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Analytic and Group-Theoretic Aspects of the Cosine
Transform

G. Ólafsson, A. Pasquale, and B. Rubin

Abstract. This is a brief survey of recent results by the authors devoted to

one of the most important operators of integral geometry. Basic facts about

the analytic family of cosine transforms on the unit sphere in Rn and the corre-
sponding Funk transform are extended to the “higher-rank” case for functions

on Stiefel and Grassmann manifolds. Among the topics we consider are the

analytic continuation and the structure of the polar sets, the connection with
the Fourier transform on the space of rectangular matrices, inversion formulas

and spectral analysis, and the group-theoretic realization as an intertwining
operator between generalized principal series representations of SL(n,R).

1. Introduction

The cosine transform has a long and rich history, with connections to several
branches of mathematics. The name cosine transform was adopted by Lutwak
[50, p. 385] for the spherical convolution which is defined on the unit sphere Sn−1

in Rn by

(Cf)(u) =

∫
Sn−1

f(v)|u · v| dv, u ∈ Sn−1 . (1.1)

The motivation for this name is that the inner product u · v is nothing but the
cosine of the angle between the unit vectors u and v.

The following list of references shows some branches of mathematics, where the
operator (1.1) and its generalizations arise in a natural way (sometimes implicitly,
without naming) and play an important role.

• Convex geometry: [1, 6, 23, 24, 32, 46, 50, 69, 71, 75].

• Pseudo-differential operators: [15, 61].

• Group representations: [2, 3, 11, 12, 57, 60].

• Harmonic analysis and singular integrals: [4, 21, 22, 27, 48, 52, 58, 59, 63,
66, 73, 74, 79].

• Integral geometry: [5, 20, 26, 30, 62, 64, 65, 68, 70, 76, 86].

• Stochastic geometry and probability: [29, 49, 51, 77, 78].
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• Banach space theory: [38, 45, 47, 54, 72].

This list is far from being complete. In most of the publications cosine-like
transforms serve as a tool for certain specific problems. At the same time, there are
many papers devoted to the cosine transforms themselves. The present article is
just of this kind. Our aim is to give a short overview of our recent work [57, 70] on
the cosine transform and explain some of the ideas and tools behind those results.

For a complex number λ, the λ-analogue of the operator (1.1) is the convolution
operator

(Cλf)(u) =

∫
Sn−1

f(v)|u · v|λ dv, u ∈ Sn−1, (1.2)

where the integral is understood in the sense of analytic continuation, if necessary.
We adopt the name “the cosine transform” for (1.2) too. The same name will be
used for generalizations of these operators to be defined below.

In recent years more general, higher-rank cosine transforms attracted consid-
erable attention. This class of operators was inspired by Matheron’s injectivity
conjecture [51], its disproval by Goodey and Howard [29], applications in group
representations [7, 12, 57, 60, 86] and in algebraic integral geometry [3, 5, 20].
To the best of our knowledge, the higher-rank cosine transform was explicitly pre-
sented (without naming) for the first time in [26, formula (3.5)]. Our interest in this
topic grew up from specific problems of harmonic analysis and group representa-
tions. However, in this article we do not focus on those problems, and mention them
only for better explanation of the corresponding properties of the cosine transforms
and related operators of integral geometry. We also restrict ourselves to the case of
real numbers, referring to [57] for the case of complex and quaternionic fields.

The paper is organized as follows. Section 2 contains basic facts about the
cosine transforms on the unit sphere. More general higher-rank transforms on
Stiefel or Grassmann manifolds are considered in Section 3, where the main tool
is the classical Fourier analysis. In Sections 4 and 5 we discuss the connections to
representation theory, and more precisely to the spherical representations and the
intertwining properties. Section 6 is devoted to explicit spectral formulas for the
cosine transforms.

2. The cosine transform on the unit sphere

In this section we discuss briefly the cosine transform on the sphere Sn−1. We keep
the notation from the Introduction. For the analytic continuation of the cosine
transform it is convenient to normalize it by setting

(C λf)(u) = γn(λ)

∫
Sn−1

f(v)|u · v|λ dv, u ∈ Sn−1.

Here dv stands for the SO(n)-invariant probability measure on Sn−1 and the nor-
malizing coefficient γn(λ) is given by

γn(λ)=
π1/2 Γ(−λ/2)

Γ(n/2) Γ((1 + λ)/2)
, Re λ>−1, λ 6=0, 2, 4, . . . . (2.1)

This normalization is chosen so that

C λ(1) =
Γ (−λ/2)

Γ((n+ λ)/2)
.
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Such a normalization is convenient in many occurrences, when harmonic analysis on
the sphere is performed in the multiplier language (in the same manner as analysis
of pseudo-differential operators is performed in the language of their symbols). We
shall see below that it also simplifies the formula for the spectrum of the cosine
transform.

The limit case λ = −1 gives, up to a constant, the well-known Funk transform.
Specifically, if f ∈ C(Sn−1), then for every u ∈ Sn−1,

lim
λ→−1

(C λf)(u) =
π1/2

Γ((n− 1)/2)
(Ff)(u), (2.2)

where

(Ff)(u) =

∫
{v∈Sn−1|u·v=0}

f(v) duv . (2.3)

In (2.3), duv stands for the rotational invariant probability measure on the (n− 2)-
dimensional sphere {v ∈ Sn−1 | u · v = 0}; see, e.g., [69, Lemma 3.1].

We note that the integral kernel |u · v|λ is even as a function of u and v.

Therefore C λf = 0 for all odd functions. Similarly, Ff = 0 for all odd functions.
As the projective space P(Rn) is the quotient of Sn−1 by identifying the antipodal
points u and −u, it follows that functions on P(Rn) correspond to even functions
on Sn−1. Thus both the cosine transform and the Funk transform can be viewed
as integral transforms on P(Rn).

The operators Cλ and C λ were investigated by different approaches. A first one
employs the Fourier transform technique [45, 63, 76] and relies on the equality in
the sense of distributions(

Eλ Cλf
Γ((1 + λ)/2)

,Fω
)

= c1

(
E−λ−nf

Γ(−λ/2)
, ω

)
, (2.4)

c1 = 2n+λ π(n−1)/2 Γ(n/2).

Here ω is a test function belonging to the Schwartz space S(Rn),

(Fω)(y) =

∫
Rn
ω(x)eix·ydx,

and (Eλf)(x) = |x|λf(x/|x|) denotes the extension by homogeneity.
A second approach is based on the Funk-Hecke formula, so that for each spher-

ical harmonic Yj of degree j,

C λYj = mj,λ Yj , (2.5)

where

mj,λ=

 (−1)j/2
Γ(j/2− λ/2)

Γ(j/2 + (n+ λ)/2)
if j is even,

0 if j is odd;
(2.6)

see, e.g., [63]. The Fourier-Laplace multiplier {mj,λ} forms the spectrum of C λ.

