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Learning of mathematics in primary classes should 
not be reduced to learning algorithms and routines or 
procedures. As we see the learning of mathematics as 
a process of interpreting mathematical structures and 
generalizations, it is more important to foster children`s 
thinking and learning of meaningful relations between 
objects and operations in the context of equations. In 
this sense children have to learn algebraic relations in 
primary classes without using algebraic signs. In this 
paper the results of a design study and a video-based 
qualitative analysis of teaching/learning situations in 
the field of reasoning of equations are discussed.
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INTRODUCTION 

This paper is about the well-known problems around 
the equal-sign in mathematics learning processes: 
Many pupils understand the equal sign as a clear 
action-symbol, e.g. the left side of the sign has to be 
interpreted as a computing-demand, whereas on the 
right side there can only be found a single number, i.e. 
the solution of the computing-task (Seo & Ginsburg, 
2003; Kieran, 2011; Russel, 2011; Steinweg, 2013). Those 
pupils don´t accept equations like “8 + 5 = 10 +3” or 

“7+9 = 2⋅8” because they offend against the clear rule 
to have the computing term on the left and the result 
on the right side of the equal sign. For most situations 
in primary level, this “task-result-interpretation” 
(Winter, 1982) of equations may be sufficient. But, 
having in mind the algebra of secondary level cur-
ricula, someday the learners will have to overcome 
this restricted view on equations. 

It’s more important, I think, to give them many 
opportunities to use symbols in many situations 
than simply to tell them, let´s say: this is the equals 

sign and what ́s one side of the equals sign should 
be the same as what´s the other side of the equals 
sign (Seo & Ginsburg, 2003, p. 169).

To realise such learning opportunities we need rich 
learning environments that make algebraic struc-
tures accessible to children in primary schools. But, 
this is not enough. In the following, we give an exam-
ple to illustrate that the rich learning environment 
alone does not lead to thinking about equalities in a 
structural way. Afterwards, we will discuss the neces-
sity of argumentation-processes to motivate funda-
mental learning processes, i.e. to support the children 
on their way to an algebraic view on equalities. At 
least, we will give an example from our design study 
of how to initiate such collective argumentations. 

An example of a fourth grade class 
The example took place in a learning unit that was on 
the structure of “Rechendreiecke” (for an example see 
Figure 1), a substantial learning environment based 
on the well-known “arithmogons” (Wittmann, 2001): 
Every two numbers in the inner fields of the triangle 
are added, and the sum is noted in the appropriate 
field outside of the figure.

At the beginning of the unit the teacher gave the 
children some ordinary tasks in computing, i.e. the 

Figure 1
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numbers for the inner fields were given and the chil-
dren had to calculate the sums for the fields outside of 
the triangle. After some of these standard-exercises 
the children made the first discovery on the essen-
tial structures of the triangles: The sum of the outer 
numbers is twice the sum of the numbers in the inner 
fields, because every inner number appears in two 
outer fields. 

In the present lesson, the teacher´s goal was to discuss 
the most difficult tasks within this learning environ-
ment: She wanted the children to find the inner num-
bers for a triangle with given numbers in the outer 
fields. So, she wrote an example for this kind of task 
on the blackboard (Figure 2), and asked the whole class 
for first ideas about how to solve this problem. The 
teacher clearly expected that the children would use 
the discovery mentioned above to find out the inner 
numbers: Firstly, they could calculate the sum of the 
inner numbers (by halving the sum of the given outer 
numbers). Then, they could find a fitting partition of 
this sum for the inner numbers by trying a systematic 
way. 

Having in mind this problem-solving approach, the 
teacher asked Robert for his idea:

Robert I think that this is the same problem as 
we had with the number-walls, that 30 
plus 32 take away 42 divided by two, the 
result must be noted in the bottom field 
(while talking, the pupil arrives at the 
blackboard).

Children (make some noise to demonstrate their 
incomprehension)

Robert Then we will have the ten there (notes 10 
in the bottom field on the left) and twen-
ty there (notes 20 in the bottom field on 
the right, then notes 12 in the field on 
the top, Figure 3) 

Teacher Okay, now we have a ten here and a twen-
ty over there (points to the numbers in 
the figure on the blackboard). How can 
we go on? The idea of Robert is not bad!

