6 + 96769484157334. The sieving space contains polynomials of degree two r(x) = a + xb + cx 2 , i.e. t = 3, and the upper bound on the norms' product is

norms bitsize(NFS-JLSV 1 ) = 8 log 2 E + 1 3 log 2 Q ≈ 440.
2. TNFS. We take f = x 5 + 727139x 3 + 538962x 2 + 513716x + 691133, g = x -1257274 and h = x 6 + x 4 + x + 1. This time t = 2. Note that the parameter d = deg f is equal to 5, so that we have norms bitsize(TNFS) = 6 log 2 E + 1 3 log 2 Q ≈ 380.

3. exTNFS-Conj with η = 2 and κ = 3. We take f = x 6 -3, g = 309331385734750x 3 -1851661516636217 and h = x 2 + 2. Here t = 2. Hence we obtain norms bitsize(exTNFS η = 2) = 9 log 2 E + 1 6 log 2 Q ≈ 370.

4. exTNFS-Conj with η = 3 and κ = 2. We take f = x 4 -2x 3 + x 2 -3, g = x 2 + 3141592653589793238462643383588x + 2607544377307649649616026264183 and h = x 3 + x + 1. Again t = 2. This leads to norms bitsize(exTNFS

κ = 2) = 6 log 2 E + 1 4 log 2 Q ≈ 330.
We conclude that in this example the best choice is exTNFS with κ = 2.

The condition gcd(η, κ) = 1 restricts the values of n where exTNFS applies to n = 6, 10, 12, 14, 18, 20, 24 etc, but we do not discuss them in detail.

Precise comparison when p is SNFS

To compare precise norm sizes when p is a d-SNFS prime, let us consider Table 6.

Method condition norms product STNFS E 2(d+1) t Q t-1 d SNFS-JP E 2n(d+1) t Q t-1 nd SexTNFS E 2κ(d+1) t Q t-1 κd n = ηκ gcd(κ, η) = 1 2 ≤ η < n
Table 6: Comparison of norm sizes when p is d-SNFS prime.

Note that SexTNFS encompass SNFS-JP when η = 1, and STNFS when η = n, so we only call it SexTNFS when 2 ≤ η < n.

As in the case when p is arbitrary, we do not have precise estimations of E, especially in the large range of fields log 2 Q ∈ [1000, 10000]. We are going to extrapolate from the pair (log 2 Q = 1039, log 2 E = 30.38), due to the record of [START_REF] Aoki | A kilobit special number field sieve factorization[END_REF], using the formula

E = cL Q (1/3, (4/9) 1 3 ).
Let us introduce a notation for the bitsize of SexTNFS, for any integers κ ≥ 1 and t ≥ 2:

C norm (t, κ) = 2κ(d + 1) t log E + t -1 κd log Q.
For each κ, C norm (t, κ) has a minimum at the integer t ≥ 2 which best approxi-

mates 2κ 2 d(d+1) log E log Q 1/2
.

The case of 4-SNFS primes . To fix ideas, we restrict at the case d = 4. When κ = 1, i.e. STNFS, the norm size has its minimum at t = 2 as soon as log Q log E ≥ 40/2 2 = 10. In our range of interest (300 ≤ log 2 Q ≤ 10000), the ratio log Q/ log E is always larger than 19. So, we only take care of sieving linear polynomials in the case of STNFS with d = 4. Similarly, it suffices to consider sieving linear polynomials in the case of SexTNFS with κ = 2 (resp. κ = 3) whenever log Q/ log E ≥ 40 (resp. log Q/ log E ≥ 90). It is satisfied when Q is of at least 1450 bits (resp. 6300 bits).

Let us compare the norm sizes of STNFS and SexTNFS when we sieve only linear polynomials (t = 2) in both cases. The value C norm (2, κ) has a minimum

at κ = log Q d(d+1) log E 1/2
. In the case of d = 4, this value has minimum at κ = 2 or κ = 3 whenever 20 ≤ log Q/ log E ≤ 180 = 20 • 3 2 . Thus, in fields with large size, SexTNFS with κ = 2 or κ = 3 is better than STNFS.

