N

N

Virtualization Toolset for Emulating Mobile Devices and
Networks
Vincent Autefage, Damien Magoni, John Murphy

» To cite this version:

Vincent Autefage, Damien Magoni, John Murphy. Virtualization Toolset for Emulating Mobile Devices
and Networks. IEEE/ACM International Conference on Mobile Software Engineering and Systems,
May 2016, Austin, United States. 10.1145/2897073.2897087 . hal-01281879

HAL Id: hal-01281879
https://hal.science/hal-01281879
Submitted on 4 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01281879
https://hal.archives-ouvertes.fr

Virtualization Toolset for Emulating Mobile
Devices and Networks

Vincent Autefage
Univ. Bordeaux, LaBRI
351, Cours de la Liberation
33405 Talence, France
autefage@Iabri.fr

ABSTRACT

With the ubiquitous usage of mobile devices, most communi-
cations are now impacted by the users’ mobility. Therefore,
applications and services must be designed to cope with net-
work dynamics produced by those mobility patterns. Soft-
ware research and development would benefit from taking
device mobility into account. However, implementing and
testing software on real devices is costly and cumbersome to
perform. Virtualization is a widely used technique for avoid-
ing these issues. In this paper, we propose three tools for
creating and managing networks with mobile devices. Both
network devices and user devices are emulated, the latter
by using the QEMU system emulator. We implemented a
virtual network device that can emulate access points and
wireless interfaces, a real-time mobility engine that controls
the dynamics of the connections and a control and man-
agement tool. Our toolset, called NEmu, can create both
infrastructure and adhoc virtual networks for testing and
evaluating applications with a fine-grained control over the
network topology and link parameters. Results show that
NEmu gives similar results as container-based virtualization
and discrete event-based simulation.

CCS Concepts

eNetworks — Logical /virtual topologies; Programmable

networks;

Keywords

Mobile computing; mobile devices; network emulation; net-
work virtualization

1. INTRODUCTION

Mobile devices’ hardware is usually not based around the
typical x86/x64 processor architecture commonly found on
laptops, desktops and servers. Virtualization is thus a prac-
tical and efficient way to help develop software on those

MobileSoft’ 16, May 16-17 2016, Austin, TX, USA

ACM ISBN 978-1-4503-4178-3/16/05.
DOI: http://dx.doi.org/10.1145/2897073.2897087

Damien Magoni
Univ. Bordeaux, LaBRiI
351, Cours de la Liberation
33405 Talence, France
magoni@labri.fr

John Murphy
Univ. College Dublin, PEL
Belfield, Dublin 4
Dublin, Ireland

j.-murphy@ucd.ie

specific platforms. However, mobile devices also have a mo-
bility behavior that was not relevant for regular applica-
tions running on laptops or desktops and that should now
be taken into account. Setting up a hardware-based net-
work testbed to do this is expensive and cumbersome. In
particular, changing the network topology and the network
parameters of a hardware testbed is time consuming and
error-prone. Virtualizing the device is thus a first step but
being able to virtualize the network where the device sits in
would be a substantial improvement as network dynamics
could then be emulated with ease. Developers would then
be able to test and evaluate their applications in a dynamic
environment where connectivity would vary over time de-
pending on network conditions. In this paper, we propose
a set of tools designed to create virtual networks for testing
and evaluating applications running on mobile devices lo-
cated in fixed infrastructure or mobile ad hoc networks with
a complete control over the network topology, link proper-
ties (bandwidth, delay, bit error rate) and the mobility of
nodes. The goal of our toolset is to enable the creation and
management of reasonably sized virtual networks that are
completely configurable and that can emulate the mobility
of some or all of the nodes.
The contributions of our work are as follows:

e A detailed description of our toolset which is able to
manage a distributed set of virtual nodes and links for
emulating any arbitrary dynamic fixed and/or mobile
network topology (Section 2).

e A validation experiment of a dynamic scenario by repli-
cating with NEmu the Mosh [40] evaluation carried out
with Mininet [27] (Section 3.1).

e A validation experiment of a mobile scenario by repli-
cating with NEmu the AMiRALE [4] evaluation car-
ried out with JBotSim [11] (Section 3.2).

e A description of the state of the art on related and pre-
vious work targeted at dynamic and mobile networking
emulation tools (Section 4).

Our previous work concerning NEmu as a standalone tool
for emulating fixed wired networks was published in [5]. The
official website for NEmu can be found at:
http://nemu.valab.net.

http://dx.doi.org/10.1145/2897073.2897087
http://nemu.valab.net

2. TOOLSET DESCRIPTION
2.1 Overall Design

The toolset is composed of three different programs:

e a C++ program called virtual network device (vnd),
that can emulate links, hubs and switches but also ac-
cess points and wireless interface cards (WIC),

e a C++ program called network mobilizer (nemo), which
contains an event processor and a real-time mobility
engine that controls the dynamics of the connections
between the devices over time,

e and a Python program called Network Emulator for
Mobile Universes (NEmu), which controls the two pro-
grams above as well as manages the virtual devices and
the virtual machines running on QEMU.

NEmu also provides a Command-Line Interface (CLI) for
the users of our toolset and as such, we also call the whole
toolset NEmu.

NEmu is based on the concept of Network Virtualiza-
tion Environment (NVE) introduced by Chowdhury and
Boutaba in [12]. The main characteristic of a NVE is that
it hosts multiple Virtual Networks (VN) that are firstly not
aware of one another, and that are secondly completely in-
dependent of each other. A VN is a set of wirtual nodes
connected by wvirtual links in order to form a virtual topol-
ogy. NEmu provides the possibility of creating several vir-
tual network topologies with the central property that a VNN
is strictly disjoint from another in order to ensure the in-
tegrity of each VN.

