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Sixth grade students’ explanations 
and justifications of distributivity

Kerstin Larsson

Stockholm University, Stockholm, Sweden, kerstin.larsson@mnd.su.se

Equal groups and rectangular arrays are examples of 
multiplicative situations that have different qualities 
related to students’ understanding of the distributive 
and the commutative properties. These properties are, 
inter alia, important for flexible mental calculations. 
In order to design effective instruction we need to inves-
tigate how students construct understanding of these 
properties. In this study sixth grade students were invit-
ed to reason with a peer about calculation strategies for 
multiplication with the goal of explaining and justifying 
distributivity. Their discussions demonstrate that the 
representation of multiplication as equal groups helps 
them to explain and justify distributivity. At the same 
time this representation hinders their efficient use of 
commutativity.

Keywords: Multiplicative reasoning, distributivity, 

commutativity, equal groups.

INTRODUCTION

Three fundamental properties of arithmetic, the dis-
tributive, the commutative and the associative prop-
erty all apply to multiplication. These properties un-
derpin flexible mental calculations and later algebraic 
understanding (Carpenter, Levi, Franke, & Koehler, 
2005; Ding & Li, 2010; Lampert, 1986; Young-Loveridge, 
2005). Although the significance of these properties 
is well known, researchers have only recently “begun 
to discuss ways to teach these ideas in the elementary 
grades” (Ding & Li, 2010, p. 147). To design effective 
teaching of the arithmetical properties more knowl-
edge about students’ understanding of the properties 
is needed. This study’s aim is to investigate how stu-
dents make sense of the arithmetical properties in 
multiplicative calculations. The distributive property 
(DP) is the main focus, but the commutative property 
(CP) for multiplication is also investigated since stu-
dents need to manage the CP when they undertake 

calculations involving the DP. The associative prop-
erty is not discussed here, which is not a reflection 
on its importance but this paper’s focus. In the next 
section some general concepts central to this study are 
presented followed by a review of findings concerning 
students’ understanding of the DP and the CP before, 
finally, the aims for this study are clarified.

BACKGROUND

The DP, which states that a·(b+c)=(a·b)+(a·c), under-
pins mental multiplication by splitting one factor to 
make two multiplications which are then summed. For 
example one might solve 7·14 as 7·(10+4) = (7·10)+(7·4) 

= 70+28. Students can develop this mental strategy 
when they view multiplication as repeated addition 
and focus on the invariance of the total (Schifter, 
Monk, Russel, & Bastable, 2008). When this implicit 
use of the DP is transferred to problems where both 
factors are multi-digit numbers, a common error is 
to solve multiplications such as 26·19 by only multi-
plying the first terms and the second terms with each 
other; (20+6)·(10+9) = 20·10 + 6·9 (Lo, Grant, & Flowers, 
2008). Ding and Li (2014) suggest that the difficulties 
students have learning arithmetical properties, lead-
ing to calls for more concretisation, stem from their 
abstractness and “lack [of ] close relevance to learners’ 
lives” (p. 103). Concretisation by contextual and visual 
representations, in order to build a mental image of 
the operation and its properties, is argued to help 
students to structure and “organize their thinking 
and reasoning” (Yackel, 2001, p. 27). Both contextu-
al and visual representations can reflect different 
multiplicative situations such as equal groups and 
rectangular arrays. A simple equal group situation 
is 4 bags of 8 apples in each bag, while a simple rec-
tangular array can be a chocolate bar with 4 rows of 
8 squares. In asymmetrical situations, such as equal 
groups, one factor is the multiplier (number of bags) 
and the other the multiplicand (number of apples). In 
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symmetrical situations, such as rectangular arrays, 
the two factors have the same role.

A contextual representation suitable for illustrating 
the DP is the total cost for 4 cups of coffee and 4 cakes, 
where the answer would be the same whether you 
first multiply the cost for one coffee by 4, then the 
cost for one cake by 4and then add the products or if 
you first add the cost for one coffee and one cake and 
then multiply that sum by 4. A visual representation 
for equal groups can be used for discussing the ways 
the total number of objects could be calculated, by 
means of the DP (Lampert, 1986). A rectangular array 
of dots or squares can also illustrate how 7 rows, each 
with 14 objects, can be partitioned flexibly by use of 
the DP into for example 2·14 + 5·14 rectangles (Young-
Loveridge, 2005).

