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Analytic and Group-Theoretic Aspects of the Cosine Transform

This is a brief survey of recent results by the authors devoted to one of the most important operators of integral geometry. Basic facts about the analytic family of cosine transforms on the unit sphere in R n and the corresponding Funk transform are extended to the "higher-rank" case for functions on Stiefel and Grassmann manifolds. Among the topics we consider are the analytic continuation and the structure of the polar sets, the connection with the Fourier transform on the space of rectangular matrices, inversion formulas and spectral analysis, and the group-theoretic realization as an intertwining operator between generalized principal series representations of SL(n, R).

Introduction

The cosine transform has a long and rich history, with connections to several branches of mathematics. The name cosine transform was adopted by Lutwak [50, p. 385] for the spherical convolution which is defined on the unit sphere S n-1 in R n by

(Cf )(u) = S n-1 f (v)|u • v| dv, u ∈ S n-1 . (1.1) 
The motivation for this name is that the inner product u • v is nothing but the cosine of the angle between the unit vectors u and v.

The following list of references shows some branches of mathematics, where the operator (1.1) and its generalizations arise in a natural way (sometimes implicitly, without naming) and play an important role.

• Convex geometry: [START_REF] Aleksandrov | On the theory of mixed volumes of convex bodies. II. New inequalities between mixed volumes and their applications[END_REF][START_REF] Blaschke | [END_REF][START_REF] Gardner | Geometric tomography[END_REF][START_REF] Gardner | p-cross-section bodies[END_REF][START_REF] Groemer | Geometric applications of Fourier series and spherical harmonics[END_REF][START_REF] Koldobsky | Fourier analysis in convex geometry[END_REF][START_REF] Lutwak | Centroid bodies and dual mixed volumes[END_REF][START_REF] Rubin | Intersection bodies and generalized cosine transforms[END_REF][START_REF] Rubin | Generalizations of the Busemann-Petty problem for sections of convex bodies[END_REF][START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF].

• Pseudo-differential operators: [START_REF] Eskin | Boundary value problems for elliptic pseudodifferential equations[END_REF][START_REF] Plamenevskiȋ | Algebras of pseudodifferential operators[END_REF].

• Group representations: [START_REF] Alesker | The α-cosine transform and intertwining integrals on real Grassmannians[END_REF][START_REF] Alesker | Range characterization of the cosine transform on higher Grassmannians[END_REF][START_REF] Van Dijk | Maximal degenerate representations, Berezin kernels and canonical representations[END_REF][START_REF] Van Dijk | Tensor products of maximal degenerate series representations of the group SL(n, R)[END_REF][START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF][START_REF] Pasquale | Maximal degenerate representations of SL(n + 1, H)[END_REF].

• Harmonic analysis and singular integrals: [START_REF] Askey | On the behavior of special classes of ultraspherical expansions. I, II[END_REF][START_REF] Gadzhiev | Differential properties of the symbol of a singular operator in spaces of Bessel potentials on a sphere[END_REF][START_REF] Gadzhiev | Exact theorems on multipliers of spherical expansions and some of their applications[END_REF][START_REF] Gel | Homogeneous functions and their extensions[END_REF][START_REF] Kryuchkov | Differential properties of the symbol of the singular integral Calderón-Zygmund operator[END_REF][START_REF] Meda | Spherical convolution with kernels having singularities on an equator[END_REF][START_REF] Ournycheva | Composite cosine transforms[END_REF][START_REF] Ournycheva | The composite cosine transform on the Stiefel manifold and generalized zeta integrals[END_REF][START_REF] Rubin | Inversion of fractional integrals related to the spherical Radon transform[END_REF][START_REF] Rubin | Inversion formulas for the spherical Radon transform and the generalized cosine transform[END_REF][START_REF] Samko | Generalized Riesz potentials and hypersingular integrals with homogeneous characteristics; their symbols and inversion[END_REF][START_REF] Samko | Singular integrals over a sphere and the construction of the characteristic from the symbol[END_REF][START_REF] Strichartz | Convolutions with kernels having singularities on a sphere[END_REF].

• Integral geometry: [START_REF] Bernig | Algebraic integral geometry[END_REF][START_REF] Fu | Algebraic integral geometry[END_REF][START_REF] Gel | The problem of integral geometry and intertwining operators for a pair of real Grassmannian manifolds[END_REF][START_REF] Goodey | Fourier transforms and the Funk-Hecke theorem in convex geometry[END_REF][START_REF] Rubin | Fractional calculus and wavelet transforms in integral geometry[END_REF][START_REF] Rubin | Fractional integrals and wavelet transforms associated with Blaschke-Levy representations on the sphere[END_REF][START_REF] Rubin | Inversion and characterization of the hemispherical transform[END_REF][START_REF] Rubin | Notes on Radon transforms in integral geometry[END_REF][START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF][START_REF] Semjanistyȋ | Some integral transformations and integral geometry in an elliptic space[END_REF][START_REF] Zhang | Radon, cosine and sine transforms on Grassmannian manifolds[END_REF].

• Stochastic geometry and probability: [START_REF] Goodey | Processes of flats induced by higher-dimensional processes[END_REF][START_REF] Levy | Théorie de l'addition des variables aléatoires[END_REF][START_REF] Matheron | Un théorème d'unicité pour les hyperplans poissoniens[END_REF][START_REF] Spodarev | On the rose of intersections of stationary flat processes[END_REF][START_REF] Spodarev | Cauchy-Kubota-type integral formulae for the generalized cosine transforms[END_REF].

• Banach space theory: [START_REF] Kanter | The L p norm of sums of translates of a function[END_REF][START_REF] Koldobsky | Inverse formula for the Blaschke-Levy representation[END_REF][START_REF] Koldobsky | Aspects of the isometric theory of Banach spaces[END_REF][START_REF] Neyman | Representation of Lp-norms and isometric embedding in Lp-spaces[END_REF][START_REF] Rudin | L p -isometries and equimeasurability[END_REF].

This list is far from being complete. In most of the publications cosine-like transforms serve as a tool for certain specific problems. At the same time, there are many papers devoted to the cosine transforms themselves. The present article is just of this kind. Our aim is to give a short overview of our recent work [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF][START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF] on the cosine transform and explain some of the ideas and tools behind those results.

For a complex number λ, the λ-analogue of the operator (1.1) is the convolution operator

(C λ f )(u) = S n-1 f (v)|u • v| λ dv, u ∈ S n-1 , (1.2) 
where the integral is understood in the sense of analytic continuation, if necessary. We adopt the name "the cosine transform" for (1.2) too. The same name will be used for generalizations of these operators to be defined below.

In recent years more general, higher-rank cosine transforms attracted considerable attention. This class of operators was inspired by Matheron's injectivity conjecture [START_REF] Matheron | Un théorème d'unicité pour les hyperplans poissoniens[END_REF], its disproval by Goodey and Howard [START_REF] Goodey | Processes of flats induced by higher-dimensional processes[END_REF], applications in group representations [START_REF] Branson | Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup[END_REF][START_REF] Van Dijk | Tensor products of maximal degenerate series representations of the group SL(n, R)[END_REF][START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF][START_REF] Pasquale | Maximal degenerate representations of SL(n + 1, H)[END_REF][START_REF] Zhang | Radon, cosine and sine transforms on Grassmannian manifolds[END_REF] and in algebraic integral geometry [START_REF] Alesker | Range characterization of the cosine transform on higher Grassmannians[END_REF][START_REF] Bernig | Algebraic integral geometry[END_REF][START_REF] Fu | Algebraic integral geometry[END_REF].

