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FRACTIONAL FICK’S LAW FOR THE BOUNDARY DRIVEN

EXCLUSION PROCESS WITH LONG JUMPS

C.BERNARDIN AND B.JIMENEZ OVIEDO

Abstract. A fractional Fick’s law and fractional hydrostatics for the one di-
mensional exclusion process with long jumps in contact with infinite reservoirs
at different densities on the left and on the right are derived.

1. Introduction

The exclusion process is known as the “Ising model” of non-equilibrium statisti-
cal mechanics and since its introduction in the 70’s in biophysics by MacDonald et
al. ([25, 26]) and in probability by Spitzer [29], a lot of papers in the mathemat-
ical physics literature focused on it because it captures the main features of more
realistic diffusive systems driven out of equilibrium ([23], [24], [30]). The exclusion
process is an interacting particle system consisting of a collection of continuous-
time dependent random walks moving on the lattice Z: A particle at x waits an
exponential time and then chooses to jump to x+ y with probability p(y). If, how-
ever, x + y is already occupied, the jump is suppressed and the clock is reset. In
this paper we are interested in the case where p(·) has a long tail, proportional to
| · |−(1+γ) for γ > 0. Curiously it is only very recently that the investigation of the
exclusion process with long jumps started ([4, 14, 15, 13, 28, 32]).

Our motivation for this study is threefold. First, due to the intense activity
developed around the exclusion process since its introduction almost fifty years
ago, it is very natural to investigate on the differences and the similarities between
the finite jumps exclusion process and the long jumps exclusion process. Our second
motivation is related to the field of anomalous diffusion in one dimensional chains
of oscillators ([9, 21, 31]). Recent studies suggest that the macroscopic behavior
of some chains of oscillators (with short range interactions) displaying anomalous
diffusion should be similar to the macroscopic behavior of the symmetric exclusion
process with long jumps. In order to motivate this claim, let us observe that the
equilibrium fluctuations of a harmonic chain with energy-momentum conservative
noise and of the long jumps exclusion process with exponent γ = 3/2 are the same
([14, 15, 2, 3, 16]). See also Remark 2.2 of this paper for a second example. These
similarities can be roughly understood by the fact that in 1d chains of oscillators, the
energy carriers, the phonons, do not behave like interacting Brownian particles but
like interacting Levy walks ([11, 10] and [8] for a review on Levy walks). Therefore,
we believe that the symmetric exclusion process with long jumps could play the
role of a simple effective model to investigate properties of superdiffusive chains
of oscillators. Our third motivation, which is related to the second but has also
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its own interest, is to develop a macroscopic fluctuation theory for superdiffusive
systems (e.g. exclusion process with long jumps) as it has been done during the
last decade by Bertini et al. ([5]) for diffusive systems. The key idea behind
the macroscopic fluctuation theory is that the non-equilibrium free energy of a
particular given system depends only on its macroscopic behavior and not on its
microscopic details. Therefore, two models macroscopically identical shall have
the same non-equilibrium free energie. As explained above our hope is that some
superdiffusive chains of oscillators and exclusion processes with long jumps have
the same macroscopic behavior and hence the same non-equilibrium free energy.

In this paper we consider the symmetric exclusion process with long jumps in
contact with two reservoirs with different densities at the boundaries. We show that
in the non-equilibrium stationary state the average density current scales with the
lengthN of the system asN−δ, 0 < δ < 1. We also show that the stationary density
profile is described by the stationary solution of a fractional diffusion equation with
Dirichlet boundary conditions. Observe that in a diffusive regime, δ = 1 and that
the stationary profile is the stationary solution of a usual diffusion equation with
Dirichlet boundary conditions. Similar conclusions to ours, as well as extensions
to the asymmetric case, have been obtained in a non-rigorous physics paper by
J. Szavits-Nossan and K. Uzelac ([32]). As a final remark of this introduction let
us observe that in our paper, as well as in [32], the reservoirs are described by
infinite reservoirs. This has the advantage to avoid a truncation of the long range
transition probability p(·). However other reservoirs descriptions are possible but
we conjecture that they could have a quantitative effect of the form of the stationary
profile. Indeed, since the fractional Laplacian is a non-local operator, the fractional
Laplacian with Dirichlet boundary conditions can be interpreted in several ways
giving rise to different stationary solutions. The (microscopic) description used for
the reservoirs fix the (macroscopic) interpretation of the fractional Laplacian with
Dirichlet boundary conditions. In our case it is the so called “restricted fractional
Laplacian” which appears. This sensitivity to the form of the reservoirs is due to
the presence of long jumps and does not appear for the exclusion process with short
jumps. This sensitivity has also been observed in models of (non interacting) Levy
walks and in the context of 1d superdiffusive chains of oscillators ([22]).

The paper is organized as follows. In Section 2 we describe precisely the model
studied and the results obtained. In Section 3 we recall basic facts on the fractional
Laplacian and explain what we mean by stationary solution of a fractional diffusion
equation with Dirichlet boundary conditions. Section 4 is devoted to the proofs of
the results with some technical lemmata postponed to the Appendix.

2. Model and Results

We consider a symmetric long jumps exclusion process on ΛN = {1, . . . , N − 1},
N ≥ 2, in contact with two reservoirs at density α ∈ (0, 1) on the left and density
β ∈ (0, 1) on the right. Let p(·) be a probability function on Z which takes the form

p(z) =
cγ

|z|1+γ
, |z| ≥ 1, p(0) = 0,

where 2 > γ > 1 and cγ > 0 is a normalization factor. If γ ≥ 2 the boundary driven
long jumps symmetric exclusion process has mutatis mutandis the same behavior
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as the usual boundary driven finite jumps exclusion process 1. The configuration
space of the process is ΩN = {0, 1}ΛN and a typical configuration η is denoted
as a sequence (ηz)z indexed by z ∈ ΛN . The generator of the boundary driven
symmetric long jumps exclusion process {η(t) ; t ≥ 0} is defined by

LN = L0
N + Lr

N + Lℓ
N (2.1)

where for any f : ΩN → R

(L0
Nf)(η) =

1

2

∑

x,y∈ΛN

p(x− y)[f(ηxy)− f(η)],

(Lr
Nf)(η) =

∑

x∈ΛN ,y≥N

p(x− y)[ηx(1− β) + (1 − ηx)β][f(η
x)− f(η)],

(Lℓ
Nf)(η) =

∑

x∈ΛN ,y≤0

p(x− y)[ηx(1 − α) + (1− ηx)α][f(η
x)− f(η)].

(2.2)

Here the configurations ηx and ηxy are defined by

(ηxy)z =











ηz, z 6= x, y,

ηy, z = x,

ηx, z = y

, (ηx)z =

{

ηz, z 6= x,

1− ηx, z = x.

Sometimes it will be useful to consider a configuration η ∈ ΩN as a configuration
on {0, 1, α, β}Z by extending η by setting ηx = α for x ≤ 0 and ηx = β for x ≥ N .

Observe that the reservoirs add and remove particles on all the sites of the lattice
ΛN , and not only at the boundaries, but with rates which decrease as the distance
from the corresponding reservoir increases. The same kind of reservoirs is used in
[32].