The CP, a·b = b·a, allows numbers to change places in 
multiplication and addition. Young students seem to 
discover and understand the CP for addition without 
instruction but not for multiplication (Squire, Davies, 
& Bryant, 2004). The rectangular array model is well 
suited to concretise the CP, as its rotational quality 
makes it perceptually self-explanatory, for example 
a box of 18 eggs in 3 rows of 6, which, when rotated 
90° is simply perceived as 6 rows of 3 eggs. With an 
equal groups situation, it is not perceptually trans-
parent that 7 bags of 14 coins is equivalent to 14 bags 
of 7 (Lo et al., 2008). Carpenter and colleagues (2003), 
however, found young students justifying an equal 
groups approach to the CP by rearranging the objects 
in the group, as exemplified by a students who said: “I 
would always get new groups that are the same size as 
the number of groups I started with and the number 
of new groups I would get would be the same as the 
number I had in each of the old groups” (p. 95). Some 
researchers argue that rectangular arrays should be 
introduced to enrich students’ images for multiplica-
tion and to illustrate the DP (Carpenter et al., 2003; 
Young-Loveridge, 2005). Indeed, the illustration of 
integer multiplication as a rectangular array can ex-
plain standard algorithms and illustrate the extension 
of multiplication to rational numbers.

Squire and colleagues (2004) investigated 9–10 year 
old students’ ability to use the DP and the CP in varied 
contextual situations. They gave a multiple-choice test 
whereby a multiplicative situation was given as a cue, 
and the problem was to solve a word problem of the 
same situation by means of either the DP or the CP. The 

DP problems presented the total number of objects in 
a groups of b objects (an equal groups problem) and 
asked for the total number of objects in a+1 groups 
of b objects. For example the students were given a 
multiplicative word problem incorporating the asser-
tion 26·21 = 546 and invited to solve a similar problem 
involving 27·21. The CP problems were constructed 
analogously; if the cue stated the total number of ob-
jects in a groups of b objects the task objective was to 
find total amount of objects in b groups of a objects. 
They concluded that 9–10 years old English students 
could manage the CP in all situations but not the DP. 
DP problem reflecting equal groups were more often 
solved correctly than any other situations, leading 
Squire and colleagues to suggest that the representa-
tion of equal groups might be a natural way for young 
students to imagine what happens when the multipli-
er is changed by one. They conclude that equal groups 
should be employed when introducing students to 
the DP. This is in line with Lampert’s (1986) findings 
that fourth grade students (about 10 years old) made 
sense of the DP by means of stories in combination 
with drawings illustrating equal groups. She argues 
that equal groups is more intuitive for young students 
than array models as that is how they model multipli-
cation. This is also confirmed by literature in the field 
of early algebra (Schifter et al., 2008).

In short, we know that younger students (9–10 years 
old) do not invoke the DP as easily as the CP; that equal 
groups are more intuitive for the understanding of 
the DP than rectangular arrays, even though rectan-
gular array is proposed to enrich students’ under-
standing of the DP. But for middle grade students 
(12–13 years old) there is a lack of research of how 
they understand the DP and what representations 
they employ when reasoning about multiplication. 
Given the importance of arithmetical properties for 
the understanding of algebra as well as flexibility in 
calculation, it is appropriate to pose the question: how 
do sixth grade students understand distributivity?

