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A magnetic field is a major enemy of a mechanical watch. Such field modifies the structure of the balance-spring that gives rhythm 
to the watch and thus changes its resonance frequency. Consequently, the watch loses its accuracy. The aim of this work is to quantify 
the impact of the magnetic field on the structure and the resonance of the balance-spring using a finite element approach. This coupled 
magneto-mechanical problem implies magnetic force computation, including both magnetostatic forces and magnetostriction effect, 
while accounting for a large rotation of the spring. An algorithm including a dynamic mechanical time-stepping scheme is proposed to 
quantify the change of the resonance frequency.  
 

Index Terms— Mechanical watch, balance-spring, resonance frequency, magneto-mechanical problem.  
 

I. INTRODUCTION 
MECHANICAL WATCH is a masterpiece of human creativity 
in mechanical engineering and arts. This watch uses only 

a mechanical system to measure the passage of time, as 
opposed to quartz watch which works electronically. Several 
parts of the mechanical watch are made of ferromagnetic 
materials that are sensitive to the magnetic field perturbations.  

Watch manufactures are then currently studying the origin 
of these perturbations and the way to limit them. In this 
context, this work deals with the study of the impact of 
magnetic field on the mechanical watch, especially on its 
balance-spring. Spring deformations due to magnetic 
perturbations -magnetostriction and magnetostatic stress- are 
evaluated by using a finite element approach. Moreover, the 
modification of both amplitude and frequency of first 
resonance resulting from this deformation is studied to 
evaluate the corresponding time delay. 

II. MECHANICAL WATCH MECHANISM 
A mechanical watch contains four principal components: 

main spring, gear wheels, escapement, and balance-spring [1]. 
Fig. 1 shows the watch components. 

 
 
 
 
 
 
 
 
 
 

Main spring (1) is a component to store the mechanical 
energy. The energy is then transferred to the escapement via 
the gear wheels (2) connected to the time indication. At the 
end of the system, a balance-spring (4) has to be installed to 
control the movement with a regular frequency.  

The balance-spring is the heart of a mechanical watch and is 
suspected to be the part being the most sensitive to magnetic 
perturbations. It regulates the passage of time thanks to its 
natural oscillation and is responsible of the watch accuracy 
[2]. The balance-spring studied in this work is shown in fig. 2. 

 
 
 
 
 
 
 
 
 
 
The frequency of the oscillation depends on the stiffness of 

the spring K and the moment of inertia of the balance J. For a 
simple geometry, the resonance frequency is given by:  

                                (1) 
The stiffness and the moment of inertia depend on the 

geometry and the material properties of the spring. As a 
consequence, a small modification in the structure of the 
spring changes the resonance frequency and generates an error 
on the time indication. The norm NIHS 91-10 requires that 
this error should not exceed 30 seconds per day [3].  

Generally, the balance is made of Glucydur (beryllium 
bronze). This is a non-magnetic material. The spring in the 
other side is made of iron-nickel alloys (Invar, Elinvar, 
Nivarox …), notable for their low coefficient of thermal 
expansion [4]. These are ferromagnetic materials, and the 
structure can thus be impacted by magnetic fields. It has been 
observed that the presence of a magnetic field can imply an 
error from few seconds to few minutes per day [3]. 
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Fig. 2.  Balance-spring of a mechanical watch 

 
Fig. 1. Mechanical watch components 
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III. MAGNETO-MECHANICAL PROBLEM 
The problem requires coupled magneto-mechanical 

analysis. The magnetic problem deals with the computation of 
the magnetic field in material, and the mechanical problem 
treats the deformation resulting from the corresponding forces. 
To connect these two systems, one has to determine the forces 
related to magnetic origins. Fig. 3 shows a general scheme of 
the considered weak magneto-mechanical coupling modeling. 

 
 
 
 
 
The magnetic equilibrium equation is represented by 

Maxwell's equations (neglecting the displacements currents): 
 

                                      (2) 
 
where H is the magnetic field, B the magnetic induction and J 
the current density (here equal to zero). A magnetostatic 
problem can be solved using scalar or vector potential 
formulations. The scalar potential formulation that needs less 
unknown number is adopted in this work. 