Note that the normalizing coefficient in C λ was chosen so that only factors depend-
ing on j are involved in the spectral functions {mj,λ}. The spectrum of C λ encodes
important information about this operator. For instance, since mj,λmj,−λ−n = 1,
then for any f ∈ C∞(Sn−1) the following inversion formula holds:

C−λ−nC λf = f, (2.7)
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provided

λ ∈ C, λ /∈ {−n,−n− 2,−n− 4, . . .} ∪ {0, 2, 4, . . .}.
For the non-normalized transforms, (2.7) yields

C−λ−nCλf = ζ(λ) f, ζ(λ) =
Γ2(n/2) Γ((1 + λ)/2) Γ((1− λ− n)/2)

π Γ(−λ/2) Γ((n+ λ)/2)
, (2.8)

λ ∈ C, λ /∈ {−1,−3,−5, . . .} ∪ {1− n, 3− n, 5− n, . . .}.
Formula (2.6) reveals singularities, provides information about the kernel and

the image. Moreover, it plays a crucial role in the study of the cosine transforms
of Lp functions. For instance, the following statement was proved in [64, p. 11],
using the relevant results of Gadzhiev [21, 22] and Kryuchkov [48] for symbols of
the Calderon-Zygmund singular integral operators.

Theorem 2.1. Let Lpe(S
n−1) and Lγp,e(S

n−1) be the spaces of even functions (or

distributions) belonging to Lp(Sn−1) and the Sobolev space Lγp(Sn−1), respectively.
Then

Lδp,e(S
n−1) ⊂ C λ(Lpe(S

n−1)) ⊂ Lγp,e(Sn−1) (2.9)

provided

γ = Reλ+
n+ 1

2
−
∣∣∣1
p
− 1

2

∣∣∣(n− 1), δ = Reλ+
n+ 1

2
+
∣∣∣1
p
− 1

2

∣∣∣(n− 1),

λ /∈ {0, 2, 4, . . . } ∪ {−n− 1,−n− 3,−n− 5, . . . }.
The embeddings (2.9) are sharp.

Finally, to study Cλ and C λ, one can use tools from representation theory, as
we will discuss in more details in the second half of this article.

One can easily explain (2.5) – but not (2.6) – by the fact that the space of
harmonic polynomials of degree j is the underlying space of an irreducible rep-
resentation of K = SO(n). Then (2.5) follows from Schur’s lemma and the fact

that C λ commutes with rotations. Note that the group K acts by the left regular
representation on L2(Sn−1) and, as a representation of K, we have the orthogonal
decomposition

L2(Sn−1) 'K
⊕
j∈N0

Yj , (2.10)

where the set Yj of all spherical harmonics of degree j is an irreducible K-space.
As we shall see in Section 6, the spectral multiplier (2.6) can also be computed by

identifying C λ as a standard intertwining operator between certain principal series
representations of the larger group SL(n,R), see [57].

We have already noted that C λ should be viewed as an operator on functions
on P(Rn). This is related to the fact that the analogue of (2.10) for P(Rn) is

L2(P(Rn)) 'K
⊕
j∈2N0

Yj .

3. Cosine transforms on Stiefel and Grassmann manifolds

In this section we introduce the higher-rank cosine transforms and collect some
basic facts about these transforms. The main results are presented in Theorems
3.2, 3.3, 3.6, 3.7, and 3.8.
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3.1. Notation. We denote by Vn,m ∼ O(n)/O(n − m) the Stiefel manifold
of n × m real matrices, the columns of which are mutually orthogonal unit n-
vectors. For v ∈ Vn,m, dv stands for the invariant probability measure on Vn,m;
ξ = {v} denotes the linear subspace of Rn spanned by v. These subspaces form the
Grassmann manifold Gn,m ∼ O(n)/(O(n−m)×O(m)) endowed with the invariant
probability measure dξ. We write Mn,m ∼ Rnm for the space of real matrices
x = (xi,j) having n rows and m columns and set

dx =

n∏
i=1

m∏
j=1

dxi,j , |x|m = det(xtx)1/2,

xt being the transpose of x. If n = m, then |x|m is just the absolute value of the
determinant of x; if m = 1, then |x|1 is the usual Euclidean norm of x ∈ Rn.

3.2. The Cos-function. We give two equivalent “higher-rank” substitutes for
|u·v| in (1.1). The first one is “more geometric”, while the second is “more analytic”.
For 1 ≤ m ≤ k ≤ n − 1, let η ∈ Gn,m and ξ ∈ Gn,k be linear subspaces of Rn of
dimension m and k, respectively. Following [2, 3, 57], we set

Cos(ξ, η) = volm(PrξE), (3.1)

where volm(·) denotes the m-dimensional volume function, E is a convex subset of
η of volume one containing the origin, Prξ denotes the orthogonal projection onto
ξ. By affine invariance, this definition is independent of the choice of E.

The second definition [31] gives precise meaning to the projection operator
Prξ. Let u and v be arbitrary orthonormal bases of ξ and η, respectively. We
regard u and v as elements of the corresponding Stiefel manifolds Vn,k and Vn,m.
If k = m = 1, then u and v are unit vectors, as in (1.1). The orthogonal projection
Prξ is given by the k × k matrix uut, and we can define

Cos(ξ, η) ≡ Cos({u}, {v}) = (det(vtuutv))1/2 ≡ |utv|m. (3.2)

This definition is independent of the choice of bases in ξ and η and yields |u · v| if
k = m = 1.

Remark 3.1. Note that vtuutv is a positive semi-definite matrix, and therefore,
det(vtuutv) ≡ det(utvvtu) ≥ 0. It means that Cos(ξ, η) = Cos(η, ξ) ≥ 0.

3.3. Non-normalized cosine transforms. According to (3.1) and (3.2), one
can use both Stiefel and Grassmannian language in the definition of the higher-rank
cosine transform, namely,

(Cλm,kf)(u) =

∫
Vn,m

f(v) |utv|λm dv, u∈Vn,k, (3.3)

(Cλm,kf)(ξ) =

∫
Gn,m

f(η) Cosλ(ξ, η) dη, ξ∈Gn,k, (3.4)

where dv and dη stand for the relevant invariant probability measures. The impor-
tant point here is that functions on the Grassmannian Gn,m correspond to O(m)-
invariant functions on the Stiefel manifold Vn,m. For those functions the transforms
in (3.3) and (3.4) agree. The fact that we have two ways of writing the same opera-
tor, extends the arsenal of techniques for its study (some of them will be exhibited
below). Both operators agree with Cλ in (1.2), when k = m = 1. For brevity, we
shall write Cλm = Cλm,m.
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We remark that there are different shifts in the power λ in the literature, all for
different reasons. In particular, to make our statements in Sections 2-4 consistent
with those in [70], one should set λ = α− k. To adapt to the notation in [57] one
has to change λ to λ−n/2. For unifying the presentation of the results in [70] and
[57] we have preferred to adopt the unshifted notation as in (3.3) and (3.4).