METHOD 

Students from two sixth grade classes already en-
rolled in a research project were invited to take part in 
this study. The 19 students who agreed to participate 
do not form a random or representative sample but a 
typical mix of Swedish students; some have diagnoses 
concerning concentration or dyslexia, some struggle 
with mathematics while others excel. In order to en-
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hance the possibility of a rich discussion, students 
were placed in homogeneous pairs (one worked alone) 
based on the evidence of earlier tests and interviews 
concerning the forms of multiplicative reasoning 
they had previously shown. They were presented 
with three problems written on separate cards, see 
Figure 1, each comprising a strategy from a fictitious 
student for the calculation of 26·19. The students’ 
tasks were to discuss each problem with their peer 
and a) evaluate the validity of the suggested strategy 
and b) reason why the suggested strategy was valid 
or not. They were not informed that the suggested 
strategies were incorrect. A separate card with the 
multiplication problem (26·19) was visible throughout 
the discussions.

Problem1, (P1), reflects an incomplete use of the DP, 
where one factor is partitioned and multiplied by the 
other factor but the last part of the partitioned factor 
is added to the product without any multiplication.

Problem 2, (P2), is analogous to a common method 
for addition, where a suitable part is moved from one 
term to the other, in order to make an easier calcula-
tion.

Problem 3, (P3), reflects a well known error (Lo et al., 
2008). However, all three strategies derived from (in-
correct) strategies exploited by this group of students 
the previous year when they were tested on multipli-
cation of two-digit numbers.

Each of the three problems is an example of how 
students have partitioned the numbers in order to 
simplify calculation. When using the DP correctly 
partitioning is the starting point, but to demonstrate 
understanding of the DP involves explaining what to 
do with the parts as well as why. By inviting students to 
evaluate and explain an incorrect use of the DP it was 

possible to draw conclusions from their reasoning 
about how they understand the DP.

The students’ discussions, which took place in a room 
adjacent to their normal classroom, were video and 
audio recorded and all written material collected. The 
tasks were explained to the students, who were explic-
itly told that they did not need to do any calculations 
themselves. Each card was read aloud and left on the 
table. The discussions for all three problems lasted 
between 10 and 25 minutes including the oral infor-
mation about the tasks. The transcribed student dis-
cussions were repeatedly read and their answers cat-
egorised according to the arguments they employed 
to explain their decisions about the validity of the 
strategy. Some students used multiple arguments for 
each problem and some arguments were used in all 
problems while other arguments were used for one 
or two of the problems.

RESULTS

In this section the categories of arguments that 
emerged from the data are presented and exemplified 
by excerpts from the students’ discussions. These are 
followed by a discussion about the different types of 
reasoning in respect to the DP.

General justification reflects the arguments of four 
students who not only solved P2 by justifying why the 
suggested strategy was invalid but also investigated 
the strategy further in order to find out under what 
conditions it would work and when the answer would 
be bigger or smaller. Their arguments clearly reflect 
a discussion about multiplication and its properties.

Emil If you increase the smaller number and 
decrease the larger number, then it al-
ways gets bigger.

Figure 1: Problem 1 (P1), Problem 2 (P2) and Problem 3 (P3)
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Marcus: It might not work with zero point, but 
with ordinary numbers, whole numbers, 
then it always…

Here, Emil concluded that the product gets bigger if 
you move one from the larger factor to the other, and 
Marcus’ statement reflected a discussion-derived ar-
gument concerning which numbers Emil’s claim is 
valid for. In this case, “zero point” refers to decimal 
numbers.

Equal groups is a category where students made con-
textual references and represented 26·19 as 26 sets of 
19 objects or 19 sets of 26. This argument was used in 
all three problems and reflected an awareness of why 
the DP is valid in multiplication.

Lucas If you take away one pile, then you take 
away nineteen. And that should be put 
in twenty-five piles. That doesn’t work.

Here Lucas showed why the strategy was invalid, that 
one in the number 26 represents a group of 19, which 
is construed as understanding the DP.

Counterexample was used to evaluate the calculation 
strategy by use of numerical examples. Hence, it re-
flected multiplicative reasoning by implicit use of the 
DP. Students gave examples of moves of one from one 
factor to the other would not yield the same product, 
as exemplified by Ida.

Ida It is not the same, if it is eight times nine 
or seven times ten.