Clarissa We could change the places of the twenty 
and the ten. Because, I think it would fit 
better. Then one would note twenty-two 
at the top and we had the result. (Clarissa 
modifies the numbers, Figure 4)

After this episode, the teacher and the pupils seemed 
to be satisfied, having found the fitting inner numbers. 
Neither the pupils nor the teacher not even Robert 
himself had the need to analyse whether it is coin-
cidence or not that Clarissa only had to change the 
places of Robert’s numbers in order to find the right 
solution of the triangle. Hence, even though the class 
found a solution for the special task, the underlying 
mathematical structure of the general problem re-
mained covered. In other words: The learning oppor-
tunity given by the idea of Robert did not unfold its 
structural potential, we name it a “missed substantial 
learning opportunity”.

Briefly, two questions remain, resulted from our ob-
servation of this episode:

1) Why is Robert’s idea so hard to under-
stand?

Figure 2

Figure 3

Figure 4
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2) Why is there obviously no need to ana-
lyse the proposal of Robert, and no need 
to question whether the idea may lead to 
a general way of problem solving?

Analysis: The mathematical core of 
the missed learning opportunity
Even if Robert´s proposal does not lead to the correct 
solution, the underlying idea is correct: Given the in-
ner numbers a, b, c, Robert firstly builds the sum of 
two outer numbers (i.e. a+b + b+c). Afterwards, he takes 
away the third outer number (a+c), the result is the 
double of one of the inner numbers (here 2b).

Although we do not want to shift the mathematics 
curriculum of the secondary level into the primary 
school, from our point of view, it should be possible to 
discuss arithmetical structures like the one above in a 
fourth grades class. For example, one could organise 
the learning process within a reflective exercise (s. 
Figure 5), forcing the children to calculate with the 
outer numbers in the way Robert does: “Build the sum 
of two outer numbers and take away the third one 

– what do you observe?” Having in mind that every 
outer number is built by the sum of two inner num-
bers, the children might be able to explain the result of 
their calculations, and then to use this new knowledge 
as an effective solving strategy for problems like the 
one above.

The main difficulty on the way to find an explanation 
like this is the necessary flexibility in interpreting 
the inner and outer numbers: Sometimes, they are 
computing numbers, sometimes they are the result of 
a computation and the problem-solver has to decide 
which number would be used to calculate and which 
one must be understood as a computing-result.

From our point of view, we should help the children 
to construct a flexible understanding of equations 
already in primary level. But, again, we do not want 

to shift the mathematics curriculum of the secondary 
level into the primary school. Hence, we propose to 
promote the development of a content-related, flex-
ible understanding of equality rather than teaching 
the children how to handle equations in an adequate 
form to prepare algebraic notations. According to 
Steinbring (2005), the children in primary school 
should work on a flexible concept of mathematical 
equality mainly by constructing several adequate 
reference contexts rather than learning how to use 
the standard mathematical signs within the solution 
of equations. 

THE PRESENT PROJECT

Within our project we started a variety of different 
teaching-learning experiments, like whole class in-
struction, group working and peer interviews. The 
experiments were planned on the basis of already 
existing substantial learning environments, main-
ly taken from the project “mathe 2000” (Wittmann, 
2001). Our goal is to strengthen the content-related 
concept of equality. Hence, the equal sign and its al-
gebraic correct and formal rules to use do not play 
the leading role within the learning environments. 
In some of them (like arithmogons, number walls, 
etc.; Wittmann, 2001), this special sign does not even 
appear in the tasks. But nevertheless, the learning 
environments focus on equality. For example, the chil-
dren have to find different number walls with equal 
numbers in the top stones. 

Our main research interest is to understand the mi-
cro-processes of teaching and learning mathematics 
rather than to measure the success of a learning en-
vironment. Hence, our analysis of the teaching-learn-
ing-experiments follows the interpretative paradigm, 
mainly using approaches of symbolic interactionism 
and ethnomethodology (Bauersfeld, Krummheuer, & 
Voigt, 1998; Voigt, 1994; Yackel & Cobb, 1996), episte-
mological theories (Steinbring, 2005) and theories of 
argumentation (Schwarzkopf, 2003). In the following 
sections we discuss some aspects of the first results 
of the study.