Following [16, 28], the Siegel gamma function of the cone Ω of positive definite
m×m real symmetric matrices is defined by

Γm(α)=

∫
Ω

exp(−tr(r))|r|α−(m+1)/2
m dr = πm(m−1)/4

m−1∏
j=0

Γ(α−j/2) (3.5)

and represents a meromorphic function with polar set

{(m− 1− j)/2 | j = 0, 1, 2, . . .}. (3.6)

Theorem 3.2. Let 1 ≤ m ≤ k ≤ n− 1.

(i) If f ∈L1(Vn,m) and Reλ > m − k − 1, then the integral (3.3) converges
for almost all u∈Vn,k.

(ii) If f ∈ C∞(Vn,m), then for every u∈ Vn,k, the function λ 7→ (Cλm,kf)(u)
extends to the domain Reλ ≤ m− k − 1 as a meromorphic function with
the only poles m− k− 1,m− k− 2, . . . . These poles and their orders are
the same as those of the gamma function Γm((λ+ k)/2).

(iii) The normalized integral (Cλm,kf)(u)/Γm((λ + k)/2) is an entire function

of λ and belongs to C∞(Vn,k) in the u-variable.

A similar statement holds for (3.4). The proof of Theorem 3.2 can be found
in [70, Theorems 4.3, 7.1]. It relies on the fact that |utv|λm is a special case of the
composite power function (utv)λ with the vector-valued exponent λ ∈ Cm [16, 28].
The corresponding composite cosine transforms were studied in [58, 59, 70].

An important ingredient of the proof of Theorem 3.2 is the connection between
the cosine transform Cλm,kf on Vn,m and the Fourier transform

ϕ̂(y) = (Fϕ)(y) =

∫
Mn,m

etr(iytx)ϕ(x) dx, y ∈ Mn,m . (3.7)

The corresponding Parseval equality has the form

(ϕ̂, ω̂) = (2π)nm (ϕ, ω), (ϕ, ω) =

∫
Mn,m

ϕ(x)ω(x) dx. (3.8)

This equality, with ω in the Schwartz class S(Mn,m) of smooth rapidly decreasing
functions, is used to define the Fourier transform of the corresponding distributions.

We will need polar coordinates on Mn,m: for n ≥ m, every matrix x ∈ Mn,m of

rank m can be uniquely represented as x = vr1/2 with v ∈ Vn,m and r = xtx ∈ Ω.

Given a function f on Vn,m, we denote (Eλf)(x) = |r|λ/2m f(v). The following
statement holds in the case k = m.

Theorem 3.3. Let f be an integrable right O(m)-invariant function on Vn,m,
ω ∈ S(Mn,m), 1≤m≤n−1, Cλmf = Cλm,mf . Then for every λ ∈ C,(

EλCλmf
Γm((λ+m)/2)

,Fω
)

= c

(
E−λ−nf

Γm(−λ/2)
, ω

)
, (3.9)
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c =
2m(n+λ) πnm/2 Γm(n/2)

Γm(m/2)
,

where both sides are understood in the sense of analytic continuation.

Formula (3.9) agrees with (2.4). The more general statement for arbitrary
k ≥ m can be found in [70].

Remark 3.4. It is important to note that the domains, where the left-hand
side and the right-hand side of of (3.9) exist as absolutely convergent integrals,
have no points in common, when m > 1. This is the principal distinction from
the case m = 1, when there is a common strip of convergence −1 < Reλ < 0.
To perform analytic continuation, we have to switch from Cλm to the more general
composite cosine transform Cλm with λ ∈ Cm and then take the restriction to the
diagonal λ1 = · · · = λm = λ + m. This method of analytic continuation was first
used by Khèkalo (for another class of operators) in his papers [39, 41, 40] on Riesz
potentials on the space of rectangular matrices.

3.4. The Funk transform. The higher-rank version of the classical Funk
transform (2.3) sends a function f on Vn,m to a function Fm,kf on Vn,k by the
formula

(Fm,kf)(u) =

∫
{v∈Vn,m|utv=0}

f(v) duv, u∈Vn,k. (3.10)

The condition utv = 0 means that subspaces {u} ∈ Gn,k and {v} ∈ Gn,m are
mutually orthogonal. Hence, necessarily, k+m ≤ n. The case k = m, when both f
and its Funk transform live on the same manifold, is of particular importance and
coincides with (2.3) when k = m = 1. We denote Fm = Fm,m.

If f is right O(m)-invariant, (Fm,kf)(u) can be identified with a function on
the Grassmannians Gn,m or Gn,n−m, and can be written “in the Grassmannian

language”. For instance, setting ξ = {v} ∈Gn,m, η = {u}⊥ ∈Gn,n−k, and f̃(ξ) =
f(v), we obtain

(Rm,n−kf̃)(η)≡
∫
ξ⊂η

f̃(ξ) dηξ = (Fm,kf)(u). (3.11)

3.5. Normalized cosine transforms. Our next aim is to introduce a natural
generalization C λ

m,kf of the normalized transform (2.1). “Natural” means that we

expect C λ
m,kf to obey the relevant higher-rank modifications of the properties (2.2)-

(2.5).

Definition 3.5. Let 1 ≤ m ≤ k ≤ n− 1. For u∈Vn,k and v∈Vn,m, we define

(C λ
m,kf)(u) = γn,m,k(λ)

∫
Vn,m

f(v) |utv|λm dv, (3.12)

where

γn,m,k(λ) =
Γm(m/2)

Γm(n/2)

Γm(−λ/2)

Γm((λ+ k)/2)
, λ+m 6= 1, 2, . . . .

We denote C λ
m = C λ

m,m. The integral (3.12) is absolutely convergent if Re λ >
m − k − 1. The excluded values of λ belong to the polar set of Γm(−λ/2). If
k = m = 1 this definition coincides with (2.1). Operators of this kind implicitly
arose in [26, pp. 367, 368].
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Theorem 3.6. Let 1 ≤ m ≤ k ≤ n − 1, k + m ≤ n. If f is a C∞ right
O(m)-invariant function on Vn,m, then for every u∈Vn,k,

a.c.
λ=−k

(C λ
m,kf)(u) =

Γm(m/2)

Γm((n− k)/2)
(Fm,kf)(u), (3.13)

where “a.c.” denotes analytic continuation and (Fm,kf)(u) is the Funk transform
(3.10).

This statement follows from [70, Theorems 7.1 (iv) and 6.1]. Note that if
m = k = 1, then (3.13) yields (2.2). However, unlike (2.2), the proof of which
is straightforward, (3.13) requires a certain indirect procedure, which invokes the
Fourier transform on the space of matrices and the relevant analogue of (3.9).