The bulk dynamics (i.e. without the presence of the reservoirs) conserves the
number of particles. Let Wx, x = 1, . . . N , be defined by

Wx =
∑

y≤x−1

∑

z≥x

p(z − y)[ηy − ηz ], 1 ≤ x ≤ N. (2.3)

In this formula, as explained above, we adopted the convention ηz = α for z ≤ 0
and ηz = β for z ≥ N . It can be checked that since γ > 1, these quantities are
well defined. Then for any x ∈ ΛN we have the following microscopic continuity
equation

LNηx = −∇Wx := −(Wx+1 −Wx). (2.4)

Let us denote by µN the unique invariant measure of {η(t) ; t ≥ 0}. If α = β = ρ
then µN is equal to the Bernoulli product measure with density ρ. It is denoted
by νρ. The expectation of a function f with respect to µN (resp. νρ) is denoted
by 〈f〉N (resp. 〈f〉ρ) or µN (f) (resp. νρ(f)). For any ρ ∈ (0, 1) the density of µN

with respect to νρ is denoted by fN,ρ.

1For γ = 2 the diffusive scaling has to be replaced by a diffusive scaling with some logarithmic
corrections but the system behaves macroscopically in a diffusive way.
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Let ρ̄ be the unique weak solution (see Section 3 for a precise definition ) of the
stationary fractional heat equation with Dirichlet boundary conditions











(−∆)γ/2 ρ̄(q) = 0, q ∈ (0, 1),

ρ̄(0) = α,

ρ̄(1) = β.

(2.5)

We have that (see [6])

∀q ∈ (0, 1), ρ̄(q) =

∫

|y− 1
2 |>

1
2

g(y) P1
2

(

q − 1
2 , y − 1

2

)

dy, (2.6)

where the function g is given by

g(y) =











α if y < 0,

β if y > 1,

0 otherwise,

and the Poisson kernel Pr(· − θ, · − θ), r > 0, θ ∈ R, is defined by

Pr(q − θ, y − θ) = Cγ

[

r2 − (q − θ)2

(y − θ)2 − r2

]

γ
2

|q − y|−1,

for |q − θ| < r, |y − θ| > r and equal to 0 elsewhere. Here Cγ is a normalization

constant equal to Cγ = Γ(1/2)π−3/2 sin(πγ/2). It can be shown that the function
ρ̄ is smooth in the bulk but only γ/2-Hölder at the boundaries.

Our first result is the hydrostatic behavior for the boundary driven exclusion
process with long jumps, stated in the following theorem.

Theorem 2.1. Let γ ∈ (1, 2). For any continuous function H : [0, 1] → R we have
that

lim
N→∞

1

N − 1

N−1
∑

z=1

H( z
N )ηz =

∫ 1

0

H(q)ρ̄(q)dq

in probability under µN .

Remark 2.2. In [1] and [27], a harmonic chain with energy-momentum conser-
vative noise in contact with thermal baths at different temperatures is considered
and it is shown that the temperature profile is given by the solution of a fractional
heat equation with Dirichlet boundary conditions. In these papers the baths are
of Langevin type and the fractional Laplacian which appears is not the “restricted
fractional Laplacian” like in our work but some “spectral fractional Laplacian”.
We conjecture that if Langevin baths are replaced by infinite thermal baths then the
macroscopic behavior is described by the “restricted fractional Laplacian”.

Our second result is the following “fractional Fick’s law”.

Theorem 2.3. Let γ ∈ (1, 2) then the following fractional Fick’s law holds 2

lim
N→∞

Nγ−1〈W1〉N = cγ

∫ x

−∞

dy

∫ ∞

x

dz
ρ̄(y)− ρ̄(z)

(z − y)1+γ
(2.7)

where ρ̄ : R → [0, 1] is the unique solution of (2.5) and x is arbitrary in (0, 1).

Observe that the current is a non-local function of the density.

2The RHS of (2.7) does not depend on x. It can be proved by taking the derivative w.r.t. x of
the RHS of (2.7) and showing it vanishes thanks to (2.5).
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3. Weak solution of the stationary fractional heat equation with

Dirichlet boundary conditions

The fractional Laplacian (−∆)γ/2 of exponent γ/2 is defined on the set of func-
tions H : R → R such that

∫ ∞

−∞

|H(q)|
(1 + |q|)1+γ

dq < ∞ (3.1)

by

(−∆)γ/2H (q) = cγ lim
ε→0

∫ ∞

−∞

1|y−q|≥ε

H(q)−H(y)

|y − q|1+γ
dy (3.2)

provided the limit exists (which is the case if H is β-Hölder for some β > γ and
satisfies (3.1), e.g. if H is in the Schwartz space). Up to a multiplicative constant,
−(−∆)γ/2 is the generator of a γ-Levy stable process. The fractional Laplacian
can also be defined in an equivalent way as a pseudo-differential operator of symbol
|ξ|γ (up to a multiplicative constant).

We are interested in the boundary problem (2.5) which has to be suitably inter-
preted since the fractional Laplacian is not a local operator. The correct interpre-
tation of (2.5) which appears in this paper is that ρ̄ is the restriction to [0, 1] of a
function u : R → R such that











(−∆)γ/2 u(q) = 0, q ∈ (0, 1),

u(q) = α, q ≤ 0,

u(q) = β, q ≥ 1.

(3.3)

In the PDE’s literature this interpretation corresponds to the so-called “restricted
fractional Laplacian”. An another popular interpretation of the fractional Lapla-
cian with Dirichlet boundary conditions is the “spectral fractional Laplacian” ([33]).
The interpretation appearing in [1] is a third one.

Let the functions r± : (0, 1) → (0,∞) be defined by

r−(q) = cγγ
−1q−γ , r+(q) = cγγ

−1(1− q)−γ (3.4)

The operator L is defined by its action on functions H ∈ C2
c ([0, 1]), the space of C

2

functions with compact suport included in (0, 1), by

∀q ∈ (0, 1), (LH)(q) = −(−∆)γ/2H (q) + r−(q)H(q) + r+(q)H(q). (3.5)

Definition 3.1. We say that a continuous function ρ : [0, 1] → [0, 1] is a weak
solution of (2.5) if ρ(0) = α, ρ(1) = β and for any smooth function H ∈ C2

c ([0, 1])
we have that

−〈ρ , (−∆)γ/2H〉+ 〈αr− + βr+ , H〉 = 0

where 〈·, ·〉 denotes the usual scalar product in L
2([0, 1]).

Proposition 3.2. There exists a unique weak solution to (2.5). It is given by (2.6).

Proof. The existence of a continuous (explicit) solution given by (2.6) and satisfying
(3.3) is a well known fact (see e.g. [6]). Let us it denote by ρ and let us show it is
also a weak solution. For any H ∈ C2

c ([0, 1]) we have

〈ρ , LH〉+ 〈α− ρ , Hr−〉+ 〈β − ρ , Hr+〉

= −
∫ ∞

−∞

ρ(q)(−∆)γ/2H(q) dq.
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Since (−∆)γ/2 is a symmetric operator in L
2(R) we have

∫ ∞

−∞

ρ(q)(−∆)γ/2H(q) dq =

∫ ∞

−∞

H(q)(−∆)γ/2ρ(q) dq

=

∫ 1

0

H(q)(−∆)γ/2ρ(q) dq = 0.

Let us now turn to the uniqueness part. Let ρ1 and ρ2 be two weak solutions. We
extend them continuously to R by ρ1(y) = ρ2(y) = α if y ≤ 0 and ρ1(y) = ρ2(y) = β
if y ≥ 1. By linearity we have that for any H ∈ C2

c ([0, 1])

〈ρ1 − ρ2, (−∆)γ/2H〉 = 0.