Theoretical embedding: Different 
types of learning processes
What does it mean to modify a restricted “task-result” 
interpretation of the equal-sign to a more sophisticat-
ed, flexible and structurally sustainable concept of 
equality? Following Steinbring (2005), the construc-

Figure 5
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tion of an adequate equality-concept moves between 
two epistemological poles: 

On the one hand, there is an empirical, situated de-
scription of mathematical knowledge like finding the 
result for a computing task in the sense of Clarissa´s 
offer for the solution of the problem above. This kind 
of knowledge is easy to handle in communication, one 
simply has to offer some empirical facts, and every-
body will know what they mean. But, in conclusion, 
the pupils can only learn new facts; the associated 
learning opportunities will not help them to construct 
a better structural understanding of the mathematical 
background.

On the other hand, the understanding of Robert’s idea 
for example, requires a relational generality of mathe-
matical knowledge. Learning opportunities that con-
centrate on this kind of knowledge have to offer the 
need for the children to create a new interpretation of 
the thematic mathematics. At the same time one has to 
consider that the pupils cannot create interpretations 
that are completely detached from their experienced 
points of view. 

These fundamental learning processes (cf. Miller, 1986, 
2002) can only be realised in situations of collective 
argumentations, i.e. the children must be confronted 
with a problem that makes it somehow impossible for 
them to go on by routine and they first have to solve 
that problem in an argumentative way (Miller, 1986; 
Schwarzkopf, 2003). But, according to Miller, argu-
mentation is a very stressful kind of interaction, and, 
normally, people try hard to solve their problems in 
a non-argumentative way. 

Even within mathematics classrooms, where argu-
mentation is one of the learning goals, there are many 
opportunities to avoid a content related argumenta-
tion – at least one can always ask the teacher as an 
expert in mathematics. Remember the example above: 
There is no need for an argumentation around the 
idea of Robert because Clarissa found an easier way 
to solve the problem by changing numbers, and pre-
senting directly the correct solution. In the sense of 
Steinbring (2005, p. 194–213), the offers of Clarissa 
and Robert stand for the two poles of communica-
tion between which the interactive constructions of 
knowledge move: Whereas Clarissa´s gives a simple 

“mediation of facts” (correct calculations), an adequate 
understanding of Robert´s idea needs a “construction 

of a new interpretation” that is obviously not accessi-
ble to the communication partners. 

Hence, collective argumentations do not emerge in 
mathematics lessons in a somehow natural way. On 
the contrary, the teacher has to initiate the concern-
ing processes in both, a careful and persistent way 
(Schwarzkopf, 2000). For this, it is important to think 
about social requirements and mathematical learning 
goals that are necessary to initiate substantial learn-
ing opportunities by cooperative argumentation.  

To enforce the emergence of substantial learning 
opportunities, we develop tasks that initiate math-
ematical needs for collective argumentation. Our 
intention is to confront the children with a “produc-
tive irritation” (Nührenbörger & Schwarzkopf, 2013), 
concerning their social experiences in classroom dis-
cussions. The tasks or problems, for example, provide 
phenomena that were not expected by the children so 
that they have to reflect on the given structures and 
see the need to re- interpret the experienced mathe-
matics behind the problem. 

This approach bases on Piaget´s (1985) work on cog-
nitive conflicts. Roughly speaking, Piaget points out 
that a child develops new ideas when it is confront-
ed with facts or beliefs that contradict their expecta-
tions, depending on their individual experiences. If 
the concerning cognitive schemas resist the child´s 
possibilities of assimilation, there is a need for the 
child to generate a cognitive consensus, i.e. a learn-
ing-process emerges. 