We point out that a pointwise inversion of the Funk transform can be obtained
by means of the dual cosine transform, which is defined by

(
∗
C λm,kϕ)(v) =

∫
Vn,k

ϕ(u) |utv|λm du, v ∈ Vn,m. (3.14)

Indeed, the following result holds.

Theorem 3.7. (cf. [70, Theorems 7.4]) Let ϕ = Fm,kf , where f is a C∞ right
O(m)-invariant function on Vn,m, 1 ≤ m ≤ k ≤ n−m. Then, for every v ∈ Vn,m,

a.c.
λ=m−n

(
∗
C λm,kϕ)(v)

Γm((λ+ k)/2)
= c f(v), c=

Γm(n/2)

Γm(k/2) Γm(m/2)
. (3.15)

Regarding other inversion methods of the higher-rank Funk transform (which
is also known as the Radon transform for a pair of Grassmannnians), see [31, 85]
and references therein.

In the case k = m the normalized cosine transform C λ
m = C λ

m,m has a number of

important features. If f ∈ C∞(Vn,m), then the analytic continuation of (C λ
mf)(u)

is well-defined for all complex λ /∈ {1 −m, 2 −m, . . .} and belongs to C∞(Vn,m).
The following inversion formulas hold.

Theorem 3.8. (cf. [70, Theorems 7.7]) Let f ∈ C∞(Vn,m) be a right O(m)-
invariant function on Vn,m, 2m ≤ n. Then, for every u ∈ Vn,m,

(C−λ−nm C λ
mf)(u) = f(u), λ,−λ− n /∈ {1−m, 2−m, . . .}. (3.16)

In particular, for the non-normalized transforms,

(C−λ−nm Cλmf)(u) = ζ(λ) f(u), λ+ n,−λ /∈ {1, 2, 3, . . .}, (3.17)

where

ζ(λ) =
Γ2
m(n/2) Γm((m+ λ)/2) Γm((m− λ− n)/2)

Γ2
m(m/2) Γm(−λ/2) Γm((n+ λ)/2)

. (3.18)

Both equalities (3.16) and (3.18) are understood in the sense of analytic continua-
tion.

In the case m = 1, the formulas (3.16) and (3.17) coincide with (2.7) and (2.8),
respectively, but the method for proving them is different.
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4. Connection to Representation Theory

The cosine transform is closely related to the representation theory of semisimple
Lie groups. In particular, as we shall now discuss, it has an important group-
theoretic interpretation as a standard intertwining operator between generalized
principal series representations of SL(n,R).

In the following we shall use the notation G = SL(n,R), K = SO(n), and

L = S(O(m)×O(n−m))=

{(
A 0
0 B

) ∣∣∣∣ A ∈ O(m)
B ∈ O(n−m)

, det(A)det(B) = 1

}
with m ≤ n −m. Then B ≡ K/L = Gn,m is the Grassmanian of m-dimensional
linear subspaces of Rn. We fix the base point

bo = {(x1, . . . , xm, 0, . . . , 0) | x1, . . . , xm ∈ R} ∈ B,

so that B = K · b0 and every function on B can be regarded as a right L-invariant
function on K.

From now on, our main concern is the cosine transform (3.4) with equal lower
indices, that is, Cλm ≡ Cλm,m. We refer to [35, Chapter V] for the harmonic analysis
on compact symmetric spaces and [42] for the representation theory of semisimple
Lie groups.

4.1. Analysis on B with respect to K. The first connection to representa-
tion theory is related to the left regular action of the group K on L2(B) by(

`(k)f
)
(b) = f(k−1b), k ∈ K , b ∈ B.

For an irreducible unitary representation (π, Vπ) of K, we consider the subspace

V Lπ = {v ∈ Vπ | π(k)v = v ∀k ∈ L}, L = S(O(m)×O(n−m)).

The representation (π, Vπ) is said to be L-spherical if V Lπ 6= {0}. As B = K/L is a
symmetric space, the following result is a consequence of [35, Chapter IV, Lemma
3.6].

Proposition 4.1. If (π, Vπ) is L-spherical, then dimV Lπ = 1.

Since V Lπ 6= {0}, we can choose a unit vector eπ ∈ V Lπ . Then we define a map
Φπ : Vπ → C∞(B) ⊂ L2(B) by the formula

(Φπv)(b) = d(π)−1/2〈v, π(k)eπ〉 , v ∈ Vπ, b = k · bo ∈ B = K · bo, (4.1)

where d(π) = dimVπ. This definition is meaningful because k · bo = kk′ · bo for
every k′ ∈ L and eπ remains fixed under the action of π(k′). We also set

Φπ(v; b) = (Φπv)(b).

Recall, if (π, Vπ) and (σ, Vσ) are two representations of a Hausdorff topological group
H, then an intertwining operator between π and σ is a bounded linear operator
T : Vπ → Vσ such that Tπ(h) = σ(h)T for all h ∈ H. If π is irreducible and T
intertwines π with itself, then Schur’s Lemma states that T = c id for some complex
number c, [17], p. 71. The map Φπ is a K-intertwining operator in the sense that
it intertwines the representation π on Vπ and the left regular representation ` on
L2(B), so that for b = h · bo and k ∈ K we have

Φπ(π(k)v; b) = 〈π(k)v, π(h)eπ〉 = 〈v, π(k−1h)eπ〉 = `(k)Φπ(v; b) .
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Furthermore, the left regular representation ` on L2(B) is multiplicity free, see
e.g. [84, Corollary 9.8.2]. Therefore, since (π, Vπ) is irreducible, any intertwining
operator Vπ → L2(B) is by Schur’s Lemma of the form cΦπ for some c ∈ C.

We let L2
π(B) = Im Φπ. Denote by K̂L the set of all equivalence classes of

irreducible L-spherical representations (π, Vπ) of K. Then, see [35, Chapter V,
Thm. 4.3], the decomposition of L2(B) as a K-representation is as follows.

Theorem 4.2. L2(B) 'K
⊕
π∈K̂L

L2
π(B) .

The cosine transform is, as mentioned before, a K-intertwining operator, i.e.,
Cλm(`(k)f) = `(k)Cλm(f) for all k ∈ K and f ∈ L2(B). It follows by Schur’s Lemma

that for each π ∈ K̂L there exists a function ηπ on C such that

Cλm|L2
π

= ηπ(λ) id . (4.2)

Let f ∈ L2
π(B) of norm one. Then ηπ(λ) = 〈Cλm(f), f〉 and it follows that ηπ(λ) is

meromorphic; cf. Theorem 3.2.