Thus, NEmu integrates characteristics that are fundamen-
tal to a NVE: First, the flexibility and heterogeneity allows
the user to construct a customized topology, with custom
virtual nodes and virtual links. The scalability allows dif-
ferent virtual nodes to be hosted by different physical hosts
in order to avoid limitations of a unique physical machine.
The isolation decouples the different virtual networks which
run on the same infrastructure. It also guarantees a strict
separation between the host and the virtual networks. The
stability ensures that faults in a virtual network would not
affect another one. The manageability ensures that the vir-
tual network and the physical infrastructure are completely
independent. Therefore, a VN created on an infrastructure
A can be deployed on another infrastructure B. The legacy
support ensures that the NVE can emulate former devices
and architectures. Finally, the programmability provides
some optional network services to simplify the use of the
virtual network (such as DHCP, DNS, etc.). It also implies
that the user can develop and integrate his own additional
services.

In addition, NEmu includes four important extra proper-
ties:

e The accessibility which means that NEmu can be fully
executed without any administrative rights on the phys-
ical infrastructure. Indeed, the major part of public
infrastructures, like universities and laboratories, does
not provide administrative access to their users in or-
der to ensure the security and the integrity of the whole
domain. Therefore, the user execution would allow
most people to use NEmu freely.

e The dynamicity of the topology enables hot connec-
tions of nodes which means that a virtual node can
join or leave the topology dynamically without per-
turbing the overall virtual network.

e The mobility of nodes provides a way to create a self-
defined topology evolution through time and space. In
other words, it is possible to create an autonomous
connectivity scenario.

e The community aspect of the virtual network provides
the possibility for several people to supply virtual sub-
networks in order to build a community network like
the Internet is.

2.2 Network Emulator for Mobile Univer ses

NEmu as a tool is a Python program consisting of 8000
lines of code which allows users to build dynamic virtual net-
work infrastructures including mobile devices and mobile ad
hoc networks. To this end NEmu is based on several build-
ing blocks. NEmu uses virtual nodes connected by wvirtual
links in order to create a virtual network topology. A vir-
tual topology can be hosted by one or several physical hosts.
The part of the virtual topology laying on a given physical
host represents a NEmu session which is configured by the
NEmu manager.

2.2.1 \Virtual Nodes

A wirtual node for NEmu is an emulated machine that
requires a hard disk image to work. This image is typically
provided as a regular file on the physical host machine. Two
types of virtual nodes currently exist in NEmu:

e A VHost is a virtual host machine (i.e., end-user ter-
minal) on which the hardware properties and the op-
erating system can be fully configured by the user.

e A VRouter is a virtual router directly configured by
NEmu and provides ready-to-use network services.

Each virtual node uses a virtual storage which can be either
a real media (cdrom, hard drive, etc.), a raw file or a host
directory.

A VRouter is directly configured by NEmu and provides
several services to simplify the virtual network management:
DHCP, DNS, NFS, HTTP, SSH, NTP, Netfilter, dynamic
routing protocols (RIP and OSPF), and QoS management
with Traffic Control [23]. Moreover, it is easily possible to
add some new services through a plug-in system available in
NEmu. A VRrouter is running a customized image version
of TinyCore which is a lightweight and highly configurable
Linux distribution®. Such a system typically requires about
~30 MBytes on disk and ~100 MBytes in memory with
all services running. Services provided by a VRouter are
optional and can be enabled or disabled before or during
runtime.

2.2.2 Mirtual Links

A wvirtual link for NEmu is an emulated network connec-
tion between virtual nodes. Many types of virtual links cur-
rently exist in NEmu. Here are the most relevant:

e A VHub is a virtual hub emulating a physical Ethernet
hub and interconnecting several nodes.

"http://tinycorelinux.net

http://tinycorelinux.net

e A vSwitch is a virtual switch emulating a physical Eth-
ernet switch and interconnecting several nodes.

e A VRemote represents a special point-to-point link which
inter-connects a virtual element to a distant one (i.e.,
residing on another physical host) without breaking
the isolation of the whole virtual network.

e A VSlirp represents a special point-to-point link which
inter-connects a virtual node via a NATed virtual in-
terface to a real network interface card on the physical
host.

e A VTap represents a special point-to-point link which
inter-connects a virtual element to the physical ma-
chine through a Linux tap interface.

e A VAirWic represents a wireless interface connector.

e A VAirAp is a wireless access point for wireless/wired
connections.

Virtual links are configured by the user in NEmu commands
or scripts. Virtual links carry streams or frames from one
virtual node to one or more others. The traffic is tunneled
between virtual nodes by using so-called backend connec-
tions. NEmu uses our vnd program to emulate network
devices. The advantages of using a vnd is that the user can
set the bandwidth, delay, jitter and bit error rate on any
interface in any mode whereas QEMU offers no control over
its hub emulation. In addition, NEmu also provides a Slirp
which is a special type of link whose purpose is to provide
Internet access to the virtual node. It is an emulation of a
NATed access to the real Internet by using the physical host
NIC. Also, NEmu is able to interconnect a virtual NIC to a
TUN/TAP kernel interface or to any UNIX socket.

2.2.3 Sessions & Manager

As already said above, a NEmu session represents a com-
plete configuration of a network topology residing on a phys-
ical host (i.e., storage, virtual nodes’ configurations and
links). A distributed virtual network on n physical hosts
consists in n NEmu sessions at least. A session is repre-
sented by an auto-generated directory in order to be saved
and re-used. A session can be saved as a sparse archive
which compresses all elements and which is compatible with
sparse files unlike traditional archives. The NEmu manager
is the CLI to manipulate a session. Sessions are indepen-
dent even if they are part of the same network topology. The
manager can be used in three ways:

e as a Python module to be integrated in another script
or program;

e as a dynamic Python interpreter;
e as a Python script launcher.

The NEmu manager provides remote access, through SSH
connections, to manipulate NEmu sessions residing on other

distant hosts. The network topology can be visualized through

the Graphviz software suite [20].
2.3 Example of a M obile Topology

We present in Figure 2 the Python script that generates
a network topology with three drones as shown in Figure 1.

Figure 1: Example of a mobile ad hoc network topol-
ogy with three drones.