The mechanical equilibrium equation is given by Newton’s 
second law: 

                            (3) 
 
where T is the stress tensor, F is the driving force, u the 
displacement and ρm is the mass density.  

Magnetic forces link the magnetic and the mechanical 
systems. For the considered application, these forces can be 
divided into two types: magnetostatic forces and 
magnetostriction effect [5].  

Considering homogeneous isotropic linear properties for the 
ferromagnetic material, magnetic forces are related to the 
structure of the spring. They can be obtained from Maxwell's 
stress tensor [6]:  

 

       (4) 
 
where Bn is the magnetic induction in normal direction, Ht  is 
the magnetic field in tangent direction, n is the vector normal 
to the surface,  µ0 and  µ are respectively the permeability of 
the air and the material. 

Magnetostriction effect is a spontaneous strain in 
ferromagnetic material during the process of the magnetization 
[7]. This strain is a non-linear phenomenon that can be 
approached by [8]: 

                 (5) 
where λs is magnetostriction constant in saturation, M is the 
magnetization,  Ms is the magnetization in saturation, and  δ is 

Kronecker symbol.  
The magnetostriction effect can be represented by an 

equivalent magnetostrictive force. This force is said to be 
equivalent in the sense that it should produce the same elastic 
strain than the strain associated to magnetostriction. It can be 
determined using: 

 
                                  (6)                    

 
where C is the elasticity tensor and Sµ is the strain tensor. 

Equations (2) - (6) combined with the constitutive relations 
in materials are then converted into weak formulations to 
obtain linear equations to be solved by a 3D finite element 
approach integrated in Comsol software: 

 

          (7) 
 

where KΦΦ is magnetic stiffness, Kuu is mechanical stiffness, 
C is damping coefficient, M is mass and g is used to impose 
the external magnetic field. 

IV. SIMULATION 

A. Static Modeling 
The first simulation considers the balance-spring placed in a 

uniform magnetic field and does not consider its oscillations. 
The aim is to determine the relative impact of the direction of 
magnetic field and the contribution of magnetostriction and 
magnetostatic forces on its deformation.  

Fig. 4 shows magnetic flux density and forces for a 4800 
A/m magnetic fields from two directions (horizontal and 
vertical) and fig. 5 shows the total displacements of the spring 
due to these forces. It can be stated that the impact of the field 
perturbation from the horizontal direction is more important 
than the vertical one: displacements are 20 times greater. This 
information can be considered to design a shielding to the 
watch in future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Weak magneto-mechanical coupling problem 
 
 

 
Fig. 4.  Magnetic flux density (color) and magnetic forces (arrows) for 

(a) horizontal field (b) vertical field 
 

 
Fig. 5. Total displacements (a) horizontal field (b) vertical field 
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The contribution of the magnetostatic forces and the 

magnetostriction effect to the displacement in horizontal 
direction is detailed in fig. 6. It is shown that the 
magnetostriction effect seems negligible for such application. 
In fact, for dominant air-gap geometry, the magnetostatic 
forces are generally more important than magnetostriction 
effect. 

 
 
 
 
 
 
 
 
 
 

B. Dynamic Modeling 
The second study deals with the oscillations of the 

balance-spring in the presence of the magnetic field. Solving 
this dynamic mechanical problem becomes difficult since 
rotational displacement is large. Thus, a geometric non-
linearity has to be taken into consideration [9] in the 
strain/displacement relation. In this case, the mechanical 
stiffness Kuu is a function of displacement u and must be 
evaluated at each time step. However, the problem is 
simplified by assuming that the shape (section, area, thickness, 
length) does not change (small strain assumption). In this case, 
the relation strain/stress can still be evaluated using linearized 
expression (Hooke’s law).  

Considering the complexity of the problem, the original 
geometry of the balance-spring is simplified into a 2D 
geometry as shown in fig. 7. To keep the oscillation 
frequency, we have to consider an equivalent moment of 
inertia with an increase of the mass density of the central part 
of the balance in spring plane. 