In Figure 3 we plot the norm sizes of SNFS-JP, STNFS, and SexTNFS for n = 12 and d = 4 for Q is of from 300 bits to 5000 bits. We also compare these values with the best choice for general prime cases (exTNFS with Conjugation when κ = 3). From the plots we remark that STNFS could be a best choice for small Q otherwise SexTNFS with small κ becomes an important challenger against any other methods as the size of Q grows. To get a better intuition, let us see in detail a specific field. Example 2: We consider the prime p = P 4 (u 4 ) where P 4 (x) = 36x 4 + 36x 3 + 24x 2 + 6x + 1 and u 4 = 2 158 -2 128 -2 68 + 1 (Section 6 in [START_REF] Aranha | Implementing pairings at the 192-bit security level[END_REF]), and note that p is 4-SNFS. The bitsize of p 12 is 7647 for which we predict by extrapolation that log 2 E = 76.15.

Let us make a list with the norm sizes obtained with each version of NFS:

1. STNFS. The size of the norms is E 2(d+1)/t Q (t-1)/d and has its minimum for t = 2. Take for example h = x 12 + x 10 + x 9 -x 6 -1, f = P 4 and g = x -u 4 .

norms bitsize(STNFS) = 5 log

2 E + 1 4 log 2 Q ≈ 2292.
2. SNFS-JP. The size of the norms is E 2n(d+1)/t Q (t-1)/(nd) and has its minimum when t = 8. Take for example f = P 4 (x 12 + x 6 + x 3 + 1) and g = (

x 12 + x 6 + x 3 + 1) -u 4 . norms bitsize(SNFS-JP) = 120 7 log 2 E + 1 8 log 2 Q ≈ 2257. 3. SexTNFS-JP η = 4. In this case the norm size is E 2κ(d+1)/t Q (t-1) κd
and has its minimum when t = 2. Take for example h

= x 4 -x -1, f = P 4 (x 3 -x 2 ) and g = x 3 -x 2 -u 4 . norms bitsize(SexTNFS) = 15 log 2 E + 1 12 log 2 Q ≈ 1779.
One can do a similar analysis in the cases d = 5, d = 6 etc, but we do not present the details here.

Cryptologic consequences

The keysizes used in pairings-based cryptosystems are computed under the hypothesis that DLP in F p n with 2 ≤ n ≤ 12 is at least as difficult as factoring an integer of the same size as p n (see for example [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]). This hypothesis has been invalidated for n = 2 by the record computations presented in [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] where DLP in GF (p 2 ) was 260 times faster than in GF (p), and similar estimations were given for F p 3 . The precise estimation in the same paper concluded however that the security of fields F p 6 was much less affected and there was nothing said about F p 12 Thanks to exTNFS we addressed the case of F p 6 and by a precise estimation concluded that it has norm sizes approximatively equal to those in the case of F p 2 . This invalidates the keysizes which are currently used for F p 6 . In order to extrapolate the new keysizes it is necessary to use the complexity L Q (1/3, 3 48/9) instead of the old L Q (1/3, 3 64/9) (a MNFS variant is also available of complexity L Q (1/3, 1.71)). The same is true when n = κη with κ = 2 or 3 and gcd(κ, η) = 1, e.g. n is in the list 10, 12, 14, 18, 21, 22, 24. When p is of special form, as in the Barreto-Naehrig construction, a precise estimations using STNFS and SexTNFS invalidated the current keysizes. In order to extrapolate the new keysizes it s necessary to use the new complexity L Q (1/3, 3 32/9) instead of the old L Q (1/3, 3 64/9).

A Non-linear polynomials

In all the variants of exTNFS that we have discussed, one puts linear polynomials r(x) ∈ R[x] in the diagram of Figure 1. This is justified by the fact that exTNFS is a way of copying the setting from large characteristic to the medium prime case. Since in the large characteristic, the best choice is to take linear polynomials in all the variants, NFS, MNFS, SNFS, we have done the same thing in exTNFS, MexTNFS and SexTNFS.

The estimation of the norms sizes given in Lemma 1 is central in the analysis of exTNFS. For completion reasons we generalize this result to arbitrary degrees. Lemma 2. Let h be an irreducible polynomial over Z of degree η and f be an irreducible polynomial over Z[ι] of degree κ. Let ι (resp. α) be a root of h (resp. f ) in its number field and set K f := Q(ι, α). Let A > 0 be a real number and T an integer such that 2 ≤ T ≤ κ. For each i = 0, . . . , κ -1, let a i (t) ∈ Z[t] be polynomials of degree ≤ η -1 with a i ∞ ≤ A. Then we have

N K f /Q T -1 i=0 a i (ι)α i < A ηκ f (T -1)η ∞ h (T +κ-1)(η-1) ∞ D(η, κ),
where D(η, κ) = (2κ -1)(η -1) + 1 η/2 (η + 1) (2κ-1)(η-1)/2 (2κ -1)!η 2κ η . The above formula remains the same when we restrict the coefficients of f to be integers.