Initializing a NEmu session
InitNemu()

Creating wireless cards
VAirWic(’awic’)
VAirWic(*bwic’)
VAirWic(’cwic’)

Creating virtual nodes
VHost(’a’, hds=[VFs(’drone.img’, type=’cow’)]
nics=[VNic()])
VHost (’b’, hds=[VFs(’drone.img’, type=’cow’)]
nics=[VNic(1)
VHost (’c’, hds=[VFs(’drone.img’, type=’cow’)]
nics=[VNic()])

Linking nodes to wireless cards

Link(’a’, ’awic’)
Link(’b’, ’bwic’)
Link(’c’, ’cwic’)

Setting wireless cards in adhoc mode
SetAirMode (’awic’, ’adhoc’)
SetAirMode (’bwic’, ’adhoc’)
SetAirMode (’cwic’, ’adhoc’)

Creating a mobility scenario with wireless cards
MobNemu (’mob’, nodes=[’awic’, ’bwic’, ’cwic’])

Setting the mobility scenario :
. map of 1000x1000
. duration : 120 seconds
. number of mobility events (e.g., changing way) : 100
. wireless properties changed every 5 seconds
GenMobNemu (’mob’, width=1000, height=1000

, time=120, events=100, step=5)

Starting all virtual components
StartNemu ()

Starting the mobility scenario
StartMobNemu (’mob’)

Figure 2: Corresponding NEmu script for generat-
ing the mobile topology.

2.4 Virtual Network Device

This section presents our vnd software. It is a program
which is able to emulate network devices such as links, hubs,
switches or access points. This is by far not the first software
able to emulate network devices but it has some unique fea-
tures which may prove useful in the network virtualization
domain:

e It runs as a lightweight stand-alone process and can
fail without killing virtual machines.

e It can support dynamic connections and reconnections
as well as disconnections and is immune to the failures
of virtual machines.

e It provides many networking backends, such as the
sockets API, which is available on any platform, to
connect to the virtual machines.

e It can dynamically set the link properties such as band-
width, delay, jitter and bit error rate.

e It can emulate wireless interface cards in infrastructure
and ad hoc modes as well as access points.

2.4.1 Architecture

A wvnd contains an engine and several interfaces. It can
contain any number of interfaces as long as system memory
is available. Interfaces can be created and destroyed at run-
time. Each interface owns an input queue and an output
queue. Each queue has a number of buffers which can be set
at runtime. Interfaces are internally connected through the
engine. Data coming in or out of a vnd can be interpreted
in three ways:

e raw: data is considered as an uninterpreted flow of
bytes and each buffer can contain data bytes up to
its maximum size.

e Ethernet: data is considered as Ethernet II frames and
each buffer can contain only one frame whose size shall
be less or equal than the buffer’s maximum size.

e Pseudo 802.11: datais considered as IEEE 802.11 frames,

although only a pseudo header is used (i.e., not all
header fields are present, only MAC addresses and
to/from DS fields), and each buffer can contain only
one frame whose size shall be less or equal than the
buffer’s maximum size.

A wvnd can be set to one of the six different working modes
available, depending on the network device that it emulates.
The first four modes are typical network devices which are
independent from any virtual machine. The last two modes
are used to emulate a Wireless Interface Card (WIC) in ei-
ther infrastructure or ad hoc mode. Indeed, to our knowl-
edge, no emulators currently support wireless cards. The
main idea is to use the vnd to emulate an interface card of
its own. Thus, in the last two modes, the vnd is not used
as a separate network device but it is used in conjunction
with a virtual machine to form a mobile end-user device
(e.g., smartphone, tablet, autonomous vehicle). When the
vnd is used as a wireless card emulator, it is connected to
its virtual mobile node by a specific and unique interface
called a wic interface. This creates a direct link between

INPUT QUEUE INPUT QUEUE

RAL

FORWARDING INTERFACE 1

ENGINE

INTERFACI

OUTPUT QUEUE UTPUT QUEUE

INPUT QUEUE INPUT QUEUE

RAL
INTERFACE 2

RAL
INTERFACE 3

OUTPUT QUEUI UTPUT QUEUE

Figure 3: Access point mode.

the vnd and the virtual mobile device. Communications be-
tween wireless devices (access points and wireless cards) are
virtualized by connections between interfaces called ral (for
Radio Access Link). If the mobile node is considered using
infrastructure mode (BSS or ESS), then the WIC, emulated
by the vnd, will be connected to the access point by a ral
interface. Because radio interfaces are virtualized, we could
avoid broadcasting frames to all the neighbors in range but
we do it to mimic the real behavior of a shared radio medium
and to allow promiscuous listening.
The six possible modes and their behavior are:

e [ink: each interface is directly bound to another inter-
face, which means that any data going into the input
of the first interface is forwarded to the output of the
second interface in this given direction (i.e., it is one

way).

e hub: each interface is bound to all others, which means
that any data going into the input of an interface is for-
warded to the output of all the other interfaces except
itself.

e switch: any frame going into the input of an interface
is forwarded to the switch engine which uses a forward-
ing table to determine the output interface leading to
the device having the same address as the frame’s des-
tination address.

e access point: any frame going into the input of a nic
interface is forwarded to any output of a ral interface
and any frame going into the input of a ral interface is
forwarded to the output of the nic interface (as shown
on Figure 3).

e infrastructure interface: any frame going into the in-
put of a ral interface is forwarded to the output of the
wic interface leading to the mobile node itself, and any
frame going into the input of the wic interface is for-
warded to the output of any ral interface (as shown on
Figure 4), one of them necessary leading to the access
point when in infrastructure mode.

e ad hoc interface: same as above.

The last four modes only make sense when the data is
interpreted as Ethernet or 802.11 frames, as MAC addresses
are needed. In order to emulate the IEEE 802.11 protocol, a
pseudo header is added to any frame sent by a ral interface
and removed from any frame received by a ral interface.

INPUT QUEUE INPUT QUEUE

wic RAL
_ INTERFACE FORWARDING INTERFACE 1

ENGINE
/QUTPUT! QUEUE

OUTPUT QUEU

Wireless
Interface
(Infrastructure
and adhoc)
mode

INPUT QUEUE INPUT QUEUE

RAL
INTERFACE 2

RAL
INTERFACE 3

OUTPUT QUEU UTPUT QUEUE

Figure 4: Infrastructure/ad hoc WIC mode.