4.2. Generalized spherical principal series representations of G. The
fact that Cλm is a K-intertwining operator does not indicate how to determine the
functions ηπ. In the case m = 1 and in some particular cases for the higher-rank
cosine transforms [58, 59] explicit expression for ηπ can be obtained using the
Funk-Hecke Theorem or the Fourier transform technique. It is a challenging open
problem to proceed the same way in the most general case, using, e.g., the relevant
results of Gelbart, Strichartz, and Ton-That, see, e.g., [25, 80, 82]. Below we
suggest an alternative way and proceed as follows.

To find ηπ explicitly, we observe that the cosine transform is an intertwining
operator between certain generalized principal series representations (πλ, L

2(B)) of
G = SL(n,R) induced from a maximal parabolic subgroup of G. We can then use
the bigger group G, or better its Lie algebra, to move between K-types. We invoke
the spectrum generating technique introduced in [7] to build up a recursion relation
between the spectral functions ηπ. This finally allows us to determine all of them
by knowing ηtrivial.

The group G = SL(n,R) acts on B by

g · η = {gv | v ∈ η} ,

where gv denotes the usual matrix multiplication. This action is transitive, as the
K-action is already transitive. The stabilizer of bo is the group

P =

{(
A X
0 B

) ∣∣∣∣ X ∈ Mm,n−m ,
A ∈ GL(m,R)
B ∈ GL(n−m,R)

and det(A)det(B) = 1

}
' S(GL(m)×GL(n−m)) n Mm,n−m ,

where Mn,m is the space of n × m real matrices; see Section 3.1. We then have
B = G/P .

The K-invariant probability measure on B is not G-invariant. But there exists
a function j : G× B → R+ such that for all f ∈ L1(B) we have∫

B
f(b) db =

∫
B
f(g · b)j(g, b)n db , g ∈ G, b ∈ B . (4.3)
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We include the power n to adapt our notation to [57]. By the associativity of the
action we have j(gg′, b) = j(g, g′ · b)j(g′, b) for all g ∈ G and b ∈ B. Hence, for each
λ ∈ C we can define a continuous representation πλ of G on L2(B) by

[πλ(g)f ](b) = j(g−1, b)λ+n/2f(g−1 · b) , g ∈ G, f ∈ L2(B), β ∈ B. (4.4)

A simple change of variables shows that

〈πλ(g)f, h〉 = 〈f, π−λ(g−1)h〉 , g ∈ G , f, h ∈ L2(B) .

In particular, πλ is unitary if and only if λ is purely imaginary. The representations
πλ are the so-called generalized (spherical) principal series representations (induced
from the maximal parabolic subgroup P ), in the compact picture. See e.g. [42], p.
169.

To connect our exposition here to [70], we note that the representation πλ can
also be realized on the space of O(m)-invariant functions on the Stiefel manifold.
The explicit construction goes as follows. According to [70, Section 7.4.3], we
introduce the radial and angular components of a matrix x ∈Mn,m of rank m by

rad(x) = (xtx)1/2 ∈ Ω, ang(x) = x(xtx)−1/2 ∈ Vn,m,

so that x = ang(x) rad(x). Given λ ∈ C, define

π̃λ(g)f(v) = |rad(g−1v)|−(λ+n/2) f(ang(g−1v)). (4.5)

This defines a representation π̃λ of GL(n,R) on L2(Vn,m)O(m) ' L2(B). The
restriction of π̃λ to SL(n,R) is equivalent to the representation πλ defined in (4.4).

4.3. The cosine transform as an intertwining operator. In this section
we follow the ideas in [57]. An alternative self-contained exposition (without using
the representation theory of semisimple Lie groups), can be found in [70].

The gain of using the representations πλ is that we now have a meromorphic
family of representations on L2(B). Moreover, these representations are irreducible
for almost all λ and closely related to the cosine transform. For all this, we need
to recall some results from [83].

Theorem 4.3 (Vogan-Wallach). There exists a countable collection {pn} of
non-zero holomorphic polynomials on C such that if pn(λ) 6= 0 for all n then πλ is
irreducible. In particular, πλ is irreducible for almost all λ ∈ C.

Proof. This is Lemma 5.3 in [83]. �

Let θ : G→ G be the involutive automorphism θ(g) = (g−1)t. We remark that

in [57] the notation Cosλ = Cλ−n/2m was used.

Theorem 4.4. The cosine transform intertwines πλ and π−λ ◦ θ, namely,

Cλm ◦ πλ+n/2 = (π−λ−n/2 ◦ θ) ◦ Cλm, (4.6)

whenever both sides of this equality are analytic functions of λ.

Proof. We refer to Theorem 2.3 and (4.10) in [57]. �

In fact, it is shown in [57], Lemma 2.5 and Theorem 4.2, that Cλ−n/2m = J(λ),
where J(λ) is a standard intertwining operator, studied in detail among others by
Knapp and Stein in [43, 44] and Vogan and Wallach in [83]. These authors show,
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in particular, that λ 7→ J(λ) has a meromorphic extension to all of C. Furthermore,
Vogan and Wallach show that if f ∈ C∞(B), then the map

{ν ∈ C | Re (ν) > −1 + n/2} 3 λ 7−→ J(λ)f ∈ C∞(B)

is holomorphic. As a consequence of Cλ−n/2m = J(λ) and [83, Theorem 1.6], we get
the following theorem.

Theorem 4.5. The map λ 7→ Cλm extends meromorphically to C. In particular,
for f ∈ C∞(B) and b ∈ B the function λ 7→ (Cλmf)(b) extends to a meromorphic
function on C and the set of possibles poles is independent of f . In the complement
of the singular set we have Cλmf ∈ C∞(B).

Notice that precise information about the analiticity of more general cosine
transforms, including the structure of polar sets, is presented in Theorem 3.2 above.

The implication of (4.6) is that C−λ−n/2m ◦ Cλ−n/2m intertwines πλ with itself (in
the sense of a meromorphic family of operators). By Theorem 4.3 there exists a
meromorphic function η on C such that

C−λ−n/2m ◦ Cλ−n/2m = η(λ) idC∞(B) (4.7)

for all λ ∈ C for which the left-hand side is well defined. The shift by n/2 in the
definition is chosen so that the final formulas agree with those in [57] and make
some formulas more symmetric. The fact that η is meromorphic follows by noting

that η(λ) = 〈C−λ−n/2m ◦ Cλ−n/2m (1), 1〉.
Formula (4.7) is a symmetric version of (3.18) with λ replaced by λ − n/2.

The explicit value of η(λ) can be easily obtained from (3.17). An alternative,
representation-theoretic method to compute the function η(λ), is presented in Sec-
tion 6. The first step is the following lemma.

Lemma 4.6. Let c(λ) = Cλ−n/2m (1). Then η(λ) = c(λ)c(−λ).

Note that c(λ) is nothing but ηtrivial(λ) in (4.2).