Proof. By abusing the notation, we write f (t, x)

:= i f i (t)x i with deg t (f i ) ≤ κ -1 for f (x) = i f i (ι)x i ∈ Z[ι][x]
. Write A(t, x) := i a i (t)x i and r(t) := Res x A(t, x), f (t, x) , then we have

N K f /Q(ι) (A(ι, α)) = r(ι).
By Theorem 8 and Theorem 10 in [START_REF] Bistritz | Bounds for resultants of univariate and bivariate polynomials[END_REF], the degree of r(t) is given by (κ + T -1)(η -1) and r(t

) ∞ ≤ (T + κ -1)!η T +κ-2 A κ f T -1 ∞ .
Then by Theorem 7 in the same article, we have

|N Q(ι)/Q (r(ι))| ≤ (deg r + 1) deg h/2 (deg h + 1) deg r/2 r deg h ∞ h deg r ∞ .
Combining all together, we obtain the desired result.

This result allows to analyze MexTNFS-SS when κ = 1 cp ( log Q log log Q ) 3 and c p < ( √ 78/9 + 29/36) 1 3 ≈ 1.21. Indeed, in this case one puts non-linear polynomials in the diagram, as indicated in Table 4 of [START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF].

Once again we check when D(η, κ) = L Q (2/3, o(1)) and obtain the condition

ηκ = o(( log Q log log Q ) 2 3 
). The factor h (T +κ-1)(η-1) ∞ is also negligible under the same condition. Hence the overhead is negligible for all range p > 1/3.

B Individual Logarithm

Let s ∈ F * p n = F * p ηκ be an element for which we want to compute the discrete logarithm. In general, the discrete logarithm of s can be found by following two steps: smoothing step and special-q descent.

In the smoothing step, the value s is randomized by z := s e for random value e and B 1 -smoothness of z (for pre-determined value B 1 > B) is tested. Then, for each prime ideal D which is not in the factor base, one finds a linear relation involving D and other smaller ideals. This step is called special-q descent. We recursively produce the special-q descent tree, and finally deduce the desired discrete logarithm.

The complexity of the individual logarithm step differs by polynomial selection methods. In the following, to fix ideas, we consider only the JLSV 2 and Conjugation methods (exTNFS-JLSV 2 and exTNFS-Conj), but similar argument directly applies to any other polynomial selection method.

Smoothing. For each z ∈ F p n we compute an element z ∈ K f = Q(ι, α f ) which is sent to z when ι is mapped to a root of h in F p η and α f in a root of f in F p ηκ . Then we test if N K f /Q (z) is B 1 -smooth and squarefree. Let us discuss how to compute and what is the size of its norm.

JLSV 2 As before, we consider the target field F p n as an extension field

F p ηκ = F p η (m) = F p η [x]/k(x) over F p η = F p (ι) = F p [t]/h(t). For a given z in F * p n , we write z = i z i (ι)m i
, where the coefficients of z i are non-negative intergers bounded by p. We set z = κ-1 i=0 z i (ι)α i f and, by Lemma 2 for T = κ, we obtain

|N K f /Q (z)| ≤ p n (p κ/(D+1) ) n-η 1+o(1)
≤ Q 2-2/(κ+1)+o (1) , where, in the last inequality, we used the condition that D ≥ κ.

Conjugation In this case, a direct lift would make that z has degree κ instead of 2κ = deg K f , and the coefficients z i (t) have norm bounded by p. In order to "spread" the coefficients, i.e. compute another polynomial with the same image in F p n of degree 2κ and coefficients of norm p 1/2 , we need to use the LLL algorithm.