In those modes, the forwarding table is filled as in a hard-
ware switch having auto-learning capability. When a frame
is received by an interface, the vnd checks if the source MAC
address is associated with this interface. If yes nothing is
done, if no, the vnd stores this association in the forwarding
table. When a frame is transmitted, the engine looks up
the destination MAC address of the frame in the forward-
ing table and forward the frame to the interface associated
with that address. Currently, the forwarding table does not
remove entries depending on a given lifetime and thus the
table must be manually cleared if needed. The vnd supports
port-based VLANS in hub and switch modes. The vnd does
not yet implement the Spanning Tree Protocol, thus it is
up to the user to avoid making loops in the topology of the
virtual network.

2.4.2 Implementation

The wvnd is implemented in C++4, contains around 6000
lines of code, and uses the following libraries:

e Boost libraries [14]: thread, chrono, system, regez, bind,
and the asynchronous input/output library called asio.

e SSL libraries (for creating SSL backend connections).

e Linux-specific libraries: VDEplug (for connecting to
VDE switches).

The vnd can be used directly through a rudimentary CLI
or can be entirely controlled by NEmu which then acts as
the user interface. It is a lightweight program using around
250 KBytes in RAM and it is portable on the majority of
UNIX and Windows variants. The code is open source® and
licensed under the LGPLv3.

In the domain of virtualization, the term network backend
is often used to designate the software part of an emulator
that enables the connection of the emulator to the other em-
ulators either on the same physical machine or on different
ones. Network backends on UNIX are usually implemented
with tap interfaces, VDE [13], sockets or slirp (which pro-
vides a full TCP/IP stack implementing a virtual NATed
network).

The vnd currently provides Internet and UNIX local sock-
ets backends as well as tap and VDE backends. All these
backends are implemented in an object called endpoint. To
be useful, a network backend must be tied to a virtual net-
work interface in a virtual machine or a vnd. This tie is

2http://www.labri.fr/perso/magoni/vnd

implemented by emulators in more or less flexible ways. In
order to support the dynamic features presented at the be-
ginning of this section, the vnd implements this tie in a flex-
ible way by separating the virtual interface from the end-
point. This tie can be dynamically created or destroyed.
Thus the failure of a network backend connection does not
impact a virtual interface except for the loss of traffic. An
endpoint can also be rewired to another interface if needed
although data can be lost in the process.

2.5 Network Mobilizer

Our toolset can emulate mobile devices and networks.
Thus, it is possible to create a virtual network topology
that evolves over time such as a Mobile Ad-hoc Network
(MANET). In order to manage mobility, NEmu uses the
nemo mobility engine. nemo is a lightweight C++ pro-
gram which can generate connectivity scenarios for mobile
devices and networks. A connectivity scenario is a time-
stamped list of wireless link connection and disconnection
events between wireless devices (e.g., mobile nodes, access
points). In order to emulate device mobility and network dy-
namics, nemo leverages some features of our vnd software,
such as the ability to create or delete virtual links on-the-
fly and to dynamically modify link characteristics. nemo is
able to send orders to NEmu in real time for emulating the
connectivity changes between mobile nodes by creating, de-
stroying or changing the characteristics of the links at the
appropriate time. nemo contains two parts that are exe-
cuted sequentially in that order: the first part is based on a
simulated-time discrete-event processor and the second part
is based on a real-time scheduler.

2.5.1 Discrete Event Processor

The discrete event processor contains a simulated time
scheduler which is the heart of the simulation part of nemo.
The processor can generate connectivity scenarios that can
be later fed to the real-time scheduler. Three steps are nec-
essary to generate a connectivity scenario. First, the genera-
tion of a map (i.e., size, granularity). Second, the generation
of a mobility scenario on this map. A mobility scenario con-
tains mobility events at a given time (i.e., start time, start
position, velocity and acceleration). Third, the generation of
a connectivity scenario (i.e., start time, device ids, connec-
tion status (start, update, stop), data rate, distance) from
the aforementioned mobility scenario. At each step, the re-
sults of the step can be saved on disk in order to be loaded at
a later time and thus to avoid re-computation. The discrete
event processor runs the mobility scenario and at each time
interval, whose value is initially set by the user, it computes
the distances and the possible wireless connections between
all the pairs of mobile nodes. The inverse of the time interval
is defined as the sampling frequency of the scenario. Being
able to generate connectivity scenarios is an advantage over
using a network simulator interconnecting real applications
with taps, because the latter must compute the mobility at
every run and this computation could be too heavy to enable
the real-time execution of the applications. For the moment,
nemo generates rectangular maps and purely random mobil-
ity scenarios which is useful for carrying out functional tests.
nemo is also capable of importing ns-2 formatted mobility
files. In the future, nemo will be able to generate and load
more elaborate 2D or 3D maps containing, for instance, at-
tenuation information to represent physical obstacles and/or

1h scenarios, 10ms intervals, 100k events

30 — T
Measured time ——+—
25 L x*x*log2(x)

20

15

10

Total computation time (in minutes)

10 20 40 80 160
Number of mobile nodes

Figure 5: Computation complexity of the discrete
event processor.

relief elevation on the map.

The processor requires the user to make a trade-off be-
tween the temporal precision provided by the sampling fre-
quency (i.e., the time interval between each computation of
the overall connectivity), the computation time (which is de-
pendent on the number of nodes) and the number of events
detected. Indeed, a low frequency may miss some short-lived
connectivity events while a high frequency may add much
computation time without adding any more events. The se-
lection of the sampling frequency is thus in part dependent
on the respective speeds of the nodes. Also, as the scenario
will later on be executed in real time, a very high sampling
frequency would be meaningless. As a rule of thumb, a time
precision of 1 ms is probably the best that can be achieved
in real time, thus an upper limit for the sampling frequency
would be around 1000 computations per second.

The code that evaluates the connectivity between all nodes
at each time interval has a worst-case computation complex-
ity of O(n? x logz2(n)), with n being the number of nodes
in the scenario. However, as n is usually small and as the
processor is written in C++ for performance, the total com-
putation time remains usually below the simulated time du-
ration of the scenario. Plus, this computation is done only
by the processor in the first phase of the nemo usage in order
to generate the connectivity scenario. It is not done when
launching the real-time scheduler.