Remark 4.7. There are several ways to prove the meromorphic extension of
the standard intertwining operators. The proof in [83] uses tensoring with finite
dimensional representations of G to deduce a relationship between Cλm and Cλ+2n

m .
In fact, there exists a family of (non-invariant) differential operators Dλ on B and
a polynomial b(λ), the Bernstein polynomial, such that

b(λ)Cλm(f) = Cλ+2n
m (Dλ(f)) (4.8)

[83, Theorem 1.4]. Another way to derive an equation of the form (4.8) is to convert
the integral defining Cλm into an integral over the orbit of certain nilpotent group
N̄ , as usually done in the study of standard intertwining operators, and then use
the ideas from [8, 55, 56]. In the case where G/P is a symmetric R-space (which
contains the case of Grassmann manifolds), the standard intertwining operators
J(λ) have been recently studied by Clerc in [9], using Loos’ theory of positive Jordan
triple systems. In particular, Clerc explicitly computes the Bernstein polynomials
b(λ) in (4.8), and, hence, proves the meromorphic extension of J(λ) for this class
of symmetric spaces.

Finally, one can stick with the domain where λ 7→ Cλm is holomorphic and
determine the K-spectrum functions ηπ(λ) in (4.2). As rational functions of Γ-
factors, these functions have meromorphic extension to C. Hence λ 7→ Cλm itself has
meromorphic extension by (4.2). We will comment more on that in Remark 6.8.
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4.4. Historical remarks. We conclude this section with a few historical re-
marks. The standard intertwining operators J(λ), as a meromorphic family of
singular integral operators on K or N̄ , have been central objects in the study of
representation theory of semimisimple Lie groups since the fundamental works of
Knapp and Stein [43, 44], Harish-Chandra [33], and several others. In our case

N̄ =

{(
Im 0
X In−m

) ∣∣∣∣ X ∈ Mm,n−m

}
.

Then, in the realization of the generalized principal series representations on L2(B),

the kernel of J(λ) is Cosλ−n/2(b, c). But in most cases there is neither an explicit
formula nor geometric interpretation of the kernel defining J(λ).

Apart of customary applications of the cosine transform in convex geometry,
probability, and the Banach space theory, similar integrals turned up independently
as standard intertwining operators between generalized principal series representa-
tions of SL(n,K), where K = R,C or H.

The real case was studied in [12], the complex case in [14], and the quaternionic
case in [60]. In these articles it was shown that integrals of the form∫

B
|x · y|λ−n/2f(x) dx,

with some modification for K = C or H, define intertwining operators between gen-
eralized principal series representations induced from a maximal parabolic subgroup
in SL(n+ 1,K). The K-spectrum was determined, yielding the cases of irreducibil-
ity and, more generally, the composition series of those representations. Among
the applications, there were some embeddings of the complementary series and the
study of the so-called canonical representations on some Riemannian symmetric
spaces of the noncompact type, [10, 11, 13]. However the connections of these
considerations to convex geometry, to the cosine transform and to the Funk and
Radon transforms was neither discussed nor mentioned. These connections were
first published in [57] in the context of the Grassmannians over R, C and H. How-
ever, it was probably S. Alesker who first remarked in his unpublished manuscript
[2] that over R the cosine transform is a SL(n,R)-intertwining operator; see also
[3] for the case λ = 1. 1

It was also shown in [86] that the Sinλ-transform (a transform related to the
sine transform) can be viewed as a Knapp-Stein intertwining operator. This was

used to construct complementary series representations for GL(2n,R). The Sinλ-
transform is then also naturally linked to reflection positivity, which relates comple-
mentary series representations of GL(2n,R) to the highest weight representations
of SU(n, n), [18, 19, 53, 37, 36]. Notice, however, that the definition of the

Sinλ-transform in [86] differs from the one in [66], [70]; see also [67] for the sine
transform on the hyperbolic space.

5. The spherical representations

The functions ηπ(λ) in (4.2) are parametrized by the L-spherical representations
of K. The main purpose of this section is to present this parametrization, which
is given by a semilattice in a finite dimensional Euclidean space associated with a
maximal flat submanifold of B. We will, therefore, have to study the structure of

1The authors are grateful to Professor Alesker for pointing out these references.
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the symmetric space B. We refer to [81] and the books by Helgason [34, 35] for
more detailed discussions and proofs. To bring the discussion closer to standard
references in Lie theory we also introduce some Lie theoretical notation which we
have avoided so far.

Let

g = {X ∈ Mn,n | tr(X) = 0} ,
k = {X ∈ Mn,n | Xt = −X} ,

be the Lie algebras of G = SL(n,R) and K = SO(n), respectively. The derived
involution of θ on g, still denoted θ, is given by θ(X) = −Xt. Hence k = g(1, θ),
the eigenspace of θ on g with eigenvalue 1. We fix once and for all the G-invariant
bilinear form β(X,Y ) = n

m(n−m) tr(XY ) on g. Note that β is negative definite on k

and 〈X,Y 〉 = −β(X, θ(Y )) is an inner product on g such that ad(X)t = −ad(θ(X)),
where, as usual, ad(X)Y = [X,Y ] = XY − Y X. The normalization of β is chosen
so that it agrees with [57].

We recall that B is a symmetric space corresponding to the involution

τ(x) =

(
Im 0
0 −In−m

)
x

(
Im 0
0 −In−m

)
=

(
A −B
−C D

)
for x =

(
A B
C D

)
,

where for r ∈ N we denote by Ir the r × r identity matrix. Note that τ in fact
defines an involution of G and that the derived involution on the Lie algebra g is
given by the same form.

We have k = l⊕ q where l ' so(m)× so(n−m) is the Lie algebra of L and

q = k(−1, τ) =

{
Q(X) =

(
0mm X
−Xt 0n−m,n−m

) ∣∣∣∣ X ∈ Mm,n−m

}
.

Let Eν,µ = (δiνδjµ)i,j denote the matrix in Mm,n−m with all entries equal to 0 but
the (ν, µ)-th which is equal to 1. For t = (t1, . . . , tm)t ∈ Rm we set

X(t) = −
m∑
j=1

tjEj,n−2m+j ∈ Mm,n−m ,

Y (t) = Q(X(t)) ∈ q .

Then b = {Y (t) | t ∈ Rm} ' Rm is a maximal abelian subspace of q.

To describe the set K̂L we note first that B is not simply connected. So we
cannot use the Cartan-Helgason theorem [35, p. 535] directly, but only a slight
modification is needed. Define εj(Y (t)) = itj . We will identify the element λ =∑m
j=1 λjεj ∈ b∗C with the corresponding vector λ = (λ1, . . . , λm).