To the best of our knowledge, the higher-rank cosine transform was explicitly presented (without naming) for the first time in [26, formula (3.5)]. Our interest in this topic grew up from specific problems of harmonic analysis and group representations. However, in this article we do not focus on those problems, and mention them only for better explanation of the corresponding properties of the cosine transforms and related operators of integral geometry. We also restrict ourselves to the case of real numbers, referring to [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF] for the case of complex and quaternionic fields.

The paper is organized as follows. Section 2 contains basic facts about the cosine transforms on the unit sphere. More general higher-rank transforms on Stiefel or Grassmann manifolds are considered in Section 3, where the main tool is the classical Fourier analysis. In Sections 4 and 5 we discuss the connections to representation theory, and more precisely to the spherical representations and the intertwining properties. Section 6 is devoted to explicit spectral formulas for the cosine transforms.

The cosine transform on the unit sphere

In this section we discuss briefly the cosine transform on the sphere S n-1 . We keep the notation from the Introduction. For the analytic continuation of the cosine transform it is convenient to normalize it by setting

(C λ f )(u) = γ n (λ) S n-1 f (v)|u • v| λ dv, u ∈ S n-1 .
Here dv stands for the SO(n)-invariant probability measure on S n-1 and the normalizing coefficient γ n (λ) is given by

γ n (λ) = π 1/2 Γ(-λ/2) Γ(n/2) Γ((1 + λ)/2) , Re λ > -1, λ = 0, 2, 4, . . . . (2.1)
This normalization is chosen so that

C λ (1) = Γ (-λ/2) Γ((n + λ)/2)
.

Such a normalization is convenient in many occurrences, when harmonic analysis on the sphere is performed in the multiplier language (in the same manner as analysis of pseudo-differential operators is performed in the language of their symbols). We shall see below that it also simplifies the formula for the spectrum of the cosine transform.

The limit case λ = -1 gives, up to a constant, the well-known Funk transform. Specifically, if f ∈ C(S n-1 ), then for every u ∈ S n-1 , lim λ→-1

(C λ f )(u) = π 1/2 Γ((n -1)/2) (F f )(u), (2.2) 
where

(F f )(u) = {v∈S n-1 |u•v=0} f (v) d u v . (2.3)
In (2.3), d u v stands for the rotational invariant probability measure on the (n -2)dimensional sphere {v ∈ S n-1 | u • v = 0}; see, e.g., [START_REF] Rubin | Intersection bodies and generalized cosine transforms[END_REF]Lemma 3.1]. We note that the integral kernel |u • v| λ is even as a function of u and v. Therefore C λ f = 0 for all odd functions. Similarly, F f = 0 for all odd functions. As the projective space P(R n ) is the quotient of S n-1 by identifying the antipodal points u and -u, it follows that functions on P(R n ) correspond to even functions on S n-1 . Thus both the cosine transform and the Funk transform can be viewed as integral transforms on P(R n ).

The operators C λ and C λ were investigated by different approaches. A first one employs the Fourier transform technique [START_REF] Koldobsky | Inverse formula for the Blaschke-Levy representation[END_REF][START_REF] Rubin | Inversion of fractional integrals related to the spherical Radon transform[END_REF][START_REF] Semjanistyȋ | Some integral transformations and integral geometry in an elliptic space[END_REF] and relies on the equality in the sense of distributions

E λ C λ f Γ((1 + λ)/2) , Fω = c 1 E -λ-n f Γ(-λ/2) , ω , (2.4 
)

c 1 = 2 n+λ π (n-1)/2 Γ(n/2).
Here ω is a test function belonging to the Schwartz space S(R n ),

(Fω)(y) = R n ω(x)e ix•y dx,
and (E λ f )(x) = |x| λ f (x/|x|) denotes the extension by homogeneity.

A second approach is based on the Funk-Hecke formula, so that for each spherical harmonic Y j of degree j,

C λ Y j = m j,λ Y j , (2.5) 
where

m j,λ =    (-1) j/2 Γ(j/2 -λ/2) Γ(j/2 + (n + λ)/2) if j is even, 0 if j is odd; (2.6)
see, e.g., [START_REF] Rubin | Inversion of fractional integrals related to the spherical Radon transform[END_REF]. The Fourier-Laplace multiplier {m j,λ } forms the spectrum of C λ . Note that the normalizing coefficient in C λ was chosen so that only factors depending on j are involved in the spectral functions {m j,λ }. The spectrum of C λ encodes important information about this operator. For instance, since m j,λ m j,-λ-n = 1, then for any f ∈ C ∞ (S n-1 ) the following inversion formula holds:

C -λ-n C λ f = f, (2.7) provided λ ∈ C, λ / ∈ {-n, -n -2, -n -4, . . .} ∪ {0, 2, 4, . . .}.
For the non-normalized transforms, (2.7) yields

C -λ-n C λ f = ζ(λ) f, ζ(λ) = Γ 2 (n/2) Γ((1 + λ)/2) Γ((1 -λ -n)/2) π Γ(-λ/2) Γ((n + λ)/2) , (2.8) 
λ ∈ C, λ / ∈ {-1, -3, -5, . . .} ∪ {1 -n, 3 -n, 5 -n, . . .}.
Formula (2.6) reveals singularities, provides information about the kernel and the image. Moreover, it plays a crucial role in the study of the cosine transforms of L p functions. For instance, the following statement was proved in [64, p. 11], using the relevant results of Gadzhiev [START_REF] Gadzhiev | Differential properties of the symbol of a singular operator in spaces of Bessel potentials on a sphere[END_REF][START_REF] Gadzhiev | Exact theorems on multipliers of spherical expansions and some of their applications[END_REF] and Kryuchkov [START_REF] Kryuchkov | Differential properties of the symbol of the singular integral Calderón-Zygmund operator[END_REF] for symbols of the Calderon-Zygmund singular integral operators.

Theorem 2.1. Let L p e (S n-1 ) and L γ p,e (S n-1 ) be the spaces of even functions (or distributions) belonging to L p (S n-1 ) and the Sobolev space L γ p (S n-1 ), respectively. Then L δ p,e (S n-1 ) ⊂ C λ (L p e (S n-1 )) ⊂ L γ p,e (S n-1 ) (2.9)

provided γ = Re λ + n + 1 2 - 1 p - 1 2 (n -1), δ = Re λ + n + 1 2 + 1 p - 1 2 (n -1), λ / ∈ {0, 2, 4, . . . } ∪ {-n -1, -n -3, -n -5, . . . }.
The embeddings (2.9) are sharp.

Finally, to study C λ and C λ , one can use tools from representation theory, as we will discuss in more details in the second half of this article.

One can easily explain (2.5) -but not (2.6) -by the fact that the space of harmonic polynomials of degree j is the underlying space of an irreducible representation of K = SO(n). Then (2.5) follows from Schur's lemma and the fact that C λ commutes with rotations. Note that the group K acts by the left regular representation on L 2 (S n-1 ) and, as a representation of K, we have the orthogonal decomposition

L 2 (S n-1 ) K j∈N0 Y j , (2.10) 
where the set Y j of all spherical harmonics of degree j is an irreducible K-space.

As we shall see in Section 6, the spectral multiplier (2.6) can also be computed by identifying C λ as a standard intertwining operator between certain principal series representations of the larger group SL(n, R), see [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF].

We have already noted that C λ should be viewed as an operator on functions on P(R n ). This is related to the fact that the analogue of (2.10) for P(R n ) is

L 2 (P(R n )) K j∈2N0 Y j .