To assess the computation complexity of the connectivity
computation, we have generated random scenarios for 5 dif-
ferent network sizes, with a time interval of 10 ms (i.e., a
sampling frequency of 100 calls/second), a scenario duration
of 1 hour and a total number of mobility events of 100000.
The results are shown on Figure 5. Each point is the aver-
age of 10 runs. As standard deviation values are all below
1.5% of their respective means, the y-error bars cannot be
seen of the plot. A fit of the plot with the function f(x)
= a + bxlog2(x)*x**2 has been made by using the nonlin-
ear least-squares Marquardt-Levenberg algorithm provided
by gnuplot and is also shown on the figure. Experimental
results are coherent with the fitting function. As can be
seen, a typical 1-hour connectivity scenario with 40 nodes
will take approximately 2 minutes to be generated from a
mobility scenario containing 100k events, while a 160 nodes
one will take around 28 minutes.

2.5.2 Real-time Scheduler

The real-time scheduler is the heart of the emulation part
of memo. It executes any connectivity event at its exact
timestamp, set with respect to the start of the scenario. The
discrete event processor sets the start time of the mobility
scenario at 0 second. However, when executed in real-time
by the scheduler, the start time of the connectivity scenario
is set to the current clock time and all timestamps are then
offset with this value. The temporal precision available in
the real-time scheduler is given by the high resolution clock
provided by the Boost chrono library (which is itself based
on the system time library). The accuracy thus depends on
the OS of the physical host. For most modern OS, accuracy
is typically acceptable for values no smaller than a few mil-
liseconds. However, events themselves will of course always
fall on multiples of the sampling time interval set during the
processing of the mobility scenario by the simulated time
scheduler of the discrete event processor.

In a virtual mobile network, one vnd is used to emulate
each wireless network interface card (WIC) as explained in
Section 2. Thus, there is one vnd per virtual mobile node
and inside it are instantiated the backend links towards the
mobile device’s virtual machine and all the other vnd of the
other mobile nodes. NEmu transmits the orders of the user
(e.g., start, stop) to memo. When the real-time scheduler
is running, NEmu also recovers the connectivity events gen-
erated by nemo and retransmits them to the various vnd
corresponding to the WICs of the virtual mobile nodes in
order to make the network topology evolve. The real-time
scheduler can be paused/resumed at any time by the user.

As opposed to NEmu, nemo is not distributed (i.e., , only
one program instance of nemo may be running a given con-
nectivity scenario). Indeed, nemo must know the positions
of all the devices at any given time. It is recommended that
all the virtual machines emulating mobile devices should re-
side on the same physical host in order to avoid degrading
performance, as sending orders over the physical network
may add significant delay. Some network backends, such as
sockets, used by the vnd introduce delays and may reduce
the temporal precision even on a single physical machine.
The latter will be at best of the order of the millisecond
as previously mentioned. As our toolset targets the devel-
opment and testing of non-safety-critical applications, we
assume that this precision is enough.

2.5.3 Implementation

nemo can be used directly through a rudimentary CLI
or can be entirely controlled by NEmu which then acts as
the user interface. memo is implemented in C++-, contains
around 3000 lines of code, and is using the following Boost
libraries: thread, chrono and system. Remote control of
nemo also requires the regex, bind and asio libraries. It is a
lightweight program using around 1 MByte in RAM and it
is portable on the majority of UNIX and Windows variants.
The code is open source® and licensed under the LGPLv3.

In order to emulate wireless communications between ral
links, nemo implements the two-ray ground-reflection model
and mimics the bitrates vs sensitivity levels of three WICs:
Cisco Aironet, 3Com Xjack and Lucent Wavelan. nemo does
not yet currently take into account the MAC layer access and
contention mechanisms.

Shttp://www.labri.fr/perso/magoni/nemo

100% —

90% _F—"‘
80% —

70%
60% ;} ,’j

50%

w—hdosh

Percentage

—SSH
40% Mosh + OpenVPN

=5SH + OperVPN
30%

20%

10%
——

0%

0 0.5 1 1.5 2 25
Keystroke Response Time (seconds)

Figure 6: Original Mosh results with Mininet.

3. EXPERIMENTATION

In this section, we present two experiments that illustrate
the accuracy of our tools used in two different scenarios.
The first one evaluates roaming connectivity issues and com-
pares Mosh (Mobile shell) to SSH. The second one evaluates
data traffic in a mobile ad hoc network composed of moving
ground robots running the AMiRALE collaboration system.

3.1 Dynamic Network Experiment

In order to validate the accuracy of experimentation re-
sults obtained with NEmu, we reproduce a performance
benchmark of Mosh [40]. Mosh is a remote terminal ap-
plication which is more tolerant to connectivity break than
SSH by using the SSP protocol and a predictive algorithm.

The experimentation consists in measuring the average
keystroke response time for Mosh and SSH. This experiment
has been previously carried out on Mininet [27], another net-
work emulator which is well known for its degree of realism
in experimental conditions [21].

We reproduce the exact experimentation described in a
Stanford network lecture [2] and which has been officially
supported by the Mosh developers. In this experimenta-
tion, the server is connected to a switch through an emu-
lated WiFi network, and the client through an emulated 3G
network. The authors consider the following experimental
network conditions for the 3G connection: packet loss rate:
0.01, bandwidth: 1 Mbps, delay: 450 ms; and for the WiFi
connection: packet loss rate: 0.08, bandwidth: 25 Mbps,
and delay: 30 ms.

Thanks to our vnd program, we configure the network
properties as detailed above. Original results obtained with
Mininet are presented in Figure 6. Our results are illus-
trated in Figure 7. We have not emulated the OpenVPN
scenarios as they were very already close to the regular ones
in the original experiment. We can notice that results are
nearly identical. Those results imply that NEmu can offer
a degree of realism similar to Mininet.