To initiate productive learning opportunities in this 
sense, one of the main difficulties is that an obser-
vation of a pattern or a surprising discovery is not 
enough to create the need of argumentation – we gave 
an example at the beginning of this paper. Moreover, it 
is necessary that the observation becomes an amazing 
phenomenon for the pupils. For example, the children 
discover a pattern in a series of tasks. Then, they are 
confronted with another task that does not exactly fit 
to the previously solved series and they are asked to 
make a prognosis: Will the result of the next task fit to 
the pattern or not? By this we try to force the children 
to create an expectation on the result of the next task. 
The initiation of a “productive irritation” is successful, 
when this expectation fails while computing the next 
result – by this, there is an interactive need to find 
explanations for the failure of the prognosis. In this 
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sense, a productive irritation can widen the implicit 
working, often sense-restricting   “sociomathematical 
norms” (Yackel & Cobb, 1996) that influence the inter-
pretation of arithmetical terms in routinized (cf. Voigt 
1994) classroom discussions.

Initiating productive irritations: 
Arguing for amazing equalities 
In the following part we give an example for a short 
learning unit with the goal to initiate an argumen-
tation, initiated by a productive irritation within a 
primary class (3rd or 4th class). The content comes from 
the well-known substantial learning environment 

“number-walls” (see Figure 6), where you have to note 
the sum of the numbers in every stone from the two 
stones under it. Typically, children discover different 
types of terms to describe the top stone of the wall (e.g. 
as a result of a calculation or as a relation between the 
bottom stones: a+b + b+c = a+2b+c).

In the first part of the present learning unit, the chil-
dren calculate a series of number-walls and discover 
a pattern, that is very familiar to them: Increasing 
the number in the right bottom-stone and decreas-
ing the number in the left bottom-stone by the same 
difference will leave the number at the top of the wall 
constant (keeping the same number in the middle of 
the bottom, of course) in this example 650 (Figure 7). 

The children can calculate the number of the top as 
well as they can argue with the relations between 
the stones of a number wall. To point out the equali-
ties between the number walls the children can use 
so called “term walls” (see Figure 8), noting calcu-
lations instead of their results in the stones. These 
term-walls might build bridges for the children to 
change their interpretations of the numbers as results 
(e.g. 650 = 460 + 190 and 650 = 450 + 200) and to see 
them as computing numbers (650 = 380 + 2 × 80 + 110 = 

= 370 × 2x80 + 120). 

However, having calculated some of these tasks, the 
children are confronted with another number-wall 
that does not exactly fit to the previously discovered 
pattern (e.g., the one in Figure 9), and they are asked 
about their expectations on the result: Will the num-
ber at the top of the wall change or not? Figure 6

Figure 7

Figure 8a

Figure 8b
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The following episode takes place in an interview-sit-
uation, where a teacher-student works together with 
two children on the above given number walls. The 
children have already discovered that the top num-
bers of the number-walls in Figure 7 are all the same, 
namely 650. This pattern seemed to be clear for the 
children, having in mind that from wall to wall one 
of the bottom numbers increases and one of the oth-
ers decreases by the same difference. Afterwards, 
the teacher showed the children some number walls 
like the one in Figure 9, asking for a prognosis about 
the number of the top-stone. As expected, both of the 
children gave the prognosis that the top stone must 
change, because two of the bottom-numbers increase 
by fifteen and only one of them decreases by fifteen. 

Teacher Do you think that in this top stone (point-
ing to the right number-wall in Figure 9) 
there will be the 650 again? 

Moritz no.
Luisa no.
Teacher Why do you say no?
Moritz Well, here are fifteen more than there 

(points to 380 and 365), and here are fif-
teen more than there (points to 110 and 
95 in the right bottom stone), but here 
are fifteen more than there (points to 95 
in the middle bottom stone and 80), and 
fifteen plus fifteen are together thirty 
and not fifteen (.), exactly.

Moritz reasons by comparing the changes of the two 
increasing bottom numbers with the decreasing num-
ber. In this way, he activates his experiences with the 
constancy-law of additions that was successfully used 
in the first part of the unit. The teacher moderates 
the interaction, so that also Luisa has to reason for 
her prognosis:

Teacher Luisa, do you have the same opinion?
Luisa Yes, the result here above is the same.
Teacher How do you mean it?

Luisa Well, if you add the bottom stones 
(points to 365, 80, 110) then they must 
have the same result as there (points to 
380, 95, 95) for getting the same result 
on the top, and this is another sum. 