Cosine transforms on Stiefel and Grassmann manifolds

In this section we introduce the higher-rank cosine transforms and collect some basic facts about these transforms. The main results are presented in Theorems 3.2, 3.3, 3.6, 3.7, and 3.8.

3.1. Notation. We denote by V n,m ∼ O(n)/O(n -m) the Stiefel manifold of n × m real matrices, the columns of which are mutually orthogonal unit nvectors. For v ∈ V n,m , dv stands for the invariant probability measure on V n,m ; ξ = {v} denotes the linear subspace of R n spanned by v. These subspaces form the Grassmann manifold G n,m ∼ O(n)/(O(n -m) × O(m)) endowed with the invariant probability measure dξ. We write M n,m ∼ R nm for the space of real matrices x = (x i,j ) having n rows and m columns and set

dx = n i=1 m j=1 dx i,j , |x| m = det(x t x) 1/2 ,
x t being the transpose of x. If n = m, then |x| m is just the absolute value of the determinant of x; if m = 1, then |x| 1 is the usual Euclidean norm of x ∈ R n .

3.2. The Cos-function. We give two equivalent "higher-rank" substitutes for |u•v| in (1.1). The first one is "more geometric", while the second is "more analytic". For 1 ≤ m ≤ k ≤ n -1, let η ∈ G n,m and ξ ∈ G n,k be linear subspaces of R n of dimension m and k, respectively. Following [START_REF] Alesker | The α-cosine transform and intertwining integrals on real Grassmannians[END_REF][START_REF] Alesker | Range characterization of the cosine transform on higher Grassmannians[END_REF][START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF], we set

Cos(ξ, η) = vol m (Pr ξ E), (3.1) 
where vol m (•) denotes the m-dimensional volume function, E is a convex subset of η of volume one containing the origin, Pr ξ denotes the orthogonal projection onto ξ. By affine invariance, this definition is independent of the choice of E.

The second definition [START_REF] Grinberg | Radon inversion on Grassmannians via Gårding-Gindikin fractional integrals[END_REF] gives precise meaning to the projection operator Pr ξ . Let u and v be arbitrary orthonormal bases of ξ and η, respectively. We regard u and v as elements of the corresponding Stiefel manifolds V n,k and V n,m . If k = m = 1, then u and v are unit vectors, as in (1.1). The orthogonal projection Pr ξ is given by the k × k matrix uu t , and we can define

Cos(ξ, η) ≡ Cos({u}, {v}) = (det(v t uu t v)) 1/2 ≡ |u t v| m . (3.2)
This definition is independent of the choice of bases in ξ and η and yields |u • v| if k = m = 1.

Remark 3.1. Note that v t uu t v is a positive semi-definite matrix, and therefore, det(v t uu t v) ≡ det(u t vv t u) ≥ 0. It means that Cos(ξ, η) = Cos(η, ξ) ≥ 0.

3.3. Non-normalized cosine transforms. According to (3.1) and (3.2), one can use both Stiefel and Grassmannian language in the definition of the higher-rank cosine transform, namely,

(C λ m,k f )(u) = Vn,m f (v) |u t v| λ m dv, u ∈ V n,k , (3.3) 
(C λ m,k f )(ξ) = Gn,m f (η) Cos λ (ξ, η) dη, ξ ∈ G n,k , (3.4) 
where dv and dη stand for the relevant invariant probability measures. The important point here is that functions on the Grassmannian G n,m correspond to O(m)invariant functions on the Stiefel manifold V n,m . For those functions the transforms in (3.3) and (3.4) agree. The fact that we have two ways of writing the same operator, extends the arsenal of techniques for its study (some of them will be exhibited below). Both operators agree with C λ in (1.2), when k = m = 1. For brevity, we shall write

C λ m = C λ m,m .
We remark that there are different shifts in the power λ in the literature, all for different reasons. In particular, to make our statements in Sections 2-4 consistent with those in [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF], one should set λ = α -k. To adapt to the notation in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF] one has to change λ to λ -n/2. For unifying the presentation of the results in [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF] and [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF] we have preferred to adopt the unshifted notation as in (3.3) and (3.4).

Following [START_REF] Faraut | Analysis on symmetric cones[END_REF][START_REF] Gindikin | Analysis on homogeneous domains[END_REF], the Siegel gamma function of the cone Ω of positive definite m × m real symmetric matrices is defined by

Γ m (α) = Ω exp(-tr(r))|r| α-(m+1)/2 m dr = π m(m-1)/4 m-1 j=0 Γ(α-j/2) (3.5)
and represents a meromorphic function with polar set

{(m -1 -j)/2 | j = 0, 1, 2, . . .}. (3.6) Theorem 3.2. Let 1 ≤ m ≤ k ≤ n -1. (i) If f ∈ L 1 (V n,m ) and Re λ > m -k -1, then the integral (3.3) converges for almost all u ∈ V n,k . (ii) If f ∈ C ∞ (V n,m ), then for every u ∈ V n,k , the function λ → (C λ m,k f )(u) extends to the domain Re λ ≤ m -k -1 as a meromorphic function with the only poles m -k -1, m -k -2, .
. . . These poles and their orders are the same as those of the gamma function

Γ m ((λ + k)/2). (iii) The normalized integral (C λ m,k f )(u)/Γ m ((λ + k)/2) is an entire function of λ and belongs to C ∞ (V n,k ) in the u-variable.
A similar statement holds for (3.4). The proof of Theorem 3.2 can be found in [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF]Theorems 4.3,7.1]. It relies on the fact that |u t v| λ m is a special case of the composite power function (u t v) λ with the vector-valued exponent λ ∈ C m [START_REF] Faraut | Analysis on symmetric cones[END_REF][START_REF] Gindikin | Analysis on homogeneous domains[END_REF]. The corresponding composite cosine transforms were studied in [START_REF] Ournycheva | Composite cosine transforms[END_REF][START_REF] Ournycheva | The composite cosine transform on the Stiefel manifold and generalized zeta integrals[END_REF][START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF].

An important ingredient of the proof of Theorem 3.2 is the connection between the cosine transform C λ m,k f on V n,m and the Fourier transform

φ(y) = (Fϕ)(y) = Mn,m e tr(iy t x) ϕ(x) dx, y ∈ M n,m . (3.7) 
The corresponding Parseval equality has the form

( φ, ω) = (2π) nm (ϕ, ω), (ϕ, ω) = Mn,m ϕ(x)ω(x) dx. (3.8)
This equality, with ω in the Schwartz class S(M n,m ) of smooth rapidly decreasing functions, is used to define the Fourier transform of the corresponding distributions.

We will need polar coordinates on M n,m : for n ≥ m, every matrix x ∈ M n,m of rank m can be uniquely represented as

x = vr 1/2 with v ∈ V n,m and r = x t x ∈ Ω. Given a function f on V n,m , we denote (E λ f )(x) = |r| λ/2 m f (v). The following statement holds in the case k = m. Theorem 3.3. Let f be an integrable right O(m)-invariant function on V n,m , ω ∈ S(M n,m ), 1 ≤ m ≤ n-1, C λ m f = C λ m,m f . Then for every λ ∈ C, E λ C λ m f Γ m ((λ + m)/2) , Fω = c E -λ-n f Γ m (-λ/2) , ω , (3.9) 
c = 2 m(n+λ) π nm/2 Γ m (n/2) Γ m (m/2) ,
where both sides are understood in the sense of analytic continuation.

Formula (3.9) agrees with (2.4). The more general statement for arbitrary k ≥ m can be found in [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF].