Here, Ida showed an awareness that if she used the 
same strategy as suggested by the fictitious student 
in P2, the calculation would yield an incorrect result, 
since it transformed the problem. She transferred the 
strategy into easier numbers to make arguments of 
why the strategy did not work. There were also stu-
dents who gave counterexamples to the suggested 
strategy in P1, which reflected knowledge of the DP, 
stating that 6 needs to be multiplied by 19 and then 
the two partial products can be added.

Check the answer was used to assess the result rather 
than the strategy, and drew on a calculation of the 
answers for both the suggested strategy and for 26·19; 
if the answers were not the same the strategy must be 
invalid. This reflected a result-oriented view on multi-

plication without argumentation as to why the results 
differ; hence, such an argument does not demonstrate 
understanding of the DP. It was used for P2 and P3 and 
is exemplified by Hanna.

Hanna I will calculate that [25·20] and then this 
[26·19] and see if it is the same.

Experience was when students knew that the strate-
gy was invalid or “knew” that it was valid from their 
experience of calculations. This argument offered no 
evidence of understanding of the DP since there was 
no reasoning as to why the strategy does not work. 
Alice used it to justify the falseness of P3 and Wilma 
its truth.

Alice That does not work. […] I thought it 
worked before, but it doesn’t.

Wilma It works. That is how I calculate.

Additive reasoning reflects the students’ incorrect 
additive reasoning when calculating. This type of 
reasoning occurred in relation to all three problems.

Matilda If you first take twenty-six, and split it, 
that’s the same. You can take nineteen 
and then take [one] to first make a twen-
ty, that is, you can take one from the six 
to the nineteen, so it becomes twenty 
times twenty, and then just add five. 
Then you will get the same answer, just 
that you split it in different [parts].

Here, Matilda described an additive way of handling 
big numbers to partition the numbers into parts that 
are easier to handle. She suggested that 26 is split into 
20 and 6, and then add 1 from the six (splitting 6 into 
5 and 1) to make 20, take 20·20. Then finally add 5, 
((19+1)·(26-1-5)+5).

The category other consists of vague and unclear argu-
ments as well as no answer. Felicia gives an example of 
a vague argument and Alva of unclear reasoning to P1.

Felicia Then the six isn’t timesed [multiplied].

Alva It is hard to explain, but it is just wrong.

Some of the students who reasoned like Felicia meant 
to take 20·19 + 6·19, others meant 20·19·6, while others 
never explained further how the six should be mul-
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tiplied. Alva’s statement is an example from which it 
is impossible to draw any conclusions about the stu-
dent’s understanding of the DP, which is this study’s 
aim.

When the categories of arguments were analysed 
further, and in relation to the DP, different types of 
reasoning were found. Four students investigated 
the suggested strategy in P2 on a meta-level; for exam-
ple, under what premises their arguments were valid, 
which can be described as an investigative reasoning 
on a meta-level about multiplication. These students 
not only considered the structure of multiplication 
but also the generality of their claims. The arguments, 
which drew on ‘equal groups’ and ‘counterexamples’, 
were construed as multiplicative reasoning by the DP 
since arguments in both these categories reflected an 
implicit understanding of the DP as a theorem-in-ac-
tion (Vergnaud, 2009). The difference between the two 
categories of argument was that in ‘equal groups’ all 
arguments were validated by contextual examples, 
e.g., Lucas’ piles (see above), while the ‘counterexam-
ples’ were validated by numerical examples without 
references to objects in groups. In contrast to the 
category ‘check the answer’, ‘counterexample’ was 
focussed on explaining why the strategy was invalid 
while ‘check the answer’ was focussed on calculating 
answers, and hence labelled as procedural reasoning. 
To use ‘experience’ reflects a descriptive reasoning by 
stating that the suggested strategy was invalid, but not 
why. The descriptions were focussed on the calcula-
tions as a procedure to get the right answer, implying 
that the student did not understand the DP. Finally, 
there were students who gave arguments not showing 
multiplicative reasoning, some by ‘additive reasoning’ 
and some categorised as “other”. Vague arguments 
and unclear statements are not necessarily indicative 
of their not being able to use multiplicative reasoning; 
they might have had problems verbalising their un-
derstanding. All arguments are presented in Table 1. 