Luisa points out a hypothesis for a general rule: Two 
number walls with the same numbers in the top stones 
must be equal in the sum of the bottom numbers. 

Even if the two given arguments are different in detail, 
from an epistemological point of view, both of them 
can be characterised as an empirical, situated descrip-
tion of knowing (Steinbring, 2005; Schwarzkopf, 2003): 
The comparisons of the (unknown) top numbers are 
based on empirical observations of the given exam-
ples without leading to a structural deeper under-
standing of the mathematical structures.

After the children have verified their hypothesis and 
found out that their observation offended against 
their expectation, they rethink the arithmetical struc-
tures between the stones of the number walls and find 
new arguments: 

Luisa Mmm, they are the same because this 
(points to the left and right bottom stone, 
Figure 10) is coming to the other stones, 
and this (points two times to the middle 
bottom stone) meets twice. So we have 
to calculate them together. 

Moritz Mmm, because in the middle we have 
460 is equal 365 plus 95 (.) that is 460 (.), 
and because there are not four bottom 
stones you have to calculate once again 
95 plus 95 is equal 190 (.). You have to 
take once again the 95.

Teacher Ok, and why do we get in both number 
walls the same number 650 in the top?

Moritz Because you need the 95 for both sides. 
However, for example, here you have to 

Figure 9

Figure 10
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take 15 more and here exactly the same 
(points to both number walls).

In their arguments, both children become aware of the 
special function of the number in the middle bottom 
stone. On the first view, Luisa argues in a somehow dy-
namic, still empirical way – as if the numbers would 
crawl through the stones to the top. But regarding 
her offer in detail, the argument already shows qual-
ities of a more theoretical approach: The middle stone 

“meets twice”, although the number exists only once. 
This discovery builds the bridge from the empiri-
cal view to the structural understanding of number 
walls: The meaning of the numbers result of their po-
sition in the wall. Moritz modulates this approach 
(Krummheuer, 1992) of Luisa to a more static view, 
and by this he strengthens the theoretical character of 
the argumentation: The number in the middle bottom 
stone is not a concrete, single object, but it is part of 
two calculations. His remark “there are not four bot-
tom stones” builds the bridge between the empirical 
understanding of the numbers as objects (that crawl 
through the wall) and the numbers as part of calcu-
lations that depend only on their position in the wall: 
An empirical version of the number wall would have 
four bottom stones (see Figure 11), providing every 
number as often as it will be needed in the wall.

Finally, Moritz is able to interpret the new view on 
the number walls on his hypothesis of the beginning 
of the episode: Changing the numbers in the bottom 
stones means changing the operators in the calcula-
tion terms.

The main aspect within this argumentation seems to 
be that the numbers of the task have changed their 
computational functions: Previously, the pupils in-
terpreted the number wall in the sense of a task-re-
sult-view on equations: At the bottom there are three 
numbers, and at the top there is one result. Within 
the argumentation for the unexpected equality, they 
changed this view to a more flexible, theoretical one 
(Figure 12): No longer the numbers, but the comput-

ing-terms are the main objects of the number-wall 
(Steinweg, 2013). In this sense, the children have to 
construct this as a common object a new term con-
cerning twice the decrease of 15 and the increase of 15: 
(380 + 80) + (80 + 110) = (380 − 15 + 80 + 15) + (80 + 15 + 110 − 15) = 

= (365 + 95) + (95 + 95).

In conclusion, the pupils construct a new interpreta-
tion of the arithmetical relations which is related to 
their old knowledge. According to Steinbring (2005), 
the children construct a relational generality of math-
ematical knowledge. 

FINAL REMARKS

By initiating substantial learning opportunities we 
try to promote the development of a flexible and struc-
tural sustainable concept of mathematical equality. 
In our work we mean by “understanding equalities 
in primary classes” that the children operate with 
the structures of computing-terms rather than only 
focussing on pure numbers as if they were concrete 
objects. To understand equality between two terms 
means to find one theoretical interpretation that fits 
for two different looking terms (Winter, 1982). In this 
paper, we discussed a somehow reflective approach to 
the promotion of accompanying activities, concern-
ing the initiation of collective argumentation through 
productive irritations. 
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