Remark 3.4. It is important to note that the domains, where the left-hand side and the right-hand side of of (3.9) exist as absolutely convergent integrals, have no points in common, when m > 1. This is the principal distinction from the case m = 1, when there is a common strip of convergence -1 < Re λ < 0. To perform analytic continuation, we have to switch from C λ m to the more general composite cosine transform C λ m with λ ∈ C m and then take the restriction to the diagonal

λ 1 = • • • = λ m = λ + m.
This method of analytic continuation was first used by Khèkalo (for another class of operators) in his papers [START_REF] Khèkalo | Riesz potentials in the space of rectangular matrices, and the iso-Hyugens deformation of the Cayley-Laplace operator[END_REF][START_REF] Khèkalo | The Igusa zeta function associated with a complex power function on the space of rectangular matrices[END_REF][START_REF] Khèkalo | The Cayley-Laplace differential operator on the space of rectangular matrices[END_REF] on Riesz potentials on the space of rectangular matrices.

The Funk transform. The higher-rank version of the classical Funk

transform (2.3) sends a function f on V n,m to a function F m,k f on V n,k by the formula (F m,k f )(u) = {v∈Vn,m| u t v=0} f (v) d u v, u ∈ V n,k . (3.10) 
The condition u t v = 0 means that subspaces {u} ∈ G n,k and {v} ∈ G n,m are mutually orthogonal. Hence, necessarily, k + m ≤ n. The case k = m, when both f and its Funk transform live on the same manifold, is of particular importance and coincides with (2.3) when k = m = 1. We denote

F m = F m,m . If f is right O(m)-invariant, (F m,k f )(u)
can be identified with a function on the Grassmannians G n,m or G n,n-m , and can be written "in the Grassmannian language". For instance, setting

ξ = {v} ∈ G n,m , η = {u} ⊥ ∈ G n,n-k , and f (ξ) = f (v), we obtain (R m,n-k f )(η) ≡ ξ⊂η f (ξ) d η ξ = (F m,k f )(u).
(3.11)

3.5. Normalized cosine transforms. Our next aim is to introduce a natural generalization C λ m,k f of the normalized transform (2.1). "Natural" means that we expect C λ m,k f to obey the relevant higher-rank modifications of the properties (2.2)-(2.5).

Definition 3.5. Let 1 ≤ m ≤ k ≤ n -1. For u ∈ V n,k and v ∈ V n,m , we define (C λ m,k f )(u) = γ n,m,k (λ) Γ m (-λ/2) Γ m ((λ + k)/2) , λ + m = 1, 2, . . . . We denote C λ m = C λ m,m . The integral (3.12) is absolutely convergent if Re λ > m -k -1.
The excluded values of λ belong to the polar set of Γ m (-λ/2). If k = m = 1 this definition coincides with (2.1). Operators of this kind implicitly arose in [26, pp. 367, 368].

Theorem 3.6. Let 1 ≤ m ≤ k ≤ n -1, k + m ≤ n. If f is a C ∞ right O(m)-invariant function on V n,m , then for every u ∈ V n,k , a.c. λ=-k (C λ m,k f )(u) = Γ m (m/2) Γ m ((n -k)/2) (F m,k f )(u), (3.13) 
where "a.c." denotes analytic continuation and (F m,k f )(u) is the Funk transform (3.10).

This statement follows from [70, Theorems 7.1 (iv) and 6.1]. Note that if m = k = 1, then (3.13) yields (2.2). However, unlike (2.2), the proof of which is straightforward, (3.13) requires a certain indirect procedure, which invokes the Fourier transform on the space of matrices and the relevant analogue of (3.9).

We point out that a pointwise inversion of the Funk transform can be obtained by means of the dual cosine transform, which is defined by

( * C λ m,k ϕ)(v) = V n,k ϕ(u) |u t v| λ m du, v ∈ V n,m . (3.14)
Indeed, the following result holds.

Theorem 3.7. (cf. [70, Theorems 7.4]) Let ϕ = F m,k f , where f is a C ∞ right O(m)-invariant function on V n,m , 1 ≤ m ≤ k ≤ n -m. Then, for every v ∈ V n,m , a.c. λ=m-n ( * C λ m,k ϕ)(v) Γ m ((λ + k)/2) = c f (v), c = Γ m (n/2) Γ m (k/2) Γ m (m/2) . (3.15) 
Regarding other inversion methods of the higher-rank Funk transform (which is also known as the Radon transform for a pair of Grassmannnians), see [START_REF] Grinberg | Radon inversion on Grassmannians via Gårding-Gindikin fractional integrals[END_REF][START_REF] Zhang | Radon transform on real, complex, and quaternionic Grassmannians[END_REF] and references therein.

In the case k = m the normalized cosine transform

C λ m = C λ m,m has a number of important features. If f ∈ C ∞ (V n,m
), then the analytic continuation of (C λ m f )(u) is well-defined for all complex λ / ∈ {1 -m, 2 -m, . . .} and belongs to C ∞ (V n,m ). The following inversion formulas hold.

Theorem 3.8. (cf. [70, Theorems 7.7]) Let f ∈ C ∞ (V n,m ) be a right O(m)- invariant function on V n,m , 2m ≤ n. Then, for every u ∈ V n,m , (C -λ-n m C λ m f )(u) = f (u), λ, -λ -n / ∈ {1 -m, 2 -m, . . .}. (3.16)
In particular, for the non-normalized transforms,

(C -λ-n m C λ m f )(u) = ζ(λ) f (u), λ + n, -λ / ∈ {1, 2, 3, . . .}, (3.17) 
where

ζ(λ) = Γ 2 m (n/2) Γ m ((m + λ)/2) Γ m ((m -λ -n)/2) Γ 2 m (m/2) Γ m (-λ/2) Γ m ((n + λ)/2) . ( 3 

.18)

Both equalities (3.16) and (3.18) are understood in the sense of analytic continuation.

In the case m = 1, the formulas (3.16) and (3.17) coincide with (2.7) and (2.8), respectively, but the method for proving them is different.

Connection to Representation Theory

The cosine transform is closely related to the representation theory of semisimple Lie groups. In particular, as we shall now discuss, it has an important grouptheoretic interpretation as a standard intertwining operator between generalized principal series representations of SL(n, R).

In the following we shall use the notation G = SL(n, R), K = SO(n), and From now on, our main concern is the cosine transform (3.4) with equal lower indices, that is, C λ m ≡ C λ m,m . We refer to [START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF]Chapter V] for the harmonic analysis on compact symmetric spaces and [START_REF] Knapp | Representation theory of semisimple groups[END_REF] for the representation theory of semisimple Lie groups.

L = S(O(m)×O(n -m)) = A 0 0 B A ∈ O(m) B ∈ O(n -m) , det(A)det(B) = 1 with m ≤ n -m. Then B ≡ K/L = G n,
4.1. Analysis on B with respect to K. The first connection to representation theory is related to the left regular action of the group K on L 2 (B) by

(k)f (b) = f (k -1 b), k ∈ K , b ∈ B.
For an irreducible unitary representation (π, V π ) of K, we consider the subspace

V L π = {v ∈ V π | π(k)v = v ∀k ∈ L}, L = S(O(m)×O(n -m)).
The representation (π, V π ) is said to be L-spherical if V L π = {0}. As B = K/L is a symmetric space, the following result is a consequence of [35, Chapter IV, Lemma 3.6].