If H ∈ b, then ad(H) is skew-symmetric on k with respect to the inner product
〈 · , · 〉. Hence ad(H) is diagonalizable over C with purely imaginary eigenvalues.
For α ∈ ib∗ let

kαC = {X ∈ kC | (∀H ∈ b) ad(H)X = α(H)X}

be the joint α-eigenspace. Let

∆k = {α ∈ ib∗ | α 6= 0 and kαC 6= {0}} .

The dimension of kαC is called the multiplicity of α (in kC).
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Lemma 5.1. We have

∆k = {±εi ± εj (1 ≤ i 6= j ≤ m,± independently), ±εi (1 ≤ i ≤ m) }
with multiplicities respectively 1 (and not there if m = 1), 2n−m (and not there if
m = n−m).

Proof. The statement follows from [34]: the table on page 518, the description
of the simple root systems on page 462 ff. and the Satake diagrams on pages 532–
533. �

We let
∆+

k = {εi ± εj (1 ≤ i < j ≤ m ), εi (1 ≤ i ≤ m) } .

Lemma 5.2. Let ρk =
1

2

∑
α∈∆+

k

dim(kαC)α ∈ ib∗. Then ρk =

m∑
j=1

(n
2
− j
)
εj.

Let now (π, Vπ) be a unitary irreducible representation of K. Then Vπ is

finite dimensional. Moreover, π(H) =
d

dt

∣∣∣
t=0

π(exp(tH)) is skew-symmetric, hence

diagonalizable, for all H ∈ b (in fact, π(H) is diagonalizable for all H ∈ k). Let
Γ(π) ⊂ ib∗ be the finite set of joint eigenvalues of π(H) with H ∈ b. For µ ∈ Γ(π),
let V µπ ⊂ Vπ denote the joint eigenspace of eigenvalue µ. If X ∈ kαC and v ∈ V µπ ,
then π(X)v ∈ V µ+α

π . Thus, there exists a µ = µπ ∈ Γ(π) such that π(kαC)V µπ = {0}
for all α ∈ ∆+

k . This only uses that π is finite dimensional, but the irreducibility
implies that this µ is unique. It is called the highest weight of π. Finally we have
π ' σ if and only if µπ = µσ.

Let K̃ be the universal covering group of K. Then τ lifts to an involution τ̃ on

K̃, L̃ = K̃ τ̃ is connected, and B̃ = K̃/L̃ is the universal covering of B. Replacing

K by K̃ etc., we can talk about L̃-spherical representations of K̃ and their highest
weights. The following theorem is a consequence of the Cartan-Helgason theorem
[35, p. 535].

Theorem 5.3. The map π 7→ µπ sets up a bijection between the set of L̃-

spherical representations of K̃ and the semi-lattice

Λ+(B̃) =

{
µ ∈ ib∗

∣∣∣∣ (∀α ∈ ∆+
k )
〈µ, α〉
〈α, α〉

∈ Z+

}
. (5.1)

Furthermore, if m = n/2, then

Λ+(B̃) = {(µ1, . . . , µm) ∈ Zm | µ1 ≥ µ2 ≥ · · · ≥ µm−1 ≥ |µm|} .
Otherwise,

Λ+(B̃) = {(µ1, . . . , µm) ∈ Zm | µ1 ≥ µ2 ≥ · · · ≥ µm−1 ≥ µm ≥ 0} .

If µ ∈ Λ+(B̃), then we write (πµ, Vµ) for the corresponding L̃-spherical repre-
sentation. Recall the notation Φπµ from (4.1). Let Λ+(B) denote the sublattice in

Λ+(B̃) which corresponds to L-spherical representations of K. Then µ ∈ Λ+(B)

if and only if the functions Φπµ(v), which are originally defined on B̃, factor to
functions on B. For that, let v ∈ V µµ and H ∈ b. We can normalize v and eπµ so
that

Φπµ(v; expH) = eµ(H) .

The same argument as for the sphere [81, Ch. III.12] proves the following theorem.



16 G. ÓLAFSSON, A. PASQUALE, AND B. RUBIN

Theorem 5.4. If m = n−m, then

Λ+(B) = {µ =

m∑
j=1

µjεj | µj ∈ 2N0 and µ1 ≥ . . . ≥ µm−1 ≥ |µm| } .

In all other cases,

Λ+(B) = {µ =

m∑
j=1

µjεj | µj ∈ 2N0 and µ1 ≥ . . . ≥ µm ≥ 0 } .

6. The generation of the K-spectrum

Recall from Section 5 the involution θ(X) = −Xt on g. The Lie algebra g decom-
poses into eigenspaces of θ as g = k⊕ s, where

s = g(−1, θ) = {X ∈ Mn,n | θ(X) = −X and Tr(X) = 0} .

Then, except in the case n = 2, the complexification sC of s is an irreducible L-
spherical representation of K. For n = 2 this representation decomposes into two
one-dimensional representations.

Let

Ho =

(
n−m
n Im 0

0 −mn In−m

)
∈ s .

Then Ho is L-fixed and 〈H0, H0〉 = 1. Define a = RHo. The operator ad(H0) has
spectrum {0, 1,−1} and n = g(1, ad(H0)).

Let Ad(k) denote the conjugation by k. Define a map ω : sC → C∞(B) by

ω(Y )(k) = 〈Y,Ad(k)Ho〉 = β(Y,Ad(k)Ho) = n
m(n−m)Tr(Y kHok

−1)

and note that

ω(Ad(h)Y )(k) = 〈Ad(h)Y,Ad(k)Ho〉 = 〈Y,Ad(h−1k)Ho〉 = ω(Y )(h−1k) .

Thus ω is a K-intertwining operator.
Fix an orthonormal basis X1, . . . , Xdim q of q such that X1, . . . , Xm, is an or-

thonormal basis of b. Denote by Ω = −
∑
j X

2
j the corresponding positive definite

Laplace operator on B. Then

Ω|L2
µ(B) = ω(µ) id ,

where

ω(µ) = 〈µ+ 2ρk, µ〉 .
A simple calculation then gives:

Lemma 6.1. Let µ = (µ1, . . . , µm) ∈ Λ+(B). Then

ω(µ) =
m(n−m)

2n

m∑
j=1

(
µ2
j + µj(n− 2j)

)
.

For f ∈ C∞(B) denote by M(f) : L2(B) → L2(B) the multiplication operator
g 7→ fg. Recall the notation π0 for the finite dimensional spherical representation
of highest weight 0 ∈ Λ+(B).

Theorem 6.2. Let Y ∈ s. Then [Ω,M(ω(Y ))] = 2π0(Y ).

Proof. This is Theorem 2.3 in [7]. �
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For µ ∈ Λ+(B) define Ψµ : L2
µ(B)⊗ sC → L2(B) by

Ψµ(ϕ⊗ Y ) = M(ω(Y ))ϕ .