 
 
 
 
 
 
 
 
 
 
 
 
In the oscillation, the outer spring end is held in a clamped 

position and the inner spring end rotates with the center mass. 
Fig. 8 shows the evolution of the spring geometry during the 
oscillation obtained with only mechanical part of finite 
element model (without magnetic perturbations). The spiral 
diameter becomes smaller for clock-wise rotation and 
becomes bigger for counter-clock rotation. Another aspect to 
be considered in the simulation is the meshing technique. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this only-mechanical problem, Lagrangian mesh 

algorithm in which each mesh node follows the motion is used 
[10]. However, it can generate mesh distortion for magneto-
mechanical coupling study, especially for inner air mesh 
elements, and the problem is then not converging. To tackle 
this problem, one can combine Langragian mesh with Eulerian 
mesh algorithm (fixed node). With this combination 
algorithm, called ALE (Arbitrary Lagrangian-Eulerian), the 
mesh nodes on the boundary and on the interface follow the 
motion. Inside the domain, the mesh nodes can move or be 
held arbitrary to optimize the shape. Fig. 9 shows the meshing 
of the simulation geometry and its evolution in a zoom area 
for two angles (0° and 60°). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
The complete algorithm of the modeling considering the 

presence of magnetic field is given in fig. 10. The simulation 
starts with a static mechanical-only computation that gives an 
initial position to the balance-spring by imposing a chosen 
rotational displacement. This allows the spring being in a pre-
stress configuration. The balance-spring is then released and 
oscillates around its equilibrium position. The second part of 
the simulation follows an iterative process including for each 
time step a magnetostatic computation, the expression of the 
corresponding magnetostatic forces, the non-linear mechanical 
computation, and the mesh update.  

 
Fig. 6.  Displacement of the balance-spring for horizontal field to due  

(a) magnetostatic forces (b) magnetostriction effect. 
 

 
Fig. 8.  Spring evolution during oscillation (black) initial geometry (blue) 

geometry in oscillation  
 

 
Fig. 7.  Simplification of the balance-spring geometry 

 
Fig. 9.  Meshing of the simulation geometry 
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The algorithm is implemented to the system in fig. 9. The 

spring is placed in a uniform magnetic field of 2400 A/m and 
a small initial angle (10°) is set up in order to help for the 
convergence (limited displacement between two time steps). 
The observation is performed during 1 second with the step 
time of 0.1 milliseconds (10000 iterations). Fig.11 shows the 
magnetic flux lines and the magnetic force at equilibrium 
position. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 shows the oscillations of the balance-spring for 

Hext=0 A/m and 2400 A/m. We note that the magnetic field 
modifies both the amplitude and the frequency of the balance-
spring oscillations. To analyze clearly the change of the 
frequency, a FFT with zero padding technique is used. The 
frequency of resonance under the considered magnetic field is 
decreased by 0.02 Hz. The watch placed in such magnetic 
field will consequently lose 7.1 minutes per day. From 
discussions with watch manufacturers, this result is in 
accordance with experimental observations. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
The magnetic perturbations on the balance-spring are one of 

the main problems for the watchmakers. Unfortunately, there 
is no accurate numerical modeling dealing with this challenge. 
This contribution provides information about how a magnetic 
field perturbs the watch: The simulations have shown that the 
magnetic field modifies the geometry and the resonance 
frequency of the balance-spring. Although for a short period 
this difference seems negligible, it will induce an inaccuracy 
which exceeds the standard norm. 

Because of the complexity of the problem (due to the 
coupled effects and the geometric non-linearity), the dynamic 
modeling in this work has been limited to a 2D geometry. In 
future work, it will be interesting to study a realistic 3D 
geometry. More efficient meshing technique can be applied by 
separating the magnetic and mechanical mesh. In this case, the 
forces obtained from magnetic computation are projected into 
mechanical computation. 

The size of the balance-spring (a few millimeters) makes 
the experimental validation highly challenging. Collaboration 
with watchmakers is necessary to treat this aspect. 
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Fig. 12.  Oscillations of the balance-spring with and without the presence of 
magnetic field 

 
Fig. 11.  Magnetic flux (green lines) and force density (red arrows) 

 
 

Fig. 10.  Complete algorithm of the modeling 
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