Since ρ1 − ρ2 = 0 outside (0, 1), 〈·, ·〉 may be replaced by the scalar product in
L
2(R). By using Theorem 3.12 in [6] we deduce that ρ1 = ρ2. �

For any continuous function F : [0, 1] → R we denote by LNF the continuous
function on [0, 1] obtained as the linear interpolation of the function defined by
(LNF )(0) = (LNF )(1) = 0 and

∀x ∈ ΛN , (LNF )( x
N ) =

∑

y∈ΛN

p(y − x)
[

F ( y
N )− F ( x

N )
]

.

We introduce also the two linear interpolation functions r±N : [0, 1] → R such
that for z ∈ ΛN

r−N ( z
N ) =

∑

y≥z

p(y), r+N ( z
N ) =

∑

y≤z−N

p(y) (3.6)

and

r±N (0) = r±N ( 1
N ), r±N (1) = r±N (N−1

N ).

Let finally KN the operator defined by

KN = LN − r−N − r+N

which, for functions F with compact support in [0, 1], satisfies

(KNF )( x
N ) =

∑

y∈Z

p(y − x)
[

F ( y
N )− F ( x

N )
]

.

Lemma 3.3. Let H be a smooth function with compact support included in [a, 1−a]
where a ∈ (0, 1). Then we have the following uniform convergence on [a, 1− a]

lim
N→∞

Nγr−N (q) = cγγ
−1q−γ = r−(q),

lim
N→∞

Nγr+N (q) = cγγ
−1(1 − q)−γ = r+(q),

lim
N→∞

Nγ(KNH)(q) = − [(−∆)γ/2H ] (q).

(3.7)

Proof. This Lemma establishes uniform convergence of Riemann sums to corre-
sponding integrals. But since the uniformity statement requires a bit of technical
work it is postponed to Appendix B. �



FRACTIONAL FICK’S LAW 7

4. Proofs

The first step consists to obtain a sharp upper bound on the average current
in the non-equilibrium stationary state (see Lemma 4.1). This bound will be used
to derive an estimate of the entropy production (Lemma 4.2) which is the key
estimate to obtain by a coarse graining argument and entropy bounds that the
empirical density at each extremity of ΛN is given by α and β (Corollary 4.4). To
identify the form of the stationary profile in the bulk, we use a method introduced
in [19] for boundary driven diffusive systems (Lemma 4.6). Fractional Fick’s law is
then derived.

4.1. Entropy production bounds.

Lemma 4.1. Let γ ∈ (1, 2). There exists a constant C > 0 such that for any
N ≥ 2

〈W1〉N ≤ CN1−γ .

Proof. By stationarity we have that for any x ∈ ΛN , 〈W1〉N = 〈Wx〉N . It follows
that

〈W1〉N =
1

N − 1

N−1
∑

x=1

〈Wx〉N =
1

N − 1

∑

y<z

p(z − y)[〈ηy〉N − 〈ηz〉N ]θ(y, z) (4.1)

where
θ(y, z) = Card{x ∈ ΛN ; y + 1 ≤ x ≤ z}.

Considering the different positions of y, z in ΛN , we get

〈W1〉N =
1

N − 1

N−1
∑

z=1

z[α− 〈ηz〉N ]
∑

y≤0

p(z − y)

+
1

N − 1

N−1
∑

y=1

(N − 1− y)[〈ηy〉N − β]
∑

z≥N

p(z − y)

+ (α− β)
∑

y≤0

∑

z≥N

p(z − y)

+
1

N − 1

∑

y<z
z,y∈ΛN

p(z − y)(z − y)[〈ηy〉N − 〈ηz〉N ]

= (I) + (II) + (III) + (IV ).

(4.2)

We have that

|(I)| ≤
2

N − 1

N−1
∑

z=1

z
∑

y≥z

p(y) = O(N1−γ)

since
∑

y≥z p(y) = O(z−γ) as z → ∞. A similar upper bound is valid for (II) and

for (III). For the last term we observe that

(IV ) = − 1

N − 1

N−2
∑

y=1

N−1−y
∑

k=1

kp(k)[〈ηy+k〉N − 〈ηy〉N ]

= − 1

N − 1

[N−1
2 ]
∑

y=1

N−y−1
∑

k=y

kp(k) [〈ηN−y〉N − 〈ηy〉N ]
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so that

|(IV )| ≤ 2

N − 1

[N−1
2 ]
∑

y=1

N−y−1
∑

k=y

kp(k) = O(N1−γ).

�

A simple consequence of this Lemma is the following bound on the Dirichlet
forms of the stationary state.

Lemma 4.2. Let ρ ∈ (0, 1). There exists a constant C := C(ρ, α, β) > 0 such that
for any N ≥ 2

∑

x,y∈ΛN

p(y − x)

〈

[

√

fN,ρ(η
xy)−

√

fN,ρ(η)
]2
〉

ρ

≤
C

Nγ−1
,

∑

x∈ΛN

∑

y≤0

p(y − x)

〈

[

√

fN,α(η
x)−

√

fN,α(η)
]2
〉

α

≤
C

Nγ−1
,

∑

x∈ΛN

∑

y≥N

p(y − x)

〈

[

√

fN,β(η
x)−

√

fN,β(η)
]2
〉

β

≤ C

Nγ−1
.

Proof. To simplify the notation we denote fN,ρ by fN . By definition of stationary
state we have:

0 = 〈fNLN log fN 〉ρ
= 〈fNL0

N log fN 〉ρ + 〈fNLr
N log fN〉ρ + 〈fNLℓ

N log fN 〉ρ.
(4.3)

We first obtain an upper bound for the second and the third term on the right hand
side of the previous equality. For any R > 0, the second term is equal to

∑

x∈ΛN

y≥N

p(x− y)〈fN (η)ηx(1− β) [log fN(ηx)− log fN(η)]〉ρ

+
∑

x∈ΛN

y≥N

p(x− y)〈fN (η)(1 − ηx)β [log fN (ηx)− log fN (η)]〉ρ

=
∑

x∈ΛN

y≥N

p(x− y)

〈

fN (η)ηx(1− β)

[

log
RfN (ηx)

fN (η)

]〉

ρ

+
∑

x∈ΛN

y≥N

p(x− y)

〈

fN (η)(1 − ηx)β

[

log
fN (ηx)

RfN(η)

]〉

ρ

− logR
∑

x∈ΛN

y≥N

p(x− y) 〈fN(η) (ηx(1− β)− (1 − ηx)β)〉ρ .

(4.4)
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Now by the change of variable w = ηx we have that (4.4) is equal to

−
∑

x∈ΛN

y≥N

p(x− y)

〈

fN(wx)(1 − wx)(1− β)

[

log
fN(wx)

RfN(w)

](

ρ

1− ρ

)〉

ρ

+
∑

x∈ΛN

y≥N

p(x− y)

〈

fN(η)(1 − ηx)β

[

log
fN(ηx)

RfN(η)

]〉

ρ

− logR
∑

x∈ΛN

y≥N

p(x− y) 〈fN (η) (ηx(1− β)− (1− ηx)β)〉ρ

Now, choosing R =
β

1− β

1− ρ

ρ
and using (x − y) log(y/x) < 0, we have that the

last expression is equal to

β

R

∑

x∈ΛN

y≥N

p(x− y)

〈

(1− wx) (RfN(w) − fN(wx))

[

log
fN (wx)

RfN (w)

]〉

ρ

− logR
∑

x∈ΛN

y≥N

p(x− y) 〈fN (η) (ηx(1− β)− (1− ηx)β)〉ρ

≤ − log

(

β

1− β

1− ρ

ρ

)

∑

x∈ΛN

y≥N

p(x− y) 〈fN (η) (ηx − β)〉ρ .