3.2 Mobile Network Experiment

In order to validate the accuracy of experiments with mo-
bile devices performed with NEmu, we compare several per-
formance results obtained by simulation and emulation on a
multi-agents system called AMiRALE [4]. Emulations are
performed with NEmu while simulations are carried out with

100%

90%

80%

70%
60% [b

50% | R

Percentage

40% g
30% [b

20% b

10% Mosh

[0 L L L
0 0.5 1 15 2 2.5

Keystroke Response Time (seconds)

Figure 7: Mosh results with NEmu.

JbotSim [11], a Java library which enables the design of low
and high level communication scenarios and behaviors of
heterogeneous mobile nodes.

AMIRALE is a distributed system which enables several
autonomous vehicles (e.g., drones, ground robots) to per-
form common tasks collaboratively. This system is only
based on asynchronous one-way broadcast messages. Con-
sequently, if the density of nodes is very high, network con-
gestion can appear; this phenomenon is commonly called
the broadcast storm problem [31]. In order to avoid, or at
least to reduce the effects of this phenomenon, AMiRALE
includes several user mechanisms called filters which enable,
notably, to limit the re-emission of the same message.

We evaluate the output data rates generated by AMi-
RALE as a function of the filters’ configuration. The ap-
plication scenario consists in a team of ground robots which
has to collect a given number of items of garbage in a park.
Garbage and robots are placed randomly in the park at the
beginning of the scenario. Mobile ground robots are moving
by following the random way-point mobility model [9]. Each
robot is specialized, which means that it can only clean one
kind of garbage (e.g., glass, paper, compost). When a robot
finds an item of garbage which it is not able to collect itself,
it generates a new mission in order to inform other robots of
the existence of this item of garbage. This strategy enables a
robot to clean an item of garbage which has been discovered
by another robot. Missions are broadcast by robots every
5 seconds. When a robot collect an item of garbage, the
relative mission is marked as end. We have run many in-
stances of our scenario, both with NEmu and JbotSim with
different numbers of garbage items in the park and several
filter configurations.

Figure 8 shows the results of our experiment as a function
of the number of items of garbage in the park (thereafter
called targets). Here, no filter is used which means that a
mission is broadcast from its creation to the end of the sce-
nario (i.e., when no garbage remains in the park). Since all
missions are broadcast without any restriction, we can cal-
culate the theoretical data rates by multiplying the number
of missions by the size of a unique mission and divide the re-
sult by the frequency of broadcasts. This result is provided
on the theoretical plot. This figure shows that theoretical,
simulation and emulation results are very similar which im-
plies that NEmu provides coherent performance results on

Filter: none

60 T
Theoretical
50 b Simulation >
- Emulation
5 40
<
g 30
o
820
©
[a)
10
0
180 360 720 1440

Number of targets

Figure 8: Data rates obtained without filter vs the
number of targets.

Filter: 10s
60 .
Simulation +—+
50 . Emulation ——
Q
=
g 30
E
S 20 »
D : /
I
0
180 360 —]

Number of targets

Figure 9: Data rates obtained with a 10s filter wvs
the number of targets.

this mobile scenario.

Figure 9 and Figure 10 show the same scenario results,
where filters are configured to avoid a mission to be broad-
cast if it has been completed (i.e., marked as end) for more
than 10 seconds and 60 seconds respectively. Since the cre-
ation pace of the missions changes as a function of the mobil-
ity of the robots and the initial placement of the garbage and
robots, we cannot provide any theoretical result for those
plots. We can see that simulation and emulation experi-
ments provide similar results with overlapping confidence
intervals except at points for 360 targets, where the simula-
tions give higher data rates for reasons not yet investigated.

Collectively, those results imply that network emulation
with NEmu can offer a satisfying degree of realism both with
fixed and mobile experimentation.

4. RELATED WORK

Network virtualization has been proposed and studied for
quite some time and many tools are currently available.
Dynamips [17] is a CISCO hardware emulator. Dynagen
[3] is for Dynamips, the equivalent of what NEmu is for
QEMU. Dynagen manages fleet of Dynamips machines and

Filter: 60s
60 - —
Simulation -+

50 L Emulation +——«—
Q
S 40
=
g 30
S -
© E
£ 20 R
8 [i

10 / >

0

180 360 720 1440

Number of targets

Figure 10: Data rates obtained with a 60s filter wvs
the number of targets.

their inter-connections. However, the network dynamics of
the links of the topology are strongly limited (mainly on/off
by the user) and adding network services is quite difficult.
GNS [19] is an open source software which allows to build
a virtualized network topology with Dynamips, VirtualBox
and QEMU virtual machines. However, it does not pro-
vide the possibility to build a community network spread on
several physical machines and adding network services is as
complicated as in Dynagen. Finally GNS is hardly usable
without any graphical interface making difficult the creation
and management of a complex network. Velnet [25] is a vir-
tual environment dedicated to teaching which uses VMware
virtual machines. The complete topology can only run on a
single host which implies strong limitations on the size of the
virtual network. ModelNet [38] emulates a distributed vir-
tual network but this one remains static at runtime. Thus,
the dynamicity is not ensured with ModelNet. Further, the
management of this system is fully centralized on a unique
physical machine which disables the community aspect. Va-
grant [22] uses VirtualBoz virtual machines in order to em-
ulate virtual network. The topology is hosted on a single
physical machine and remains static at runtime. Finally, the
inter-connections are built inside the host kernel making a
flat network, i.e., a network which does not rely on standard
ways of addressing and routing. VINI [7] is a distributed
virtual network which overhangs the PlanetLab testbed [6]
which is an international distributed cluster system. VINI
uses UML virtual machines which strongly limits operating
systems for nodes. Moreover, connections between nodes
are made with virtual networks interfaces inside the kernel
of the physical machine which makes the configuration im-
possible without administrative rights. Violin [24] is similar
to VINI but provides some virtual routers which hosted dif-
ferent services like NEmu. However the use of UML and
the need of an existing overlay limits the use scope of this
solution. NetKit [34] relies also on UML and VDE switches
which do not require any administrative rights. Such a sys-
tem cannot be distributed. Marionnet [29] is a virtual envi-
ronment dedicated to teaching. It provides several network
services and the community aspect but relies on UML. Vir-
conel [8] uses OpenVZ virtual machines which also strongly
limits operating systems for nodes. Moreover, the topol-
ogy is static during runtime and the interconnections be-