With no extra cost we can obtain a further improvement: use the Waterloo improvement which consists in replacing the smoothness condition of integers of a given size X by the smoothness condition of two integers of size X 1/2 . The Waterloo improvement for exTNFS-Conj is as follows: we find two bivariate polynomials u(t, x) = 2κ-1

i=0 u i (t)x i and v(t, x) = 2κ-1 i=0 v i (t)x i ∈ Z[t, x] such that z is the image in F p n of z := u(ι, α f ) v(ι, α f ) where u i ∞ , v j ∞ ≤ 2 n p 1/4
. For this we LLL-reduce the lattice of dimension 4n defined by the lines of the matrix

L =                        p . . . p vec(k) . . . vec(k) vec(z mod (h, f )) 1 . . . . . . vec(t i x j z mod (h, f )) . . . . . .
the first n rows contain only the diagonal coefficient equal to p and where, for all bivariate polynomial w(t, x) = 2κ-1 i=0 w i (t)x i with w i (t) = η-1 j=0 w i,j t η-1-j , vec(w) = (w 0,0 , . . . , w 0,η-1 , . . . , w 2κ-1,0 , . . . , w 2κ-1,η-1 ) of dimension 2n. In particular, k ∈ F p η [x] has been seen as a two-variate polynomial.

By dividing if necessary by the leading coefficient, we can assume that k(x) is monic, hence the right-most coordinate of vec(k) is 1. Then det L = p n and we have

u, v with u i ∞ , v j ∞ ≤ 2 (4n-1)/4 Q 1 4n ≤ 2 n Q 1 4n
. By Lemma 2 we obtain that

|N K f /Q (u(ι, α f ))N K f /Q (v(ι, α f ))| ≤ 2 n 2 Q f (2κ-1)η ∞ h (3κ-1) ∞ (η -1)D(η, 2κ) 2 .
The term in the later bracket is L Q (2/3, o(1)) and 2 n 2 is negligible compared to Q if and only if p > 1/2. We conclude that when p > 1/2 1) .

|N K f /Q (u(ι, α f ))N K f /Q (v(ι, α f ))| = Q 1+o(
Once the lift z has been computed, the smoothing step is carried out as usual: one tests that the norm of z (or u and v) is squarefree and B 1 -smooth where B 1 = L Q (2/3, β 1 ) for some constant β 1 > 0. We recognize the complexity analysis done in [START_REF] Commeine | An algorithm to solve the discrete logarithm problem with the number field sieve[END_REF] in the case of prime fields: the complexity of the smoothing step is L Q (1/3, c smooth ) with c smooth = 6 Descent by special-q Recall how the special-q descent is done in the large characteristic case of NFS (for example NFS-JLSV 2 ). Due to the condition that N K f /Q (z) is squarefree the ideal generated by z factors only into prime ideals of degree 1. For a prime ideal q of degree 1 in K f that appears in the factorization of the principal ideal (z), we write the logarithm of q as a formal sum of virtual logarithms of ideals in K f and K g of norm less than N (q) c for a constant c < 1. For this, we enumerate pairs (a, b) ∈ Z × Z such that q divides (a -bα f ) to find one pair such that -(a -bα f )/q factors into prime ideals of norm less than N (q) c , and the ideal (a -bα g ) factors into prime ideals of norm less than N (q) c .

To do this we find two pairs (a (1) , b (1) ) and (a (2) , b (2) ) of euclidean norm less than a constant times N (q) 1 2 , using LLL. Then we enumerate the pairs i 1 + i 2 for all rational integers with |i 1 |, |i 2 | ≤ E . The complexity of the descent is mainly determined by the size of the norms: (1) , |N Kg/Q (a -bα g )| ≤ (E ) D N (D) D/2 Q 1/(D+1) 1+o (1) .

|N K f /Q (a -bα f )| ≤ (E ) κ N (D) κ/2 Q 1/(D+1) 1+o
In our two cases, exTNFS-JLSV 2 and exTNFS-Conj, we enumerate a(ι), b(ι) ∈ R ⊂ Q(ι) where a(t), b(t) ∈ Z[x] of degree ≤ η -1 and a ∞ , b ∞ ≤ (E ) 1 η so that a(ι) -b(ι)α f ≡ 0 mod q. This can be done in the following manner (cf Appendix 7.1 in [START_REF] Barbulescu | The Towed Number Field Sieve[END_REF]). First, we construct the lattice L(q) := {(a, b) = (a 0 , . . . , a η-1 , b 0 , . . . , b η-1 ) ∈ Z 2η : a(ι) -b(ι)α f ≡ 0 mod q}, which has determinant N (q). Let (a (k) , b (k) ), k = 1, 2, . . . , 2η, be the LLL-reduced basis of this lattice. Then we test the above smoothness conditions for pairs (a, b) = 2η k=1 i k (a (k) , b (k) ), where i k are rational integers with absolute value less than I := (E ) 1 η . By Lemma 1, in the case of exTNFS-JLSV 2 the size of the norms is |N K f /Q (a -bα f )| ≤ (E ) κ N (q) κ/2 Q 1/(D+1) 1+o (1) , |N Kg/Q (a -bα g )| ≤ (E ) D N (q) D/2 Q 1/(D+1) 1+o (1) .