We proved therefore that

〈fNLr
N log fN〉ρ ≤ − log

(

β

1− β

1− ρ

ρ

)









〈WN 〉N + (β − α)
∑

x≤0
y≥N

p(x− y)









.

Similar computations give that

〈fNLℓ
N log fN〉ρ ≤ − log

(

1− α

α

ρ

1− ρ

)









〈W1〉N + (β − α)
∑

x≤0
y≥N

p(x− y)









.

Now, it is easy to see that,
∑

x≤0
y≥N

p(x− y) = O(N1−γ),

and by Lemma 4.1, we get that there exists a constant C′ > 0 such that

〈fNLr
N log fN 〉ρ ≤ C′N1−γ ,

〈fNLℓ
N log fN 〉ρ ≤ C′N1−γ .

Therefore, by (4.3), we have that

−〈fNL0
N log fN 〉ρ ≤ CN1−γ .

Now, using the simple inequality a(log b− log a) ≤ 2
√
a(
√
b−√

a), we obtain that

−〈
√

fNL0
N

√

fN〉ρ ≤ CN1−γ .
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This gives the first inequality in Lemma 4.2 since the left hand side of the previous
inequality is equal to the left hand side of the first inequality of Lemma 4.2 because
L0
N is reversible with respect to νρ for any ρ. Choosing now ρ = α, and using again

the simple inequality a(log b− log a) ≤ 2
√
a(
√
b−√

a), we have that

−〈
√

fN,α Lℓ
N

√

fN,α〉α ≤ C′N1−γ .

Since ρ = α the left hand side of the previous inequality is equal to the left hand
side of the second inequality of Lemma 4.2 because Lℓ

N is reversible with respect to
να. The third inequality of Lemma 4.2 is obtained similarly by choosing ρ = β. �

4.2. Proof of Theorem 2.1. Let M+
d , d = 1, 2, be the space of positive measures

on [0, 1]d with total mass bounded by 1 equipped with the weak topology. For any
η ∈ ΩN the empirical measures πN (η) ∈ M+

1 (resp. π̂N (η) ∈ M+
2 ) is defined by

πN (η) =
1

N − 1

N−1
∑

x=1

ηxδx/N (4.5)

resp.

π̂N (η) =
1

(N − 1)2

N−1
∑

x,y=1

ηxηyδ(x/N,y/N) (4.6)

where δu (resp. δ(u,v)) is the Dirac mass on u ∈ [0, 1] (resp. (u, v) ∈ [0, 1]2). Let

P
N be the law on M+

1 ×M+
2 induced by (πN , π̂N ) : ΩN → M+

1 ×M+
2 when ΩN

is equipped with the non-equilibrium stationary state µN . To simplify notations,
we denote πN (η) (resp. π̂N (η)) by πN (resp. π̂N ) and the action of π ∈ M+

d on a

continuous function H : [0, 1]d → R by 〈π,H〉 =
∫

[0,1]d H(u)π(du).

The sequence (PN )N≥2 is tight on M+
1 ×M+

2 . This is obvious since it is a family
of probabilities over the compact set M+

1 ×M+
2 . Our goal is to prove that P

∗ is
concentrated on the set of measures (π̂, π) of M+

1 ×M+
2 such that π (resp. π̂) is

absolutely continuous with respect to the Lebesgue measure on [0, 1] (resp. [0, 1]2)
and with a density ρ(u) (resp. ρ(u)ρ(v)) where ρ is a weak solution of (2.5).

Lemma 4.3. Let P∗ be a cluster point of (PN )N . Then P
∗ is concentrated on mea-

sures (π̂, π) such that π (resp. π̂) is absolutely continuous with respect to Lebesgue
measure on [0, 1] (resp. [0, 1]2). The density ρ of π is a continuous function on
[0, 1] and the density of π̂ is equal to ρ⊗ ρ : (x, y) ∈ [0, 1]2 → ρ(x)ρ(y).

Proof. See Appendix C. �

With some abuse of notation we denote by (PN )N a fixed subsequence converging
to a cluster point P

∗. A generic element of M+
1 ×M+

2 is denoted by (π, π̂) with
the convention that π and π̂ = π⊗ π denotes the probability measure as well as its
density with respect to the Lebesgue measure.

Proposition 4.4. We have that P∗ almost surely π(0) = α and π(1) = β.

Proof. For small ε > 0 and small λ ∈ R, let B be the box B := {[Nε], . . . , N} and
let u be the function defined by

u = eλ
∑

x∈B
ηx .
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We recall that the action of the generator Lℓ
N on a function f : ΩN → R can be

rewritten as

(Lℓ
Nf)(η) =

∑

z∈ΛN

r−N
(

z
N

)[

ηz(1 − α) + (1− ηz)α
][

f(ηz)− f(η)
]

where r−N
(

z
N

)

=
∑

y≥z p(y). An elementary computation shows that

−Lℓ
Nu

u
=
[

(eλ − 1)− 2(1− α)(coshλ− 1)
]

∑

z∈B

r−N
(

z
N

)

(ηz − α)

− 2α(1− α)(coshλ− 1)
∑

z∈B

r−N
(

z
N

)

.

(4.7)

Multiplying (4.7) by fN,α, integrating w.r.t. να and using the variational formula
of the Dirichlet form we deduce that

[

(eλ − 1)− 2(1− α)(coshλ− 1)
]

∑

z∈B

r−N
(

z
N

)

(〈ηz〉N − α)

≤
∑

z∈ΛN

r−N
(

z
N

)

〈

[

√

fN,α(η
z)−

√

fN,α(η)
]2
〉

α

+ 2α(1− α)(coshλ− 1)
∑

z∈B

r−N
(

z
N

)

≤ CN1−γ + 2α(1− α)(cosh λ− 1)
∑

z∈B

r−N
(

z
N

)

(4.8)

where the last inequality is a consequence of Lemma 4.2. Observe that for λ → 0,
the term (eλ − 1) − 2(1 − α)(cosh λ − 1) is equivalent to λ and has therefore the
sign of λ for sufficiently small λ. The term coshλ− 1 is of order λ2. Assume first
that λ > 0 is small. Then there exists a constant C > 0 independent of λ, ε and N
such that

µN

(

〈πN − α , Nγ 1[ε,1]

(

z
N

)

r−N
(

z
N

)

〉
)

= Nγ−1
∑

z∈B

r−N
(

z
N

)

(〈ηz〉N − α)

≤ C

λ
+ CλN−1

∑

z∈B

Nγr−N
(

z
N

)

.

(4.9)

By Lemma 3.3 we have that for some constant C > 0

N−1
∑

z∈B

Nγr−N
(

z
N

)

≤ C

∫ 1

ε

q−γdq = O(ε1−γ). (4.10)

Therefore we conclude that

lim sup
ε→0

εγ−1 lim sup
N→∞

µN

(

〈πN − α , 1[ε,1]

(

z
N

)

Nγr−N
(

z
N

)

〉
)

≤ 0. (4.11)

Similarly, by considering small λ < 0, we deduce that

lim inf
ε→0

εγ−1 lim inf
N→∞

µN

(

〈πN − α , 1[ε,1]

(

z
N

)

Nγr−1
N

(

z
N

)

〉
)

≥ 0. (4.12)

By using Lemma 3.3 we deduce that P∗ a.s. we have

lim
ε→0

εγ−1

∫ 1

ε

π(q) − α

qγ
dq = 0. (4.13)
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But since by Lemma 4.3 π is a continuous function on [0, 1], if π(0) 6= α, we have
that

lim
ε→0

εγ−1

∫ 1

ε

π(q)− α

qγ
dq =

π(0)− α

γ − 1
6= 0

and we get a contradiction. We deduce thus that π(0) = α. Similarly π(1) = β. �

Remark 4.5. The usual proof for driven diffusive systems of this proposition is
quite different and based on the so-called two-blocks estimate ([12], [20]). It turns
out that in the context of exclusion process with long jumps this approach does not
work since the control of the entropy production is not sufficient to cancel the heavy
tails of p, even by using the arguments of [14].

