
HAL Id: hal-01281794
https://hal.science/hal-01281794v3

Preprint submitted on 18 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Collaborative Filtering with Autoencoders
Florian Strub, Jérémie Mary, Romaric Gaudel

To cite this version:
Florian Strub, Jérémie Mary, Romaric Gaudel. Hybrid Collaborative Filtering with Autoencoders.
2016. �hal-01281794v3�

https://hal.science/hal-01281794v3
https://hal.archives-ouvertes.fr

Hybrid Collaborative Filtering with Autoencoders

Florian Strub
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

Email: florian.strub@inria.fr

Jérémie Mary
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

Email: jeremie.mary@inria.fr

Romaric Gaudel
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

Email: romaric.gaudel@inria.fr

Abstract—Collaborative Filtering aims at exploiting the feed-
back of users to provide personalised recommendations. Such
algorithms look for latent variables in a large sparse matrix of
ratings. They can be enhanced by adding side information
to tackle the well-known cold start problem. While Neu-
ral Networks have tremendous success in image and speech
recognition, they have received less attention in Collaborative
Filtering. This is all the more surprising that Neural Networks
are able to discover latent variables in large and heterogeneous
datasets. In this paper, we introduce a Collaborative Filtering
Neural network architecture aka CFN which computes a non-
linear Matrix Factorization from sparse rating inputs and side
information. We show experimentally on the MovieLens and
Douban dataset that CFN outperforms the state of the art and
benefits from side information. We provide an implementation
of the algorithm as a reusable plugin for Torch, a popular
Neural Network framework.

1. Introduction

Recommendation systems advise users on which items
(movies, musics, books etc.) they are more likely to be inter-
ested in. A good recommendation system may dramatically
increase the amount of sales of a firm or retain customers.
For instance, 80% of movies watched on Netflix come from
the recommender system of the company [1]. One efficient
way to design such algorithm is to predict how a user
would rate a given item. Two key methods co-exist to tackle
this issue: Content-Based Filtering (CBF) and Collaborative
Filtering (CF).

CBF uses the user/item knowledge to estimate a new
rating. For instance, user information can be the age, gender,
or graph of friends etc. Item information can be the movie
genre, a short description, or the tags. On the other side, CF
uses the ratings history of users and items. The feedback of
one user on some items is combined with the feedback of all
other users on all items to predict a new rating. For instance,
if someone rated a few books, Collaborative Filtering aims
at estimating the ratings he would have given to thousands
of other books by using the ratings of all the other readers.
CF is often preferred to CBF because it wins the agnostic
vs. studied contest: CF only relies on the ratings of the users

while CBF requires advanced engineering on items to well
perform [2].

The most successful approach in CF is to retrieve
potential latent factors from the sparse matrix of ratings.
Book latent factors are likely to encapsulate the book genre
(spy novel, fantasy, etc.) or some writing styles. Common
latent factor techniques compute a low-rank rating matrix
by applying Singular Value Decomposition through gradient
descent [3] or Regularized Alternating Least Square algo-
rithm [4]. However, these methods are linear and cannot
catch subtle factors. Newer algorithms were explored to face
those constraints such as Factorization Machines [5]. More
recent works combine several low-rank matrices such as
Local Low Rank Matrix Approximation [6] or WEMAREC
[7] to enhance the recommendation.

Another limitation of CF is known as the cold start
problem: how to recommend an item to a user when no
rating exists for neither the user nor the item? To overcome
this issue, one idea is to build a hybrid model mixing CF and
CBF where side information is integrated into the training
process. The goal is to supplant the lack of ratings through
side information. A successful approach [8], [9] extends the
Bayesian Probabilistic Matrix Factorization Framework [10]
to integrate side information. However, recent algorithms
outperform them in the general case [11].