Since many students gave multiple arguments for 
the same problem, the sum of arguments for P2 and 
P3 exceed the number of participating students. The 
category “other” is only presented when students did 
not provide any other argument, hence reflecting the 
number of students unable to give any clear argument 
to each problem.

The distribution of arguments for each problem 
varies. For P1 six students employed multiplicative 
reasoning when they explained why the suggested 
strategy was invalid and thirteen used arguments 
showing no multiplicative reasoning. For P2 the dis-
tribution of arguments spread over all categories 
except ‘experience’, and the 19 students used 33 ar-
guments, demonstrating students’ use of multiple 
arguments. This problem also engaged students in 
general justifications, which did not occur for the oth-
er problems. For P3 six students drew on ‘experience’, 
three correct and three incorrect, in the evaluation 
of the erroneous strategy. The incorrect evaluations 
drawing on experience are the only arguments, be-
sides additive reasoning, which led students to make 
incorrect conclusions about the validity of strategies.

In the rich discussions where students reasoned 
about P2 it was possible to infer understanding of 
both the DP and the CP. The following utterance from 
Emil shows his distinguishing the multiplier from 
the multiplicand. The transcript also demonstrates 
that he was aware of the CP when speaking about cal-
culating “the other way around”, a common way for 
Swedish students to talk about the CP.

Emil But if you take less there [pointing at 19] 
then it has to be fewer times multiplied. 
Or it depends if you do it the other way 
around, so if I calculate 19·26, then it is 
anyway twenty-six times multiplied…

Type of reasoning Category of arguments P1 P2 P3
Investigative reasoning on meta-level General justification 0 4 0

Multiplicative reasoning by the DP
Equal groups 2 6 7

Counterexample 4 8 0

Procedural reasoning Check the answer 0 9 8

Descriptive reasoning Experience 0 0 3+3

Not showing multiplicative reasoning
Additive reasoning 1 4 4

Other/no answer 12 2 3

Table 1: Number of students using different arguments for each problem
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When students reasoned about equal groups they 
distinguished the multiplier from the multiplicand. 
Some of them interpreted 26·19 with 19 as the multi-
plier, others interpreted 26 as the multiplier. In some 
pairs this different interpretation of a fixed factor as 
the multiplier caused some confusion. However, all 
students were aware of the CP being valid for multipli-
cation and overcame confusion by stating, that it did 
not matter which factor was multiplier, as exemplified 
by Johanna and Ida.

Johanna Ida, it is ten times nineteen. Not ten 
times twenty-six.

Ida What? You did it like this before, and 
then I thought twenty-six times … but 
it doesn’t matter what way around you 
do it.

During the discussions about all three problems some 
students offered other suggestions as to how to cal-
culate 26·19. These suggestions clarified how they un-
derstand the DP, as with Hugo’s statement where he 
gives a suggestion how to proceed with the strategy 
in P2 to get a correct answer.

Hugo She has multiplied twenty times, and 
then she must take away what stands 
for one time, that is twenty-five. She 
has to take away twenty-five. […] Then 
she gets that one times nineteen, so 
she has plus nineteen.

Here, Hugo demonstrates his understanding of the 
DP as he proposes compensating for the erroneous 
strategy of taking 25·20 instead of 26·19 by subtracting 
25 and adding 19 to the product of 25·20; 26·19 = (26 - 
1)·(19+1) - (1·25) + (1·19).

In summary, by engaging in the evaluation of incor-
rect strategies for two-digit multiplication, students 
with an implicit understanding of the DP demonstrat-
ed their understanding, mainly by reasoning about 
multiplication as equal groups. In equal groups the 
multiplier is distinguished from the multiplicand 
and this representation helped students to offer valid 
justifications about the incorrect strategies and to 
suggest other valid strategies employing the DP, but 
it also contributed to miscommunication connected 
to the CP. The arguments to explain and justify strat-
egies demonstrated different types of reasoning in-

volving both the DP and the CP as building blocks for 
understanding of multiplication. Students showing 
additive reasoning did not show knowledge about the 
arithmetical properties.