Lemma 4.6. Let ρ̄ be the unique weak solution of (2.5). For any F,G in C∞
c ([0, 1])

we have
∫

[0,1]2

[

G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)
]

I(u, v)dudv = 0 (4.14)

where

I(u, v) = E
∗ [(π(u)− ρ̄(u))(π(v) − ρ̄(v))] . (4.15)

Proof. We have that

LN (〈πN , F 〉) =
1

N − 1

∑

x∈ΛN

∑

y∈Z

F ( x
N )p(y − x)(ηy − ηx)

= 〈πN ,KNF 〉+ α

N − 1

∑

x∈ΛN

(Fr−N )( x
N ) +

β

N − 1

∑

x∈ΛN

(Fr+N )( x
N )

(4.16)

where

KNF = LNF − Fr−N − Fr+N .

We then multiply (4.16) by Nγ and take the expectation with respect to µN

on both sides, the left hand side being then equal to 0 by stationarity. By using
Lemma 3.3 and weak convergence we conclude that

E
∗

[∫ 1

0

{

LF − r−F − r+F
}

(x) π(x)dx

]

+

∫ 1

0

{

αr−F + βr+F
}

(x) dx = 0.

We compute now LN(〈π̂N , J〉) where J : [0, 1]2 → R is a smooth test function
with compact support strictly included in [0, 1]2 and which is identically equal
to 0 on the diagonal. Consider a small δ > 0 and take a smooth even function
Hδ : R → [0, 1] which is equal to 0 on [−δ, δ] and equal to 1 outside of [−2δ, 2δ].
Let then Jδ(u, v) = F (u)G(v)Hδ(v − u), (u, v) ∈ [0, 1]2.

For u ∈ [0, 1] we denote by Fδ,u, Gδ,u the functions given by

Fδ,u(v) = F (v)Hδ(v − u), Gδ,u(v) = G(v)Hδ(v − u).
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By using Lemma A.1 we get that

LN(〈π̂N , Jδ〉) =
1

N − 1

∑

x∈ΛN

ηxF ( x
N )〈πN ,KNGδ,x/N 〉

+
1

N − 1

∑

x∈ΛN

ηxG( x
N )〈πN ,KNFδ,x/N 〉

+
α

N − 1

∑

x∈ΛN

ηxG( x
N )







1

N − 1

∑

y∈ΛN

Fδ,x/N ( y
N )r−N ( y

N )







+
α

N − 1

∑

x∈ΛN

ηxF ( x
N )







1

N − 1

∑

y∈ΛN

Gδ,x/N ( y
N )r−N ( y

N )







+
β

N − 1

∑

x∈ΛN

ηxG( x
N )







1

N − 1

∑

y∈ΛN

Fδ,x/N ( y
N )r+N ( y

N )







+
β

N − 1

∑

x∈ΛN

ηxF ( x
N )







1

N − 1

∑

y∈ΛN

Gδ,x/N ( y
N )r+N ( y

N )







− 1

(N − 1)2

∑

x,y∈ΛN

p(y − x)(ηy − ηx)
2Jδ(

x
N

y
N ).

(4.17)

Since Jδ(u, v) is equal to 0 for |u− v| ≤ δ, we have that

NγµN





− 1

(N − 1)2

∑

x,y∈ΛN

p(y − x)(ηy − ηx)
2Jδ(

x
N

y
N )



 = O(N−1).

We multiply (4.17) by Nγ and take the expectation with respect to µN on both
sides, the left hand side being then equal to 0 by stationarity. By using Lemma 3.3
and weak convergence we conclude that

E
∗

[

∫

[0,1]2

{

G(u)((−∆)γ/2Fδ,u)(v) + F (v)((−∆)γ/2Gδ,v)(u)
}

π(u)π(v)dudv

]

+ E
∗

[

∫

[0,1]2

{

G(u)αr−(v)Fδ,u(v) + G(u)βr+(v)Fδ,u(v)
}

π(u)dudv

]

+ E
∗

[

∫

[0,1]2

{

F (u)αr−(v)Gδ,u(v) + F (u)βr+(v)Gδ,u(v)
}

π(u)dudv

]

= 0.
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We can take the limit δ → 0 and since Hδ converges to the function identically
equal to 1, we get

E
∗

[

∫

[0,1]2

{

G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)
}

π(u)π(v)dudv

]

+ E
∗

[

∫

[0,1]2

{

G(u)αr−(v)F (v) + G(u)βr+(v)F (v)
}

π(u)dudv

]

+ E
∗

[

∫

[0,1]2

{

F (u)αr−(v)G(v) + F (u)βr+(v)G(v)
}

π(u)dudv

]

= 0.

We have also proved that for any smooth compactly supported function H

E
∗

[∫ 1

0

((−∆)γ/2H)(u)π(u)du

]

+

∫ 1

0

{

αr−F + βr+F
}

(u) du = 0.

Let ρ̄ be the unique weak solution of (2.5). Then we have
∫ 1

0

((−∆)γ/2H)(u)ρ̄(u)du +

∫ 1

0

{

αr−F + βr+F
}

(u) du = 0.

It follows that
∫

[0,1]2

[

G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)
]

I(u, v)dudv = 0. (4.18)

�

Since P
∗ almost surely π(0) = ρ̄(0) = α and π(1) = ρ̄(1) = β and that π − ρ̄

are continuous functions, by extending then to R by π(x) = ρ̄(x) = α if x ≤ 0 and
π(x) = ρ̄(x) = β if x ≥ 1, we get that for any F,G in C∞

c ([0, 1]2),
∫

R2

[

G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)
]

I(u, v)dudv = 0 (4.19)

By using Theorem 3.12 in [6] we deduce that I is a.s. constant with respect to
Lebesgue measure on [0, 1]2. Since by Corollary 4.4, we have I(0, 0) = I(1, 1) = 0,
we deduce that I is identically equal to 0. Thus P∗ almost surely π = ρ̄.

We have proved

Proposition 4.7. The sequence (PN )N converges in law to

(ρ̄(x)dx, ρ̄(x)ρ̄(y)dxdy)

where ρ̄ is the unique weak solution of (2.5).

Theorem 2.1 is a trivial consequence of this proposition.

4.3. Proof of Fick’s law. Recalling (4.2) we see that

Nγ−1〈W1〉N = 〈πN , ϕN 〉+Nγ−1θN

where ϕN : (0, 1) → R satisfying

ϕN ( z
N ) = −Nγ

∑

y≤0

z
N p(z − y) +Nγ

∑

y≥N

[

1− 1
N − z

N

]

p(y − z)

+Nγ
∑

y>z
y∈ΛN

p(y − z)
(

y−z
N

)

−Nγ
∑

y<z
y∈ΛN

p(y − z)
(

z−y
N

)
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is a discrete approximation of the function ϕ : (0, 1) → R given by

ϕ(q) = cγ
1

γ(1− γ)
{(1− q)1−γ − q1−γ}

and

θN =
α

N − 1

N−1
∑

z=1

∑

y≤0

z p(z − y)

− β

N − 1

N−1
∑

y=1

∑

z≥N

(N − 1− y) p(z − y)

+ (α− β)
∑

y≤0

∑

z≥N

p(z − y).