tween virtual machines are made in the host kernel which
requires special rights on the physical system. VNUML [15]
is a static virtual system relying on UML and which re-
quires administrative rights. VNX [16] is the successor of
VNUML is a compatible with other virtualization systems.
However, as VNUML, it requires administrative rights and
does not include any link property mechanism. Clooniz [32]
is a dynamic virtual network environment. Nevertheless, it
does not include link property mechanism. Mininet [27] is a
Container-Based Emulator which allows to create a custom
and dynamic topology on a unique physical host. It is quite
efficient as it does not use full virtualization but that limits
the creation of heterogeneous networks (with ARM devices
for instance) [21]. OpenNebula [26] provides a powerful so-
lution to manage a virtual cloud on a wide physical infras-
tructure with an important number of nodes. OpenNebula
manages the whole cloud domain from a single access point.
Storage media are centralized and are accessible through the
network which implies the use of a NAS or NFS. PdP [28]
is partial NVE implementation which focuses itself on flexi-
bility, isolation, high-speed data rates and low cost. It uses
OS level virtualization nodes such as OpenVZ. Onelab2 [10]
is a well known emulation tool over PlanetLab. It also relies
on DummyNet which strongly limits the flexibility of this
solution. IP-TNE [36] is an original solution which enables
hosts and real network to interact with a virtual mobile net-
work. It is not really an emulation solution since it provides
only the mobility properties of nodes and not the real node
virtualization.

Research platforms such as PlanetLab [6], GENI [39] or
FEDERICA [18] supply virtual infrastructure built on top
of slices of hardware owned by third parties. Thus, the user
needs a specific account, must comply to a usage policy and
has to use the tools, services and APIs of these testbeds.
They are useful for emulating long distance links as their
physical infrastructure is usually nationwide.

Virtualizing mobile devices and networks is much more
difficult than regular networks and only a handful of tools
are currently available. CORE [1] is a graphic tool which
enables to emulate virtual mobile networks. This system re-
lies on a framework called IMUNES [35] which runs over the
FreeBSD operating system. Nodes and links are managed
inside the operating system kernel which implies strong lim-
itations in terms of flexibility. MobiEmu simulates mobile
networks through ns3 for the mobility and LXC contain-
ers for nodes. However, it may happen that, due to the
processing inherent in the execution of simulation events,
the simulator cannot keep up with real-time execution as
indicated in the ns3 manual. Furthermore LXC containers
cannot emulate mobile devices typically running on different
processor types (i.e., ARM instead of Intel based). NET [30]
is a powerful hardware-based infrastructure which allows to
perform realistic experimentation on mobile networks. How-
ever, this solution uses real network inter-connection devices
(i.e., switches, etc.) in order to build the virtual network.

Similarly to our vnd software, some other existing tools
enable the creation of emulated customized virtual switches.
VDE [13] is a virtual switch which inter-connects virtual ma-
chines through the shared memory system inside the Linux
kernel. VDE does not include any mechanism in order to
manipulate link properties like bandwidth, delay, etc. Open
vSwitch [33] is an open source project which enables to in-
stantiate virtual switches with a high customization of vir-

tual links. However, this software relies on virtual network
interfaces inside the Linux kernel thus lacking flexibility in
terms of backend connections. Vnet [37] is a distributed
inter-connection system which enables to link several vir-
tual machines which lay on different physical hosts. Even if
the system is distributed, it does not provide any link cus-
tomization mechanism. In addition, all these virtual switch
solutions do not enable access point emulation.

5. CONCLUSIONS

Our toolset composed of NEmu and its associated pro-
grams vnd and nemo enable the creation and management
of virtual heterogeneous and mobile devices and networks.
They provide a good compromise between ease of use, low
cost and acceptable realism. Such virtual networks can
evolve in real time with nemo by following a pre-calculated
connectivity scenario.

We have compared NEmu to Mininet with regard to the
Mosh experiment, and JBotSim with regard to the Amirale
experiment, and have shown in both cases that the results
are nearly identical thus demonstrating that NEmu can be
used for similar purposes. The advantage being that NEmu
can emulate mobile devices such as smartphones and tablets
thanks to the QEMU system emulator (which can emulate
ARM processors for instance) unlike Mininet which uses con-
tainer virtualization. NEmu can therefore overcome the cost
of a physical testbed infrastructure while enabling the eval-
uation and testing of real applications thanks to its low level
emulation of network and system devices. NEmu can also
emulate mobile ad hoc networks which, as far as we know,
is a unique feature among network emulators using full sys-
tem virtualization. Several next steps are already planned
for our future work on NEmu. They consist in the following
tasks by order of priority:

e The improvement of the performance and accuracy of
the vnd.

e The implementation of more sophisticated map gener-
ation algorithms inside nemo.

e The implementation of a more realistic wireless card
emulation, taking into account better radio propaga-
tion models, CSMA/CA access method, etc.

e The adaptation of NEmu in order to use other system
emulators (e.g., VirtualBox, Dynamips).

NEmu is a free open-source software available under the
LGPLv3 license. Tutorials as well as a full documentation
can be found on its website. The latest version of the source
code can be downloaded from the NEmu website®.

6. ACKNOWLEDGMENTS

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software Re-
search Centre (www.lero.ie).

7. REFERENCES

[1] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim.
Core: A real-time network emulator. In Proc. of IEEE
MILCOM, pages 1-7, 2008.

“http://nemu.valab.net

http://nemu.valab.net

2]

[6]

7]

[10]

[11]

A. Aljunied and A. Atreya. Evaluation of mosh
performance results. http://
reproducingnetworkresearch.wordpress.com/2013/03/
13/cs244-2013-evaluation-of-mosh-mobile-shell-
performance-results, 2013.

G. Anuzelli. Dynagen, 2006. http://dynagen.org.

V. Autefage, S. Chaumette, and D. Magoni. A
mission-oriented service discovery mechanism for
highly dynamic autonomous swarms of unmanned
systems. In Proc. of the Int’l Conf. on Autonomic
Computing, pages 31-40, 2015.