Proposition 4.1. If (π, V π ) is L-spherical, then dim V L π = 1. Since V L π = {0}, we can choose a unit vector e π ∈ V L π . Then we define a map Φ π : V π → C ∞ (B) ⊂ L 2 (B) by the formula (Φ π v)(b) = d(π) -1/2 v, π(k)e π , v ∈ V π , b = k • b o ∈ B = K • b o , (4.1) 
where

d(π) = dim V π . This definition is meaningful because k • b o = kk • b o for every k ∈
L and e π remains fixed under the action of π(k ). We also set

Φ π (v; b) = (Φ π v)(b).
Recall, if (π, V π ) and (σ, V σ ) are two representations of a Hausdorff topological group H, then an intertwining operator between π and σ is a bounded linear operator T : V π → V σ such that T π(h) = σ(h)T for all h ∈ H. If π is irreducible and T intertwines π with itself, then Schur's Lemma states that T = c id for some complex number c, [START_REF] Folland | A course in abstract harmonic analysis[END_REF], p. 71. The map Φ π is a K-intertwining operator in the sense that it intertwines the representation π on V π and the left regular representation on 

L 2 (B), so that for b = h • b o and k ∈ K we have Φ π (π(k)v; b) = π(k)v, π(h)e π = v, π(k -1 h)e π = (k)Φ π (v; b) .
4.2. L 2 (B) K π∈ K L L 2 π (B) .
The cosine transform is, as mentioned before, a K-intertwining operator, i.e.,

C λ m ( (k)f ) = (k)C λ m (f ) for all k ∈ K and f ∈ L 2 (B)
. It follows by Schur's Lemma that for each π ∈ K L there exists a function η π on C such that

C λ m | L 2 π = η π (λ) id . (4.2) Let f ∈ L 2 π (B) of norm one. Then η π (λ) = C λ m (f ), f and it follows that η π (λ) is meromorphic; cf. Theorem 3.2.

Generalized spherical principal series representations of G.

The fact that C λ m is a K-intertwining operator does not indicate how to determine the functions η π . In the case m = 1 and in some particular cases for the higher-rank cosine transforms [START_REF] Ournycheva | Composite cosine transforms[END_REF][START_REF] Ournycheva | The composite cosine transform on the Stiefel manifold and generalized zeta integrals[END_REF] explicit expression for η π can be obtained using the Funk-Hecke Theorem or the Fourier transform technique. It is a challenging open problem to proceed the same way in the most general case, using, e.g., the relevant results of Gelbart, Strichartz, and Ton-That, see, e.g., [START_REF] Gelbart | A theory of Stiefel harmonics[END_REF][START_REF] Strichartz | The explicit Fourier decomposition of L 2 (SO(n)/SO(n -m))[END_REF][START_REF] Ton-That | Lie group representations and harmonic polynomials of a matrix variable[END_REF]. Below we suggest an alternative way and proceed as follows.

To find η π explicitly, we observe that the cosine transform is an intertwining operator between certain generalized principal series representations (π λ , L 2 (B)) of G = SL(n, R) induced from a maximal parabolic subgroup of G. We can then use the bigger group G, or better its Lie algebra, to move between K-types. We invoke the spectrum generating technique introduced in [START_REF] Branson | Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup[END_REF] to build up a recursion relation between the spectral functions η π . This finally allows us to determine all of them by knowing η trivial .

The group G = SL(n, R) acts on B by

g • η = {gv | v ∈ η} ,
where gv denotes the usual matrix multiplication. This action is transitive, as the K-action is already transitive. The stabilizer of b o is the group

P = A X 0 B X ∈ M m,n-m , A ∈ GL(m, R) B ∈ GL(n -m, R) and det(A)det(B) = 1 S(GL(m) × GL(n -m)) M m,n-m ,
where M n,m is the space of n × m real matrices; see Section 3.1. We then have B = G/P . The K-invariant probability measure on B is not G-invariant. But there exists a function j : G × B → R + such that for all f ∈ L 1 (B) we have

B f (b) db = B f (g • b)j(g, b) n db , g ∈ G, b ∈ B . (4.3)
We include the power n to adapt our notation to [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF]. By the associativity of the action we have j(gg , b) = j(g, g • b)j(g , b) for all g ∈ G and b ∈ B. Hence, for each λ ∈ C we can define a continuous representation π λ of G on L 2 (B) by

[π λ (g)f ](b) = j(g -1 , b) λ+n/2 f (g -1 • b) , g ∈ G, f ∈ L 2 (B), β ∈ B. (4.4)
A simple change of variables shows that

π λ (g)f, h = f, π -λ (g -1 )h , g ∈ G , f, h ∈ L 2 (B) .
In particular, π λ is unitary if and only if λ is purely imaginary. The representations π λ are the so-called generalized (spherical) principal series representations (induced from the maximal parabolic subgroup P ), in the compact picture. See e.g. [START_REF] Knapp | Representation theory of semisimple groups[END_REF], p. 169.

To connect our exposition here to [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF], we note that the representation π λ can also be realized on the space of O(m)-invariant functions on the Stiefel manifold. The explicit construction goes as follows. According to [70, Section 7.4.3], we introduce the radial and angular components of a matrix x ∈ M n,m of rank m by rad

(x) = (x t x) 1/2 ∈ Ω, ang(x) = x(x t x) -1/2 ∈ V n,m , so that x = ang(x) rad(x). Given λ ∈ C, define π λ (g)f (v) = |rad(g -1 v)| -(λ+n/2) f (ang(g -1 v)). (4.5) 
This defines a representation

π λ of GL(n, R) on L 2 (V n,m ) O(m) L 2 (B)
. The restriction of π λ to SL(n, R) is equivalent to the representation π λ defined in (4.4).

The cosine transform as an intertwining operator.

In this section we follow the ideas in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF]. An alternative self-contained exposition (without using the representation theory of semisimple Lie groups), can be found in [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF].

The gain of using the representations π λ is that we now have a meromorphic family of representations on L 2 (B). Moreover, these representations are irreducible for almost all λ and closely related to the cosine transform. For all this, we need to recall some results from [START_REF] Vogan | Intertwining operators for real reductive groups[END_REF].

Theorem 4.3 (Vogan-Wallach

). There exists a countable collection {p n } of non-zero holomorphic polynomials on C such that if p n (λ) = 0 for all n then π λ is irreducible. In particular, π λ is irreducible for almost all λ ∈ C.

Proof. This is Lemma 5.3 in [START_REF] Vogan | Intertwining operators for real reductive groups[END_REF].

Let θ : G → G be the involutive automorphism θ(g) = (g -1 ) t . We remark that in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF] the notation Cos λ = C λ-n/2 m was used.

Theorem 4.4. The cosine transform intertwines π λ and π -λ • θ, namely,

C λ m • π λ+n/2 = (π -λ-n/2 • θ) • C λ m , (4.6) 
whenever both sides of this equality are analytic functions of λ.

Proof. We refer to Theorem 2.3 and (4.10) in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF].

In fact, it is shown in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF], Lemma 2.5 and Theorem 4.2, that C λ-n/2 m = J(λ), where J(λ) is a standard intertwining operator, studied in detail among others by Knapp and Stein in [START_REF] Knapp | Intertwining operators for semisimple groups[END_REF][START_REF] Knapp | Intertwining operators for semisimple groups[END_REF] and Vogan and Wallach in [START_REF] Vogan | Intertwining operators for real reductive groups[END_REF]. These authors show, in particular, that λ → J(λ) has a meromorphic extension to all of C. Furthermore, Vogan and Wallach show that if f ∈ C ∞ (B), then the map The implication of (4.6) is that

{ν ∈ C | Re (ν) > -1 + n/2} λ -→ J(λ)f ∈ C ∞ (B)
C -λ-n/2 m • C λ-n/2 m
intertwines π λ with itself (in the sense of a meromorphic family of operators). By Theorem 4.3 there exists a meromorphic function η on C such that

C -λ-n/2 m • C λ-n/2 m = η(λ) id C ∞ (B) (4.7)
for all λ ∈ C for which the left-hand side is well defined. The shift by n/2 in the definition is chosen so that the final formulas agree with those in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF] and make some formulas more symmetric. The fact that η is meromorphic follows by noting that η

(λ) = C -λ-n/2 m • C λ-n/2 m
(1), 1 . Formula (4.7) is a symmetric version of (3.18) with λ replaced by λ -n/2. The explicit value of η(λ) can be easily obtained from (3.17). An alternative, representation-theoretic method to compute the function η(λ), is presented in Section 6. The first step is the following lemma. Note that c(λ) is nothing but η trivial (λ) in (4.2).