Then, the rest of the analysis is similar to that of Chapter 7.3. in [START_REF] Barbulescu | Algorithms of discrete logarithm in finite fields[END_REF] and we conclude that in exTNFS-JLSV 2 the special-q descent is negligible compared to the smoothing step.

In the case of exTNFS-Conj, we use again Lemma 1 and obtain: 1) , |N Kg/Q (a -bα g )| ≤ (E ) κ N (q) κ/2 Q 1/(2κ) 1+o (1) .

|N K f /Q (a -bα f )| ≤ (E ) 2κ N (q) κ 1+o(
We make an usual heuristic argument that a number x is y-smooth with the probability of ρ(log x/ log y) for Dickman function ρ. So, the probability of the pair (a, b) to be descended is given by In the case when ν is large, i.e. ν = L Q (2/3, β 1 ), where β 1 is imposed by the smoothing step described above, the inverse of the probability can be approximated by

ρ 3κ 2c -1+o(1) = L Q 1 3 , c κ 2c 1+o (1) 
, where c κ = κ/( log Q log log Q ) .

This value is minimized by L Q (1/3, (9β 1 c κ /2) 1/3 ) when c = . When we use that β 1 = (1/3) 1/3 and c κ = 12 -1 3 , we deduce the complexity L Q 1/3, (81/32)
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that is less than the complexity of the smoothing step.

In the case of small ν, i.e. ν = L Q (1/3), the hardest descent step corresponds to the case when ν c = B (the smoothness bound for the factor base). In this case, again by Equation [START_REF] Bistritz | Bounds for resultants of univariate and bivariate polynomials[END_REF], we have the probability of the descent,

L Q 1/3, c κ 2c + c κ β + 1 6c κ β -1+o(1)
.

The complexity is minimized when the size of sieving space equals to the inverse of the above probability. This translates to 

Fig. 1 :

 1 Fig. 1: Commutative diagram of exTNFS. When R = Z this is the diagram of NFS for non-prime fields. When k(x) = x -m for some m ∈ R this is the diagram of TNFS. When both R = Z and k(x) = x -m this is the diagram of NFS.

4. 1

 1 The case when p is has a special form (SexTNFS)In some pairings-based constructions p has a special form, e.g. in the Barreto-Naehrig curves[START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF] p = 36u 4 + 36u 3 + 24u 2 + 6u + 1 of embedding degree 12 and in the Freeman pairings construction of embedding degree 10 [14, Section 5.3] p = 25u 4 + 25u 3 + 25u 2 + 10u + 3. For a given integer d, an integer p is d-SNFS if there exists an integer u and a polynomial Π(x) with integer coefficients so that p = Π(u), deg Π = d and Π ∞ is bounded by an absolute constant.

  ) which is true without any condition on η. Hence we obtain complexity(MexTNFS-JLSV 2 ) = L Q 1

Fig. 2 : 1 :

 21 Fig. 2: Plot of the norms bitsize for several variants of NFS

Fig. 3 :

 3 Fig. 3: Comparison when n = 12 and d = 4 for 300 ≤ log 2 Q ≤ 5000

1 3 1 3

 11 for exTNFS-JLSV 2 ; c smooth = 3 for exTNFS-Conj.

  Prob[(a, b) descends] ≥ ρ 3κ log E + (3κ/2) log ν + (1/(2κ)) log Q c log ν 1+o(1), (10) where ν := N (q).

1 3 = 12 -1 3 . 1

 11231 Multiplying this by the time for ν c -smoothness test the total cost becomes L Q

This shows that the optimal value for c can be any value close but not equal to 1, e.g. c = 0.999, and the optimal complexity of descent step for small ν is

where we used β = (2/3) 1/3 and c κ = 12 -1/3 . This complexity is negligible to the smoothing step. (54/9)

(27/9) For medium ν, i.e. ν = L Q ( ) with 1/3 < < 2/3, it is obviously faster than the case of large ν. So, we omit detailed analysis for this case and refer to Chapter 7.3. in [START_REF] Barbulescu | Algorithms of discrete logarithm in finite fields[END_REF].

We conclude this section of the Appendix with a summary of our results in Table 7.