V. Autefage and D. Magoni. Network emulator: a
network virtualization testbed for overlay
experimentations. In Proc. of the 17th Int’l Workshop
on Computer-Aided Modeling Analysis and Design of
Communication Links and Networks, pages 38-42,
2012.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and

M. Wawrzoniak. Operating system support for
planetary-scale network services. In Proc. of the 1st
USENIX NSDI, pages 253-266, 2004.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In vini veritas: realistic and controlled
network experimentation. In Proc. of ACM
SIGCOMM, pages 3-14, 2006.

Y. Benchaib and A. Hecker. Virconel: A network
virtualizer. In Proc. of the 19th MASCOTS, pages
429-432, 2011.

C. Bettstetter, H. Hartenstein, and X. Pérez-Costa.
Stochastic properties of the random waypoint mobility
model. Wireless Networks, 10(5):555-567, 2004.

M. Carbone and L. Rizzo. An emulation tool for
planetlab. Computer Communications,
34(16):1980-1990, 2011.

A. Casteigts. Jbotsim: a tool for fast prototyping of
distributed algorithms in dynamic networks. In Proc.
of the 8th Int’l Conf. on simulation tools and
techniques, 2015.

N. Chowdhury and R. Boutaba. Network
virtualization: state of the art and research challenges.
IEEE Communications Magazine, 47(7):20-26, 2009.
R. Davoli. VDE: Virtual Distributed Ethernet. In
Proc. of the 1st Int’l Conf. on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and
COMmunities, pages 213-220, 2005.

B. Dawes and al. Boost C++ Libraries. http://www.
boost.org.

DIT. VNUML, 2003. http://dit.upm.es/vnumlwiki.
DIT. VNX, 2008. http://dit.upm.es/vnxwiki.

C. Fillot. Dynamips, 2007. https://github.com/GNS3/
dynamips.

C. GARR. FEDERICA, 2008. http://www.fp7-
federica.eu.

GNS3. Graphical Network Simulator, 2007. http://
www.gns3.net.

Graphviz. Graph Visualization Software. http://www.
graphviz.org.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container-based emulation. In 8th Int’l Conf. on

Emerging Networking FExperiments and Technologies,
pages 253-264, 2012.

M. Hashimoto and J. Bender. Vagrant, 2010. http://
vagrantup.com.

B. Hubert, G. Maxwell, R. Van Mook,

M. Van Oosterhout, P. Schroeder, and J. Spaans.
Linux advanced routing & traffic control. In Ottawa
Linuz Symposium, pages 213222, 2003.

X. Jiang and D. Xu. Violin: Virtual internetworking
on overlay infrastructure. In Proc. of the 2nd ISPA,
pages 937-946, 2003.

B. Kneale, A. Y. De Horta, and I. Box. Velnet: virtual
environment for learning networking. In Proc. of the
6th Australasian Conf. on Computing Education,
volume 30, pages 161-168, 2004.

C. Labs. OpenNebula. http://www.opennebula.org.
B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined
networks. In 9th Workshop on Hot Topics in
Networks, pages 19:1-19:6, 2010.

Y. Liao, D. Yin, and L. Gao. Network virtualization
substrate with parallelized data plane. Computer
Communications, 34(13):1549-1558, 2011.

J.-V. Lodo and L. Saiu. Marionnet, 2007. http://
www.marionnet.org.

S. Maier, D. Herrscher, and K. Rothermel.
Experiences with node virtualization for scalable
network emulation. Computer Communications,
30(5):943-956, 2007.

S. Ni, Y. Tseng, Y. Chen, and J. Sheu. The broadcast
storm problem in a mobile ad hoc network. In Proc. of
the Int’l Conf. on Mobile Computing and Networking,
pages 151-162, 1999.

V. Perrier. Clooniz, 2007. http://clownix.net.

B. Pfaff, J. Pettit, T. Koponen, K. Amidon,

M. Casado, and S. Shenker. Extending networking
into the virtualization layer. Proc. of ACM HotNets
workshop, 2009.

M. Pizzonia and M. Rimondini. Netkit: easy
emulation of complex networks on inexpensive
hardware. In Proc. of the 4th TridentCom, pages 1-10,
2008.

Z. Puljiz and M. Mikuc. IMUNES, 2003. http://
imunes.tel.fer.hr.

R. Simmonds and B. W. Unger. Towards scalable
network emulation. Computer Communications,
26(3):264-277, 2003.

A. I. Sundararaj, A. Gupta, and P. A. Dinda.
Dynamic topology adaptation of virtual networks of
virtual machines. In Proc. of the 7th LCR Workshop,
pages 1-8, 2004.

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,

D. Kostic, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. In ACM
Operating Systems Review, pages 271-284, 2002.

N. Van Vorst, M. Erazo, and J. Liu. Primogeni:
Integrating real-time network simulation and
emulation in geni. In Proc. of PADS, pages 1-9, 2011.
K. Winstein and H. Balakrishnan. Mosh: An
interactive remote shell for mobile clients. In USENIX
Annual Technical Conf., pages 177-182, 2012.

http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://dynagen.org
http://www.boost.org
http://www.boost.org
http://dit.upm.es/vnumlwiki
http://dit.upm.es/vnxwiki
https://github.com/GNS3/dynamips
https://github.com/GNS3/dynamips
http://www.fp7-federica.eu
http://www.fp7-federica.eu
http://www.gns3.net
http://www.gns3.net
http://www.graphviz.org
http://www.graphviz.org
http://vagrantup.com
http://vagrantup.com
http://www.opennebula.org
http://www.marionnet.org
http://www.marionnet.org
http://clownix.net
http://imunes.tel.fer.hr
http://imunes.tel.fer.hr

	Introduction
	Toolset Description
	Overall Design
	Network Emulator for Mobile Universes
	Virtual Nodes
	Virtual Links
	Sessions & Manager

	Example of a Mobile Topology
	Virtual Network Device
	Architecture
	Implementation

	Network Mobilizer
	Discrete Event Processor
	Real-time Scheduler
	Implementation

	Experimentation
	Dynamic Network Experiment
	Mobile Network Experiment

	Related Work
	Conclusions
	Acknowledgments
	References