Remark 4.7. There are several ways to prove the meromorphic extension of the standard intertwining operators. The proof in [START_REF] Vogan | Intertwining operators for real reductive groups[END_REF] uses tensoring with finite dimensional representations of G to deduce a relationship between C λ m and C λ+2n m . In fact, there exists a family of (non-invariant) differential operators D λ on B and a polynomial b(λ), the Bernstein polynomial, such that

b(λ)C λ m (f ) = C λ+2n m (D λ (f )) (4.8) 
[83, Theorem 1.4]. Another way to derive an equation of the form (4.8) is to convert the integral defining C λ m into an integral over the orbit of certain nilpotent group N , as usually done in the study of standard intertwining operators, and then use the ideas from [START_REF] Brylinski | Vecteurs distributions H-invariants pour les séries principales généralisées d'espaces symétriques réductifs et prolongement méromorphe d'intégrales d'Eisenstein[END_REF][START_REF] Ólafsson | Fourier and Poisson transformation associated to a semisimple symmetric space[END_REF][START_REF] Ólafsson | On the meromorphic extension of the spherical functions on noncompactly causal symmetric spaces[END_REF]. In the case where G/P is a symmetric R-space (which contains the case of Grassmann manifolds), the standard intertwining operators J(λ) have been recently studied by Clerc in [START_REF] Clerc | Intertwining operators for the generalized principal series on symmetric R-spaces[END_REF], using Loos' theory of positive Jordan triple systems. In particular, Clerc explicitly computes the Bernstein polynomials b(λ) in (4.8), and, hence, proves the meromorphic extension of J(λ) for this class of symmetric spaces.

Finally, one can stick with the domain where λ → C λ m is holomorphic and determine the K-spectrum functions η π (λ) in (4.2). As rational functions of Γfactors, these functions have meromorphic extension to C. Hence λ → C λ m itself has meromorphic extension by (4.2). We will comment more on that in Remark 6.8.

Historical remarks.

We conclude this section with a few historical remarks. The standard intertwining operators J(λ), as a meromorphic family of singular integral operators on K or N , have been central objects in the study of representation theory of semimisimple Lie groups since the fundamental works of Knapp and Stein [START_REF] Knapp | Intertwining operators for semisimple groups[END_REF][START_REF] Knapp | Intertwining operators for semisimple groups[END_REF], Harish-Chandra [START_REF] Harish-Chandra | Harmonic analysis on real reductive groups iii. the Maass-Selberg relations and the Plancherel formula[END_REF], and several others. In our case

N = I m 0 X I n-m X ∈ M m,n-m .
Then, in the realization of the generalized principal series representations on L 2 (B), the kernel of J(λ) is Cos λ-n/2 (b, c). But in most cases there is neither an explicit formula nor geometric interpretation of the kernel defining J(λ).

Apart of customary applications of the cosine transform in convex geometry, probability, and the Banach space theory, similar integrals turned up independently as standard intertwining operators between generalized principal series representations of SL(n, K), where K = R, C or H.

The real case was studied in [START_REF] Van Dijk | Tensor products of maximal degenerate series representations of the group SL(n, R)[END_REF], the complex case in [START_REF] Dooley | Generalized principal series representations of SL(1 + n, C)[END_REF], and the quaternionic case in [START_REF] Pasquale | Maximal degenerate representations of SL(n + 1, H)[END_REF]. In these articles it was shown that integrals of the form

B |x • y| λ-n/2 f (x) dx,
with some modification for K = C or H, define intertwining operators between generalized principal series representations induced from a maximal parabolic subgroup in SL(n + 1, K). The K-spectrum was determined, yielding the cases of irreducibility and, more generally, the composition series of those representations. Among the applications, there were some embeddings of the complementary series and the study of the so-called canonical representations on some Riemannian symmetric spaces of the noncompact type, [START_REF] Van Dijk | Canonical representations related to hyperbolic spaces[END_REF][START_REF] Van Dijk | Maximal degenerate representations, Berezin kernels and canonical representations[END_REF][START_REF] Van Dijk | Canonical representations of Sp(1, n) associated with representations of Sp(1)[END_REF]. However the connections of these considerations to convex geometry, to the cosine transform and to the Funk and Radon transforms was neither discussed nor mentioned. These connections were first published in [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF] in the context of the Grassmannians over R, C and H. However, it was probably S. Alesker who first remarked in his unpublished manuscript [START_REF] Alesker | The α-cosine transform and intertwining integrals on real Grassmannians[END_REF] that over R the cosine transform is a SL(n, R)-intertwining operator; see also [START_REF] Alesker | Range characterization of the cosine transform on higher Grassmannians[END_REF] for the case λ = 1. 1It was also shown in [START_REF] Zhang | Radon, cosine and sine transforms on Grassmannian manifolds[END_REF] that the Sin λ -transform (a transform related to the sine transform) can be viewed as a Knapp-Stein intertwining operator. This was used to construct complementary series representations for GL(2n, R). The Sin λtransform is then also naturally linked to reflection positivity, which relates complementary series representations of GL(2n, R) to the highest weight representations of SU(n, n), [START_REF] Frank | Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality[END_REF][START_REF] Frank | Spherical reflection positivity and the Hardy-Littlewood-Sobolev inequality. concentration, functional inequalities and isoperimetry[END_REF][START_REF] Neeb | Reflection positivity and conformal symmetry[END_REF][START_REF] Jorgensen | Unitary representations and Osterwalder-Schrader duality[END_REF][START_REF] Jorgensen | Unitary representations of Lie groups with reflection symmetry[END_REF]. Notice, however, that the definition of the Sin λ -transform in [START_REF] Zhang | Radon, cosine and sine transforms on Grassmannian manifolds[END_REF] differs from the one in [START_REF] Rubin | Inversion formulas for the spherical Radon transform and the generalized cosine transform[END_REF], [START_REF] Rubin | Funk, cosine, and sine transforms on Stiefel and Grassmann manifolds[END_REF]; see also [START_REF] Rubin | Radon, cosine and sine transforms on real hyperbolic space[END_REF] for the sine transform on the hyperbolic space.

The spherical representations

The functions η π (λ) in (4.2) are parametrized by the L-spherical representations of K. The main purpose of this section is to present this parametrization, which is given by a semilattice in a finite dimensional Euclidean space associated with a maximal flat submanifold of B. We will, therefore, have to study the structure of the symmetric space B. We refer to [START_REF] Takeuchi | Modern spherical functions, volume 135 of Translations of Mathematical Monographs[END_REF] and the books by Helgason [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF][START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF] for more detailed discussions and proofs. To bring the discussion closer to standard references in Lie theory we also introduce some Lie theoretical notation which we have avoided so far.