Observe that the function ϕ is singular at q = 0 and q = 1 but that it is
integrable on [0, 1]. Moreover, it is easy to establish that for any a ∈ (0, 1),
limN→∞ |ϕN ([Nq]/N) − ϕ(q)| = 0 uniformly in q ∈ [a, 1 − a] and to compute
the limit of Nγ−1θN :

lim
N→∞

Nγ−1θN = cγ
1

γ(γ − 1)(2− γ)
(α− β)

To compute the limit of 〈πN , ϕN 〉 = 1
N−1

∑N−1
z=1 ϕN ( z

N )〈ηz〉N we fix some small

a ∈ (0, 1) and we split the sum in three sums, one over z < aN , one over aN ≤
z ≤ (1− a)N and the last one over z > (1− a)N . By using similar estimates as in
Lemma 3.3 we easily show that (use 〈ηz〉N ≤ 1)

∣

∣

∣

∣

∣

∣

∣

∣

1

N − 1

∑

z<aN
z>(1−a)N

ϕN ( z
N )〈ηz〉N

∣

∣

∣

∣

∣

∣

∣

∣

≤ C[a2−γ + (1 − a)2−γ ]

for some constant C > 0 independent of N . By using the uniform convergence of
ϕN to ϕ over [a, 1− a] we get that

lim
N→∞

1

N − 1

∑

aN≤z≤(1−a)N

ϕN ( z
N )〈ηz〉N =

∫ 1−a

a

ϕ(q)ρ̄(q)dq.

Thus sending first N → ∞ and then a → 0 we conclude that

lim
N→∞

〈πN , ϕN 〉 =
∫ 1

0

ρ̄(q)ϕ(q)dq.

Then Theorem 2.3 follows by simple integral computations and using the fact
that ρ̄ is the stationary solution of the fractional diffusion equation with Dirichlet
boundary conditions.
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Appendix A. Computations involving the generator

Lemma A.1. For any j 6= k ∈ ΛN , we have

L0
N(ηjηk) = ηjL

0
Nηk + ηkL

0
Nηj − p(k − j)(ηk − ηj)

2,

Lr
N(ηjηk) = ηjL

r
Nηk + ηkL

r
Nηj ,

Lℓ
N(ηjηk) = ηjL

ℓ
Nηk + ηkL

ℓ
Nηj .

(A.1)

Proof. By definition of L0
N we have that

L0
N (ηjηk) =

1

2

∑

x,y∈ΛN

p(y − x)
[

ηxyj ηxyk − ηjηk
]

=
1

2

∑

x,y∈ΛN

p(y − x)
[

(ηxyj ηk − ηjηk) + (ηxyk ηj − ηjηk)+

+ηxyj ηxyk − ηxyj ηk − ηxyk ηj + ηjηk
]

= ηjL
0
Nηk + ηkL

0
Nηj +

1

2

∑

x,y∈ΛN

p(y − x)
[

ηxyj − ηj
]

[ηxyk − ηk]

= ηjL
0
Nηk + ηkL

0
Nηj − p(k − j)(ηk − ηj)

2.

In order to prove the second expression, note that
[

ηxj − ηj
]

[ηxk − ηk] = 0, for all
x ∈ Z, thus by definition of Lr

N we have

Lr
N (ηjηk) =

∑

x∈ΛN ,y≥N

p(y − x) [ηx(1 − β) + (1− ηx)β] [(ηjηk)
x − ηjηk]

= ηjL
r
Nηk + ηkL

r
Nηj+

+
∑

x∈ΛN ,y≥N

p(y − x) [ηx(1− β) + (1− ηx)β]
[

ηxj − ηj
]

[ηxk − ηk]

= ηjL
r
Nηk + ηkL

r
Nηj .

The proof of the third expression is analogous. �

Appendix B. Proof of Lemma 3.3

Let us prove the first item, the second one being similar. It is sufficient to prove
it for q in the form z/N , z ≥ aN . We have, by performing an integration by parts,
that

Nγ
∑

y≥z

p(y)− cγ

∫ ∞

z/N

q−γ−1dq = cγ
∑

y≥z

∫ (y+1)/N

y/N

[

(

y
N

)−γ−1 − q−γ−1
]

dq

= −(γ + 1)cγ
∑

y≥z

∫ (y+1)/N

y/N

q−(γ+2)
(

q − y+1
N

)

dq

The absolute value of the last term is bounded above by cγN
−1(z/N)−γ−1 =

O(N−1) since z/N ≥ a.
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For the last claim it is sufficient to prove it for q = x/N . By using the symmetry
of p we can rewrite

(KNH)( x
N ) =

1

2

∑

z∈Z

p(z)
[

H(x+z
N ) +H(x−z

N )− 2H( x
N )
]

.

We split the sum over z ∈ Z into a sum over z ≥ 1 and over z ≤ −1 (recall
that p(0) = 0) and we treat separately the convergence of these two sums. Since
the study is the same we consider only the sum over z ≥ 1. Then, by a discrete
integration by parts, we have

Nγ
∑

z≥1

p(z)
[

H(x+z
N ) +H(x−z

N )− 2H( x
N )
]

=
∞
∑

z=2

Nγr−N ( z
N )
{

θ x
N
( z
N )− θ x

N
( z−1

N )
}

+Nγr−N ( 1
N ) θ x

N
( 1
N )

where

θu(v) = H(u+ v) +H(u− v)− 2H(u).

By a second order Taylor expansion of H , which is uniform over x since H has
compact support, we see that since γ < 2,

lim
N→∞

Nγr−N ( 1
N ) θ x

N
( 1
N ) = 0

uniformly over x. Our aim is now to replace in the remaining sum the term
Nγr−N ( z

N ) by r−( z
N ). Recall that we have seen in the proof of the first item that

for any a ∈ (0, 1) there exists a constant Ca > 0 such that

|Nγr−N ( z
N )− r−( z

N )| ≤ CaN
−1.

We split the sum

∞
∑

z=2

{

Nγr−N ( z
N )− r−( z

N )
}

{

θ x
N
( z
N )− θ x

N
( z−1

N )
}

into the sum over 2 ≤ z ≤ aN and the sum over z > aN . In fact the sum over z >
aN is equal to the sum over 3N > z > aN since for z ≥ 3N , θ x

N
( z
N )−θ x

N
( z−1

N ) = 0.

Moreover, we have that |θ x
N
( z
N )− θ x

N
( z−1

N )| = O(N−1) uniformly in x and z. The

sum over 3N > z > aN is thus bounded above by C′
a/N for some positive constant

C′
a (going to ∞ as a goes to 0). Since θu(v) ≤ Cv2 for some positive constant

uniformly in u, by using the estimate obtained in the proof of the first item, we
have also that

∣

∣

∣

∣

∣

∣

[aN ]
∑

z=2

{

Nγr−N ( z
N )− r−( z

N )
}

{

θ x
N
( z
N )− θ x

N
( z−1

N )
}

∣

∣

∣

∣

∣

∣

≤ C′

[aN ]
∑

z=2

( z
N )2N−1(z/N)−γ−1 ≤ C′′a2−γ

for constantsC′, C′′ which do not depend on a and x. In conclusion, the replacement
of the term Nγr−N ( z

N ) by r−( z
N ) costs C′′a2−γ + C′

a/N . Therefore, by sending



18 C.BERNARDIN AND B.JIMENEZ OVIEDO

N → ∞ and then a → 0, we are reduced to estimate

∞
∑

z=2

r−( z
N )
{

θ x
N
( z
N )− θ x

N
( z−1

N )
}

=
1

N

∞
∑

z=2

r−( z
N )θ′x

N
( z
N ) + εN (x).