Observe that for k ∈ K, Y ∈ sC, and ϕ ∈ L2
µ(B) we have

`(k)
(
M(ω(Y )ϕ)

)
=
(
`(k)ω(Y )

)
(`(k)ϕ) = M

(
ω(Ad(k)Y )

)
(`(k)ϕ)

with Ad(k)Y ∈ sC and `(k)ϕ ∈ L2
µ(B). Hence Ψµ is K-equivariant and Im Ψµ is

K-invariant. Define a finite subset S(µ) ⊂ Λ+(B) by

Im Ψµ 'K
⊕

σ∈S(µ)

L2
σ(B) .

Lemma 6.3. Let µ ∈ Λ+(B). Then

S(µ) = {µ± 2εj | j = 1, . . . ,m} ∩ Λ+(B) .

These representations occur with multiplicity one.

Denote by prσ the orthogonal projection L2(B) → L2
σ(B). The first spectrum

generating relation which follows from Theorem 6.2, see also [7, Cor. 2.6], states:

Lemma 6.4. Assume that µ ∈ Λ+(B). Let σ ∈ S(µ), Y ∈ sC, and λ ∈ C. Let

ωσµ(Y ) := prσ ◦M(ω(Y ))|L2
µ(B) : L2

µ(B)→ L2
σ(B) . (6.1)

Then

prσ ◦ πλ(Y )|L2
µ(B) =

1

2
(ω(σ)− ω(µ) + 2m(n−m)

n λ)ωσµ(Y ) . (6.2)

The spectrum generating relation that we are looking for can now easily be
deducted and we get:

Lemma 6.5. Let µ = (µ1, . . . , µm) ∈ Λ+(B) and λ ∈ C. Then

ηµ+2εj (λ)

ηµ(λ)
=

λ− µj + j − 1

λ+ µj + n− j + 1
= − −λ+ µj − j + 1

λ+ µj + n− j + 1
(6.3)

and η0(λ) = c(λ).

Proof. First we apply Cλ−n/2m to (6.2) from the left, using that Cλ−n/2m com-

mutes with prσ and that Cλ−n/2m ◦πλ(Y ) = π−λ◦θ(Y )◦Cλ−n/2m = −π−λ(Y )◦Cλ−n/2m .
We then get:(

ω(σ)− ω(µ) + 2m(n−m)
n λ

)
ησ(λ− n/2)ωσµ(Y ) =

−
(
ω(σ)− ω(µ)− 2m(n−m)

n λ
)
ηµ(λ− n/2)ωσµ(Y ) .

As ωσδ(Y ) is non-zero, for generic λ it can be canceled out. Now insert the expres-
sion from Lemma 6.1 to get

ω(µ+ 2εj)− ω(µ) = 2m(n−m)
n (µj + n/2− (j − 1))

and the claim follows. The statement follows from the fact that πλ is irreducible
for generic λ, hence, iterated application of (6.1) will in the end reach all K-types
starting from the trivial K-type. �
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Lemma 6.5 tells us that the evaluation of ηµ(λ) can be done in two steps. First
we determine the function η0(λ) and then use (6.3) as an inductive procedure to
determine the rest. The final result is given in the following theorem. It is presented
in terms of Γ-functions associated to the cone Ω of m×m positive definite matrices,
namely,

ΓΩ(λ) = πm(m−1)/4
m∏
j=1

Γ(λj − (j − 1)/2), λ = (λ1, . . . , λm) ∈ Cm. (6.4)

This integral is a generalization of Γm(λ) in (3.5); cf. [16, p. 123], [70, Sec. 2.2].
In the following the scalar parameters, which occur in the argument of ΓΩ, are
interpreted as vector valued, for instance, n ∼ (n, . . . , n), λ ∼ (λ, . . . , λ).

Theorem 6.6 ([57]). Let Λ+(B) be the sublattice in Theorem 5.4 parametrizing
the L-spherical representations of K, let µ = (µ1, . . . , µm) ∈ Λ+(B), and λ ∈ C.
Then the K-spectrum of the cosine transform Cλm is given by:

ηµ(λ) = (−1)|µ|/2
Γm (n/2)

Γm (m/2)

Γm ((λ+m)/2))

Γm (−λ/2)

ΓΩ ((µ− λ)/2)

ΓΩ ((λ+ n+ µ)/2)
. (6.5)

Remark 6.7. Owing to (3.12), the spectrum of the normalized cosine transform

C λ
m has the simpler form

η̃µ(λ) = (−1)|µ|/2
ΓΩ ((µ− λ)/2)

ΓΩ ((λ+ n+ µ)/2)
. (6.6)

In the case m = 1 this formula coincides with (2.6).

Remark 6.8. In Section 4 we referred to the result of Vogan and Wallach on
the meromorphic continuation of the intertwining operator J(λ). This result is not
needed for the computation of ηµ(λ). Indeed, it is enough to know that J(λ) is
holomorphic on some open subset of C as that is all what is needed to determine
ηµ(λ) in Theorem 6.6. We can then extend Cλm meromorphically on each K-type.
Note, however, that this is weaker than the statement in [83] which extends Cλmf
for all smooth functions.
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[27] I. M. Gel′fand and Z. Ya. Šapiro. Homogeneous functions and their extensions. Uspehi Mat.
Nauk (N.S.), 10(3(65)):3–70, 1955. in Russian.

[28] S.G. Gindikin. Analysis on homogeneous domains. Russian Math. Surveys, 19(4):1–89, 1964.

[29] P. Goodey and R. Howard. Processes of flats induced by higher-dimensional processes. Adv.
Math., 80(1):92–109, 1990.

[30] P. Goodey, V. Yaskin, and M. Yaskina. Fourier transforms and the Funk-Hecke theorem in
convex geometry. J. Lond. Math. Soc. (2), 80(2):388–404, 2009.

[31] E. L. Grinberg and B. Rubin. Radon inversion on Grassmannians via G̊arding-Gindikin frac-

tional integrals. Ann. of Math. (2), 159(2):783–817, 2004.
[32] H. Groemer. Geometric applications of Fourier series and spherical harmonics, volume 61 of

Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,

1996.
[33] Harish-Chandra. Harmonic analysis on real reductive groups iii. the Maass-Selberg relations

and the Plancherel formula. Ann. of Math. (2), 104(1):117–201, 1976.

[34] S. Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and
Applied Mathematics. Academic Press Inc., New York, 1978.

[35] S. Helgason. Groups and geometric analysis. Integral geometry, invariant differential opera-

tors, and spherical functions, volume 83 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2000.



20 G. ÓLAFSSON, A. PASQUALE, AND B. RUBIN
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[53] K.-H. Neeb and G. Ólafsson. Reflection positivity and conformal symmetry. arXiv:1206.2039,
2012.

[54] A. Neyman. Representation of Lp-norms and isometric embedding in Lp-spaces. Israel J.

Math., 48(2-3):129–138, 1984.
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