Let

g = {X ∈ M n,n | tr(X) = 0} , k = {X ∈ M n,n | X t = -X} ,
be the Lie algebras of G = SL(n, R) and K = SO(n), respectively. The derived involution of θ on g, still denoted θ, is given by θ(X) = -X t . Hence k = g(1, θ), the eigenspace of θ on g with eigenvalue 1. We fix once and for all the G-invariant bilinear form β(X, Y ) = n m(n-m) tr(XY ) on g. Note that β is negative definite on k and X, Y = -β(X, θ(Y )) is an inner product on g such that ad(X) t = -ad(θ(X)), where, as usual, ad(X)Y = [X, Y ] = XY -Y X. The normalization of β is chosen so that it agrees with [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF].

We recall that B is a symmetric space corresponding to the involution

τ (x) = I m 0 0 -I n-m x I m 0 0 -I n-m = A -B -C D for x = A B C D ,
where for r ∈ N we denote by I r the r × r identity matrix. Note that τ in fact defines an involution of G and that the derived involution on the Lie algebra g is given by the same form.

We have k = l ⊕ q where l so(m) × so(n -m) is the Lie algebra of L and

q = k(-1, τ ) = Q(X) = 0 mm X -X t 0 n-m,n-m X ∈ M m,n-m .
Let E ν,µ = (δ iν δ jµ ) i,j denote the matrix in M m,n-m with all entries equal to 0 but the (ν, µ)-th which is equal to 1. For t = (t 1 , . . . , t m ) t ∈ R m we set

X(t) = - m j=1 t j E j,n-2m+j ∈ M m,n-m , Y (t) = Q(X(t)) ∈ q . Then b = {Y (t) | t ∈ R m } R m is a maximal abelian subspace of q.
To describe the set K L we note first that B is not simply connected. So we cannot use the Cartan-Helgason theorem [35, p. 535] directly, but only a slight modification is needed. Define j (Y (t)) = it j . We will identify the element λ = m j=1 λ j j ∈ b * C with the corresponding vector λ = (λ 1 , . . . , λ m ). If H ∈ b, then ad(H) is skew-symmetric on k with respect to the inner product • , • . Hence ad(H) is diagonalizable over C with purely imaginary eigenvalues. For α ∈ ib * let

k α C = {X ∈ k C | (∀H ∈ b) ad(H)X = α(H)X} be the joint α-eigenspace. Let ∆ k = {α ∈ ib * | α = 0 and k α C = {0}} . The dimension of k α C is called the multiplicity of α (in k C ).
Lemma 5.1. We have

∆ k = {± i ± j (1 ≤ i = j ≤ m , ± independently), ± i (1 ≤ i ≤ m) }
with multiplicities respectively 1 (and not there if m = 1), 2n -m (and not there if m = n -m).

Proof. The statement follows from [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF]: the table on page 518, the description of the simple root systems on page 462 ff. and the Satake diagrams on pages 532-533.

We let

∆ + k = { i ± j (1 ≤ i < j ≤ m ), i (1 ≤ i ≤ m) } . Lemma 5.2. Let ρ k = 1 2 α∈∆ + k dim(k α C )α ∈ ib * . Then ρ k = m j=1 n 2 -j j .
Let now (π, V π ) be a unitary irreducible representation of K.

Then V π is finite dimensional. Moreover, π(H) = d dt t=0 π(exp(tH)) is skew-symmetric, hence diagonalizable, for all H ∈ b (in fact, π(H) is diagonalizable for all H ∈ k). Let Γ(π) ⊂ ib * be the finite set of joint eigenvalues of π(H) with H ∈ b. For µ ∈ Γ(π), let V µ π ⊂ V π denote the joint eigenspace of eigenvalue µ. If X ∈ k α C and v ∈ V µ π , then π(X)v ∈ V µ+α π . Thus, there exists a µ = µ π ∈ Γ(π) such that π(k α C )V µ π = {0} for all α ∈ ∆ +
k . This only uses that π is finite dimensional, but the irreducibility implies that this µ is unique. It is called the highest weight of π. Finally we have π σ if and only if µ π = µ σ .

Let K be the universal covering group of K. Then τ lifts to an involution τ on K, L = K τ is connected, and B = K/ L is the universal covering of B. Replacing K by K etc., we can talk about L-spherical representations of K and their highest weights. The following theorem is a consequence of the Cartan-Helgason theorem [35, p. 535].

Theorem 5.3. The map π → µ π sets up a bijection between the set of Lspherical representations of K and the semi-lattice

Λ + ( B) = µ ∈ ib * (∀α ∈ ∆ + k ) µ, α α, α ∈ Z + . (5.1) Furthermore, if m = n/2, then Λ + ( B) = {(µ 1 , . . . , µ m ) ∈ Z m | µ 1 ≥ µ 2 ≥ • • • ≥ µ m-1 ≥ |µ m |} . Otherwise, Λ + ( B) = {(µ 1 , . . . , µ m ) ∈ Z m | µ 1 ≥ µ 2 ≥ • • • ≥ µ m-1 ≥ µ m ≥ 0} .
If µ ∈ Λ + ( B), then we write (π µ , V µ ) for the corresponding L-spherical representation. Recall the notation Φ πµ from (4.1). Let Λ + (B) denote the sublattice in Λ + ( B) which corresponds to L-spherical representations of K. Then µ ∈ Λ + (B) if and only if the functions Φ πµ (v), which are originally defined on B, factor to functions on B. For that, let v ∈ V µ µ and H ∈ b. We can normalize v and e πµ so that Φ πµ (v; exp H) = e µ(H) . The same argument as for the sphere [81, Ch. III.12] proves the following theorem. 

Λ + (B) = {µ = m j=1 µ j ε j | µ j ∈ 2N 0 and µ 1 ≥ . . . ≥ µ m-1 ≥ |µ m | } .
In all other cases,

Λ + (B) = {µ = m j=1 µ j ε j | µ j ∈ 2N 0 and µ 1 ≥ . . . ≥ µ m ≥ 0 } .

The generation of the K-spectrum

Recall from Section 5 the involution θ(X) = -X t on g. The Lie algebra g decomposes into eigenspaces of θ as g = k ⊕ s, where

s = g(-1, θ) = {X ∈ M n,n | θ(X) = -X and Tr(X) = 0} .
Then, except in the case n = 2, the complexification s C of s is an irreducible Lspherical representation of K. For n = 2 this representation decomposes into two one-dimensional representations.

Let

H o = n-m n I m 0 0 -m n I n-m ∈ s . Then H o is L-fixed and H 0 , H 0 = 1. Define a = RH o . The operator ad(H 0 ) has spectrum {0, 1, -1} and n = g(1, ad(H 0 )). Let Ad(k) denote the conjugation by k. Define a map ω : s C → C ∞ (B) by ω(Y )(k) = Y, Ad(k)H o = β(Y, Ad(k)H o ) = n m(n-m) Tr(Y kH o k -1 ) and note that ω(Ad(h)Y )(k) = Ad(h)Y, Ad(k)H o = Y, Ad(h -1 k)H o = ω(Y )(h -1 k) .
Thus ω is a K-intertwining operator.

Fix an orthonormal basis X 1 , . . . , X dim q of q such that X 1 , . . . , X m , is an orthonormal basis of b. Denote by Ω =j X 2 j the corresponding positive definite Laplace operator on B. Then

Ω| L 2 µ (B) = ω(µ) id , where ω(µ) = µ + 2ρ k , µ . A simple calculation then gives: Lemma 6.1. Let µ = (µ 1 , . . . , µ m ) ∈ Λ + (B). Then ω(µ) = m(n -m) 2n m j=1 µ 2 j + µ j (n -2j) . For f ∈ C ∞ (B) denote by M (f ) : L 2 (B) → L 2 ( 
B) the multiplication operator g → f g. Recall the notation π 0 for the finite dimensional spherical representation of highest weight 0 ∈ Λ + (B).