By a second Taylor expansion, and using that γ < 2, it is easy to see that

lim
N→∞

sup
x∈ΛN

|εN (x)| = 0.

To conclude we observe that there exists C > 0 such that |r−(q)θ′u(q)−r−(q′)θ′u(q
′)| ≤

C|q − q′|(q ∧ q′)−γ , uniformly in u. This is because θ′u(0) = 0. It follows that for
some positive constant C > 0, we have

∣

∣

∣

∣

∣

1

N

∞
∑

z=2

r−( z
N )θ′x

N
( z
N )−

∫ ∞

2/N

r−(q)θ′x
N
(q)dq

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

z=2

∫

z+1
N

z
N

(r−( z
N )θ′x

N
( z
N )− r−(q)θ′x

N
(q))dq

∣

∣

∣

∣

∣

∣

≤ CNγ−2
∞
∑

z=2

z−γ

where the last term goes to 0 as N goes to ∞.

Appendix C. Proof of Lemma 4.3

The fact that P
∗ is concentrated on absolutely continuous measures is obvious

since for any continuous function H : [0, 1] → R we have

|〈πN , H〉| ≤ 1

(N − 1)

N−1
∑

x=1

|H(x/N)|

and similarly for π̂N . Since for any continuous function H , the functional π ∈
M+

d → 〈π,H〉 is continuous, by weak convergence, we have that P∗ is concentrated

on measures (π, π̂) such that for any continuous function H, Ĥ

|〈π,H〉| ≤
∫

[0,1]

|H(u)|du, |〈π̂, Ĥ〉| ≤
∫

[0,1]2
|Ĥ(u, v)|dudv

which implies that such a π and π̂ are absolutely continuous with respect to the
Lebesgue measure. The densities are denoted by π and π̂. Since π̂N is a product
measure whose marginals are given by πN , by weak convergence, we have that
π̂(u, v) = π(u)π(v) for any (u, v) ∈ [0, 1]2.

To prove that π is continuous we adapt the proof of [19] Proposition A.1.1. Let
νNρ(·) be the Bernoulli product measure on ΩN with marginals given by

νNρ(·){ηx = 1} = ρ
( x

N

)

, (C.1)

where ρ : [0, 1] → [0, 1] is a smooth function such that α ≤ ρ(q) ≤ β, for all
q ∈ [0, 1], and ρ(0) = α and ρ(1) = β.

Let F ∈ C∞
c ([0, 1]) be a smooth test function and denote by (η(t))t≥0 the bound-

ary driven symmetric long-range exclusion with generator NγLN . By stationarity
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of µN and the entropy inequality we have

µN



Nγ−1
∑

x,y∈ΛN

F ( x
N )p(y − x)(ηy − ηx)





= EµN





∫ 1

0

dt Nγ−1
∑

x,y∈ΛN

F ( x
N )p(y − x)(ηy(t)− ηx(t))





≤ C0 +
1

N
log
{

EνN
ρ(·)

(

e
Nγ

∫
1
0
dt

∑
x,y∈ΛN

F (
x
N )p(y−x)(ηy(t)−ηx(t))

)}

where C0 is a bound 3 on the relative entropy of µN with respect to νNρ(·).

By Feynman-Kac’s formula the last expression is bounded by

λN

N
+ C0

where the eigenvalue λN is given by the variational formula

λN = sup
f







Nγ
∑

x,y∈ΛN

F ( x
N )p(y − x)〈(ηy − ηx)f(η)〉νN

ρ(·)

+Nγ
〈

LN

√

f,
√

f
〉

νN
ρ(·)

}

.

(C.2)

Then, by a simple computation, we rewrite
∑

x,y∈ΛN

F ( x
N )p(y − x)〈(ηy − ηx)f(η)〉νN

ρ(·)
(C.3)

as

1

2

∑

x,y∈ΛN

(

F ( x
N )− F ( y

N )
)

p(y − x)〈ηy (f(η)− f(ηxy))〉νN
ρ(·)

+
1

2

∑

x,y∈ΛN

(

F ( x
N )− F ( y

N )
)

p(y − x)〈ηyf(ηxy) (1− θxy(η))〉νN
ρ(·)

= (I) + (II)

where θxy(η) =
dνN

ρ(·)(η
xy)

dνN
ρ(·)

(η)
. By Schwarz inequality, the fact that f is a density and

|ηy| ≤ 1, we have that (I) is bounded by

∑

x,y∈ΛN

∣

∣F ( x
N )− F ( y

N )
∣

∣ p(y − x)

√

〈

[
√

f(ηxy)−
√

f(η)]2
〉

νN
ρ(·)

.

Since ρ(·) is Lipshitz we have that |1− θxy(η)| = O( |x−y|
N ). Thus, we have that

(II) is of order

1

N2

∑

x 6=y∈ΛN

cγ
|x− y|γ−1

= O(N1−γ).

3The fact that C0 < ∞ can be proved easily since {0, 1} is compact.
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By using (C.2), Lemma C.1 and the previous upper bound for (C.3) it follows that

λN

N
≤ Nγ−1 sup

f





∑

x,y∈ΛN

p(y − x)

(

∣

∣F ( x
N )− F ( y

N )
∣

∣

√

〈

[
√

f(ηxy)−
√

f(η)]2
〉

νN
ρ(·)

−C′
α,β

〈

[
√

f(ηxy)−
√

f(η)]2
〉

νN
ρ(·)

)]

+O(1)

≤
Nγ−1

4C′
α,β

∑

x,y∈ΛN

p(y − x)
(

F ( x
N )− F ( y

N )
)2

+O(1)

=
1

4C′
α,βN

2

∑

x 6=y∈ΛN

cγ

| xN − y
N |1+γ

(

F ( x
N )− F ( y

N )
)2

+O(1).

We have proved that

µN



Nγ−1
∑

x,y∈ΛN

F ( x
N )p(y − x)(ηy − ηx)



 = µN
(

−〈πN , NγLNF 〉
)

≤
1

4C′
α,βN

2

∑

x 6=y∈ΛN

cγ

| xN − y
N |1+γ

(

F ( x
N )− F ( y

N )
)2

+O(1).

(C.4)

We take the limit N → ∞ and use Lemma 3.3. We conclude that there exist
constants C,C′ > 0 independent of F ∈ C∞

c ([0, 1]) such that

E
∗

[

−
∫

R

(−∆)γ/2F (q)π(q) dq + C

∫

R

F (q)(−∆)γ/2F (q)dq

]

≤ C′. (C.5)

It is easy to see that the supremum over F can be inserted in the expectation (see
Lemma 7.5 in [20]) so that

E
∗

[

sup
F

{

−
∫ 1

0

(−∆)γ/2F (q)π(q) dq + C

∫ 1

0

F (q)(−∆)γ/2F (q)dq

}]

< ∞. (C.6)

The fractional Sobolev’s seminorm ‖ · ‖γ is defined by

‖u‖2γ =

∫

[0,1]2

|u(x)− u(y)|2
|x− y|1+γ

dx dy.

Let 〈·, ·〉γ be the corresponding inner-product. If F,G ∈ C∞
c ([0, 1]) then

〈F,−(−∆)γ/2G〉 = cγ

2
〈F,G〉γ .

By (C.6) it follows that there exists C > 0 such that P∗ almost surely

sup
F

{

〈π, F 〉γ − C‖F‖2γ
}

< ∞

which implies that ‖π‖γ < ∞. It follows from Theorem 8.2 of [17] that P∗ almost

surely π is γ−1
2 -Hölder. This concludes the proof of Lemma 4.3.