DISCUSSION AND CONCLUSIONS

The different arguments that students gave for the 
invalidity of the three strategies reflected different de-
grees of understanding the DP. When students cannot 
explain why or how a multiplication strategy works or 
not works it might be due to difficulties in expressing 
what they mean. It might also reflect shallow under-
standing of multiplication or explanatory difficulties 
due to perceptions of self-evidence. From my read-
ings of students’ explanations to P1, I infer that it was 
too easy for the majority of students to explain why 
you need to multiply the six as well. Still, one student, 
Matilda, who showed additive reasoning to all three 
problems, was convinced that P1 was a valid strategy, 
which she had trouble reconciling with the fact that 
the answer was wrong.

Matilda It should work, but it doesn’t. It might 
work if you take 20·19 and then mul-
tiply by 6. (After checking the calcu-
lation.)

Even though students like Matilda can be exposed as 
additive reasoners, P1 was not very productive since 
most students’ answers and arguments were vague. 
This is in contrast to the other two problems, espe-
cially P2. The suggested strategy in P2, to move one 
from one factor to the other, caused long and elabo-
rate discussions among most of the pairs. One reason 
might be that this strategy was new to most students. 
The novelty, and the analogous strategy for addition, 
might have evoked students’ curiosity to investigate 
and engage in discussion about the strategy on a more 
general level than the other problems. In contrast to 
novelty, six students drew on experience to P3, the 
common mistake to only multiply tens by tens and 
ones by ones (Lo et al., 2008). Experience might have 
decreased the interest to engage in discussions about 
the strategy; students just knew that it “worked” or 
did not work.

Students who represented multiplication as equal 
groups in order to make sense of the DP and calcu-
lation strategies were successful, see for example 
Lucas’ explanation why the suggested strategy in P2 
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did not work. The representation of equal groups as 
piles of objects served as a thinking tool to sort out 
the multiplication. To use the representation of equal 
groups as a thinking tool was demonstrated both for 
invalid strategies in the problems and for valid strate-
gies employing the DP that the students offered as an 
alternative calculation. These Swedish middle school 
students seemed to prefer thinking about multiplica-
tion as equal groups just as the younger students from 
other studies (Lampert, 1986; Squire et al., 2004) and 
prospective teachers (Lo et al., 2008). However, the 
successful representation of multiplication as equal 
groups in respect to the DP proved to have a draw-
back concerning the CP. Even though students knew 
the validity of the CP for multiplication, there were 
instances where their view of one of the factors as 
the multiplier hindered their understanding of their 
peer’s reasoning. This may be due to the fact that they 
represented the expression 26·19 differently, either 
as 26 groups of 19 or as 19 groups of 26. The students’ 
explicit statements about the CP being valid can be 
construed as if the students did not take the CP as 
something self-evident when they were engaged in 
discussions drawing on equal groups. Interestingly, 
there were no utterances at all where students drew 
on rectangular array to make sense of calculation 
strategies or the CP.

The results of this study suggest that if we want stu-
dents to learn and understand the DP we might bet-
ter introduce the DP by equal groups and discuss the 
limits of its validity as well as how it can be used. On 
the other hand, the rectangular array, also an impor-
tant representation of multiplication, highlights the 
CP by making it self-evident that a·b = b·a (Carpenter 
et al., 2003) and can also be used to illustrate the DP 
(Carpenter et al., 2003; Young-Loveridge, 2005). If the 
underlying reason for illustrating the abstract prop-
erties of multiplication by contextual and visual rep-
resentations is to build mental representations that 
can enhance understanding of the concepts (Yackel, 
2001), it would be of interest to introduce multiple rep-
resentations of multiplication. The findings from this 
study also suggest that more effort might be needed 
to incorporate representation of multiplication by 
rectangular arrays (and areas) in the instruction as 
complimentary representation to the equal groups, 
not as a substitute. Further research might give sug-
gestions to how instruction can enhance the possi-
bilities for students to build solid and useful mental 
representations of multiplication and its properties.
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