Theorem 6.2. Let Y ∈ s. Then [Ω, M (ω(Y ))] = 2π 0 (Y ).
Proof. This is Theorem 2.3 in [START_REF] Branson | Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup[END_REF]. The spectrum generating relation that we are looking for can now easily be deducted and we get: As ω σδ (Y ) is non-zero, for generic λ it can be canceled out. Now insert the expression from Lemma 6.1 to get ω(µ + 2 j ) -ω(µ) = 2m(n-m) n (µ j + n/2 -(j -1))

For µ ∈ Λ + (B) define Ψ µ : L 2 µ (B) ⊗ s C → L 2 (B)
and the claim follows. The statement follows from the fact that π λ is irreducible for generic λ, hence, iterated application of (6.1) will in the end reach all K-types starting from the trivial K-type. Lemma 6.5 tells us that the evaluation of η µ (λ) can be done in two steps. First we determine the function η 0 (λ) and then use (6.3) In the following the scalar parameters, which occur in the argument of Γ Ω , are interpreted as vector valued, for instance, n ∼ (n, . . . , n), λ ∼ (λ, . . . , λ). Γ Ω ((µ -λ)/2) Γ Ω ((λ + n + µ)/2) . (6.5) Remark 6.7. Owing to (3.12), the spectrum of the normalized cosine transform C λ m has the simpler form ηµ (λ) = (-1) |µ|/2 Γ Ω ((µ -λ)/2) Γ Ω ((λ + n + µ)/2) . (

In the case m = 1 this formula coincides with (2.6).

Remark 6.8. In Section 4 we referred to the result of Vogan and Wallach on the meromorphic continuation of the intertwining operator J(λ). This result is not needed for the computation of η µ (λ). Indeed, it is enough to know that J(λ) is holomorphic on some open subset of C as that is all what is needed to determine η µ (λ) in Theorem 6.6. We can then extend C λ m meromorphically on each K-type. Note, however, that this is weaker than the statement in [START_REF] Vogan | Intertwining operators for real reductive groups[END_REF] which extends C λ m f for all smooth functions.

  m is the Grassmanian of m-dimensional linear subspaces of R n . We fix the base point b o = {(x 1 , . . . , x m , 0, . . . , 0) | x 1 , . . . , x m ∈ R} ∈ B, so that B = K • b 0 and every function on B can be regarded as a right L-invariant function on K.

Furthermore, the left

  regular representation on L 2 (B) is multiplicity free, see e.g.[START_REF] Wolf | Harmonic analysis on commutative spaces[END_REF] Corollary 9.8.2]. Therefore, since (π, V π ) is irreducible, any intertwining operator V π → L 2 (B) is by Schur's Lemma of the form c Φ π for some c ∈ C.We let L 2 π (B) = Im Φ π . Denote by K L the set of all equivalence classes of irreducible L-spherical representations (π, V π ) of K. Then, see[START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF] Chapter V, Thm. 4.3], the decomposition of L 2 (B) as a K-representation is as follows.

Theorem

  

  is holomorphic. As a consequence of C λ-n/2 m = J(λ) and [83, Theorem 1.6], we get the following theorem.

Theorem 4 . 5 .

 45 The map λ → C λ m extends meromorphically to C. In particular, for f ∈ C ∞ (B) and b ∈ B the function λ → (C λ m f )(b) extends to a meromorphic function on C and the set of possibles poles is independent of f . In the complement of the singular set we have C λ m f ∈ C ∞ (B). Notice that precise information about the analiticity of more general cosine transforms, including the structure of polar sets, is presented in Theorem 3.2 above.

Lemma 4 . 6 .

 46 Let c(λ) = C λ-n/2 m(1). Then η(λ) = c(λ)c(-λ).

Theorem 5 . 4 .

 54 If m = n -m, then

Lemma 6 . 3 .Lemma 6 . 4 .

 6364 by Ψ µ (ϕ ⊗ Y ) = M (ω(Y ))ϕ .Observe that for k ∈ K, Y ∈ s C , and ϕ ∈ L 2 µ (B) we have(k) M (ω(Y )ϕ) = (k)ω(Y ) ( (k)ϕ) = M ω(Ad(k)Y ) ( (k)ϕ) with Ad(k)Y ∈ s C and (k)ϕ ∈ L 2 µ (B). Hence Ψ µ is K-equivariant and Im Ψ µ is K-invariant. Define a finite subset S(µ) ⊂ Λ + (Let µ ∈ Λ + (B). Then S(µ) = {µ ± 2 j | j = 1, . . . , m} ∩ Λ + (B) .These representations occur with multiplicity one.Denote by pr σ the orthogonal projection L 2 (B) → L 2 σ (B). The first spectrum generating relation which follows from Theorem 6.2, see also[START_REF] Branson | Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup[END_REF] Cor. 2.6], states:Assume that µ ∈ Λ + (B). Let σ ∈ S(µ), Y ∈ s C , and λ ∈ C. Let ω σµ (Y ) := pr σ • M (ω(Y ))| L 2 µ (B) : L 2 µ (B) → L 2 σ (B) .(6.1)Thenpr σ • π λ (Y )| L 2 µ (B) =1 2 (ω(σ) -ω(µ) + 2 m(n-m) n λ)ω σµ (Y ) . (6.2)

Lemma 6 . 5 .

 65 Let µ = (µ 1 , . . . , µ m ) ∈ Λ + (B) and λ ∈ C. Thenη µ+2 j (λ) η µ (λ) = λ -µ j + j -1 λ + µ j + n -j + 1 = --λ + µ j -j + 1 λ + µ j + n -j + 1 (6.3)and η 0 (λ) = c(λ).Proof. First we apply C λ-n/2 m to (6.2) from the left, using that C λ-n/2 m commutes with pr σ and that Cλ-n/2 m •π λ (Y ) = π -λ •θ(Y )•C λ-n/2 m = -π -λ (Y )•C λ-n/2 m .We then get:ω(σ) -ω(µ) + 2 m(n-m) n λ η σ (λ -n/2)ω σµ (Y ) = -ω(σ) -ω(µ) -2 m(n-m) n λ η µ (λ -n/2)ω σµ (Y ) .

  as an inductive procedure to determine the rest. The final result is given in the following theorem. It is presented in terms of Γ-functions associated to the cone Ω of m×m positive definite matrices, namely,Γ Ω (λ) = π m(m-1)/4 m j=1 Γ(λ j -(j -1)/2), λ = (λ 1 , . . . , λ m ) ∈ C m . (6.4) This integral is a generalization of Γ m (λ) in (3.5); cf. [16, p. 123], [70, Sec. 2.2].

Theorem 6 . 6 (

 66 [START_REF] Ólafsson | The Cos λ and Sin λ transforms as intertwining operators between generalized principal series representations of SL(n+1, K)[END_REF]). Let Λ + (B) be the sublattice in Theorem 5.4 parametrizing the L-spherical representations of K, let µ = (µ 1 , . . . , µ m ) ∈ Λ + (B), and λ ∈ C. Then the K-spectrum of the cosine transform C λ m is given by:η µ (λ) = (-1) |µ|/2 Γ m (n/2) Γ m (m/2) Γ m ((λ + m)/2)) Γ m (-λ/2)

Vn,m f (v) |u t v| λ m dv,(3.12)whereγ n,m,k (λ) = Γ m (m/2) Γ m (n/2)
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