Lemma C.1. Let f be a density with respect to the product measure νNρ(·) defined

by (C.1). Then, there exist constants Cα,β , C
′
α,β such that

〈LN

√

f,
√

f〉νN
ρ(·)

≤ −C′
α,βDN (f) +

Cα,β

Nγ−1
≤ −C′

α,βD
0
N (f) +

Cα,β

Nγ−1
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where DN (f) = D0
N(f) +Dℓ

N (f) +Dr
N (f) with

D0
N (f) =

∑

x,y∈ΛN

p(y − x)
〈

[
√

f(ηxy)−
√

f(η)]2
〉

νN
ρ(·)

,

Dℓ
N (f) =

∑

x∈ΛN ,y≤0

p(y − x)[ηx(1 − α) + α(1 − ηx)]
〈

[
√

f(ηx)−
√

f(η)]2
〉

νN
ρ(·)

,

Dr
N (f) =

∑

x∈ΛN ,y≥N

p(y − x)[ηx(1− β) + β(1 − ηx)]
〈

[
√

f(ηx)−
√

f(η)]2
〉

νN
ρ(·)

.

Proof. In the proof C and C′ are constants depending on α and β and ρ(·) whose
value can change from line to line. We are going to show that

〈L0
N

√

f,
√

f〉νN
ρ(·)

≤ −C′D0
N (f) +

C

Nγ−1
,

〈Lℓ
N

√

f,
√

f〉νN
ρ(·)

≤ −C′Dℓ
N (f) +

C

Nγ−1
,

〈Lr
N

√

f,
√

f〉νN
ρ(·)

≤ −C′Dr
N (f) +

C

Nγ−1
.

(C.7)

We have that

〈L0
N

√

f,
√

f〉νN
ρ(·)

=
1

2

∑

x,y∈ΛN

p(x− y)〈L0
x,y

√

f,
√

f〉νN
ρ(·)

where 〈L0
x,y

√

f,
√

f〉νN
ρ(·)

=

∫

p(x − y)
[

√

f(ηxy)−
√

f(η)
]

√

f(η)dνNρ(·)(η). Thus,

recalling that θxy(η) =
dνN

ρ(·)(η
xy)

dνN
ρ(·)

(η)
we obtain the following

〈L0
x,y

√

f,
√

f〉ν
ρ(·)N

=
1

2

∫

[

√

f(ηxy)−
√

f(η)
]

√

f(η)dνNρ(·)(η)

− 1

2

∫

[

√

f(ηxy)−
√

f(η)
]

√

f(ηxy)dνNρ(·)(η)

−
∫

[

√

f(ηxy)
]2

[1− θxy(η)] dνNρ(·)(η)

= −1

2

∫

[

√

f(ηxy)−
√

f(η)
]2

dνNρ(·)(η)

− 1

2

∫

[

√

f(ηxy)
]2

[1− θxy(η)] dνNρ(·)(η).

Thus we have that

〈L0
N

√

f,
√

f〉νN
ρ(·)

≤ −1

4
D0

N(f)

−1

4

∑

x,y∈ΛN

p(x− y)

∫

[

√

f(ηxy)
]2

[1− θxy(η)] dνNρ(·)(η).

The second term on the right hand side of the last expression is equal to

− 1

8

∑

x,y∈ΛN

p(x− y)

∫

[

√

f(ηxy)
]2

[1− θxy(η)] dνNρ(·)(η)

− 1

8

∑

x,y∈ΛN

p(x− y)

∫

[

√

f(η)
]2

[θxy(η)− 1] dνNρ(·)(η),
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so using that for any ε > 0, ab ≤ ε2a2

2 + b2

2ε2 and writing [
√
f(ηxy)]2 − [

√
f(η)]2 =

[
√
f(ηxy)−

√
f(η)][

√
f(ηxy) +

√
f(η)] the last expression is absolutely bounded by

Cε2
∑

x,y∈ΛN

p(x− y)

∫

[

√

f(ηxy)−
√

f(η)
]2

dνNρ(·)(η)

+ Cε−2
∑

x,y∈ΛN

p(x− y)

∫

[

√

f(η) +
√

f(ηxy)
]2

[1− θxy(η)]
2
dνNρ(·)(η)

≤ Cε2D0
N (f) + Cε−2N−2

∑

y 6=x∈ΛN

1

|x− y|γ−1
,

≤ Cε2D0
N (f) + Cε−2N−γ+1.

We choose then ε > 0 sufficiently small to have C′ = 1/4−Cε2 > 0. Then the first
inequality in (C.7) follows.

Now we prove only the second inequality in (C.7) since the third one can be
proved similarly. We have that

〈Lℓ
N

√

f,
√

f〉νN
ρ(·)

=
∑

y≤0,
x∈ΛN

p(x− y)〈Lℓ
x

√

f,
√

f〉νN
ρ(·)

where 〈Lℓ
x

√
f,

√
f〉νN

ρ(·)
=
∫

Ixα(η)
[

√

f(ηx)−
√

f(η)
]

√

f(η)dνNρ(·)(η) and Ixα = [ηx(1−

α) + (1− ηx)α]. Thus, denoting θx(η) =
dνNρ(·)(η

x)

dνNρ(·)(η)
we obtain the following

〈Lℓ
x

√

f,
√

f〉νN
ρ(·)

= −1

2

∫

Ixα(η)
[

√

f(ηx)−
√

f(η)
]2

dνNρ(·)(η)

+
1

2

∫

[

√

f(ηx)
]2

[Ixα(η)− Ixα(η
x)θx(η)] dνNρ(·)(η).

Performing a change of variables we have that the second term on the right hand
side of the last expression can be written as

1

4

∫

[

√

f(ηx)
]2

[Ixα(η)− Ixα(η
x)θx(η)] dνNρ(·)(η)

− 1

4

∫

[

√

f(η)
]2

[Ixα(η)− Ixα(η
x)θx(η)] dνNρ(·)(η)

=
1

4

∫ (

[

√

f(ηx)
]2

−
[

√

f(η)
]2
)

[Ixα(η)− Ixα(η
x)θx(ηx)] dνNρ(·)(η).
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Using again the inequality ab ≤ ε2a2

2 + b2

2ε2 , ε > 0, the integral above is absolutely
bounded by

Cε2
∫

Ixα(η)
([

√

f(ηx)
]

−
[

√

f(η)
])2

dνNρ(·)(η)

+ Cε−2

∫

1

Ixα(η)
[Ixα(η)− Ixα(η

x)θx(η)]
2
([

√

f(ηx)
]

+
[

√

f(η)
])2

dνNρ(·)(η)

≤ Cε2
∫

Ixα(η)
([

√

f(ηx)
]

−
[

√

f(η)
])2

dνNρ(·)(η)

+ Cε−2

∫

1

Ixα(η)
[Ixα(η)− Ixα(η

x)θx(η)]2 (f(ηx) + f(η)) dνNρ(·)(η)

Now, by the smoothness of ρ and the fact that ρ(0) = α we have that

1

Ixα(η)
[Ixα(η)− Ixα(η

x)θx(η)]2 ≤ C
x2

N2
.

Thus, using the fact that f is a density, and choosing ε > 0 sufficiently small, we
get the following bound

〈Lℓ
N

√

f,
√

f〉νρ(·) ≤ −C′Dℓ
N(f) +

C

N2

∑

y≤0,
x∈ΛN

x2

[x− y]γ+1

≤ −C′Dℓ
N(f) +O(N1−γ)

which proves the second inequality in (C.7). �
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