In this paper we introduce a CF approach based on
Stacked Denoising Autoencoders [12] which tackles both
challenges: learning a non-linear representation of users and
items, and alleviating the cold start problem by integrating
side information. Compared to previous attempts in that di-
rection [13], [14], [15], [16], [17], our framework integrates
the sparse matrix of ratings and side information in a unique
Network. This joint model leads to a scalable and robust
approach which beats state-of-the-art results in CF. Reusable
source code is provided in Torch to reproduce the results.
Last but not least, we show that CF approaches based on
Matrix Factorization have a strong link with our approach.

The paper is organized as follows. First, Sec. 2 summa-
rizes the state-of-the-art in CF and Neural Networks. Then,
our model is described in Sec. 3 and 4 and its relation with
Matrix Factorization is characterized in Sec. 3.2. Finally,
experimental results are given and discussed in Sec. 5 and
Sec. 6 discusses algorithmic aspects.

2. Preliminaries

2.1. Denoising Autoencoders

The proposed approach builds upon Autoencoders which
are feed-forward Neural Networks popularized by Kramer
[18]. They are unsupervised Networks where the output of
the Network aims at reconstructing the initial input. The
Network is constrained to use narrow hidden layers, forcing
a dimensionality reduction on the data. The Network is
trained by back-propagating the squared error loss on the
reconstruction. Such Networks are divided into two parts:

• the encoder : f(x) = σ(W1x + b1),
• the decoder : g(y) = σ(W2y + b2),

with x ∈ RN the input, y ∈ Rk the output, k the size of
the Autoencoder’s bottleneck (k � N), W1 ∈ Rk×N and
W2 ∈ RN×k the weight matrices, b1 ∈ Rk and b2 ∈ RN
the bias vectors, and σ(.) a non-linear transfer function. The
full Autoencoder will be denoted nn(x)

def
= g(f(x)).

Recent work in Deep Learning advocates to stack pre-
trained encoders to initialize Deep Neural Networks [19].
This process enables the lowest layers of the Network to find
low-dimensional representations. It experimentally increases
the quality of the whole Network. Yet, classic Autoencoders
may degenerate into identity Networks and they fail to learn
the latent relationship between data. [12] tackle this issue
by corrupting inputs, pushing the Network to denoise the
final outputs. One method is to add Gaussian noise on a
random fraction of the input. Another method is to mask a
random fraction of the input by replacing them with zero. In
this case, the Denoising AutoEncoder (DAE) loss function is
modified to emphasize the denoising aspect of the Network.
The loss is based on two main hyperparameters α, β. They
balance whether the Network would focus on denoising the
input (α) or reconstructing the input (β):

L2,α,β(x, x̃) = α

 ∑
j∈C(x̃)

[nn(x̃)j − xj]2
+

β

 ∑
j 6∈C(x̃)

[nn(x̃)j − xj]2
 ,

where x̃ ∈ RN is a corrupted version of the input x, C is
the set of corrupted elements in x̃, and nn(x)j is the jth
output of the Network while fed with x.

2.2. Matrix Factorization

One of the most successful approach of Collaborative
Filtering is Matrix Factorization [3]. This method retrieves
latent factors from the ratings given by the users. The
underlying idea is that key features are hidden in the ratings
themselves. Given N users and M items, the rating rij is
the rating given by the ith user for the jth item. It entails
a sparse matrix of ratings R ∈ RN×M . In Collaborative

Filtering, sparsity is originally produced by missing values
rather than zero values. The goal of Matrix Factorization is
to find a k low rank matrix R̂ ∈ RN×M where R̂ = UVT

with U ∈ RN×k and V ∈ RM×k two matrices of rank
k encoding a dense representation of the users/items. In it
simplest form, (U ,V) is the solution of

arg min
U,V

∑
(i,j)∈K(R)

(rij − ūTi v̄j)
2 + λ(‖ūi‖2F + ‖v̄j‖2F),

where K(R) is the set of indices of known ratings of R,
(ūi, v̄j) are the dense and low rank rows of (U ,V) and
‖.‖F is the Frobenius norm. Vectors ūi and v̄j are treated
as column-vectors.

2.3. Related Work

Neural Networks have attracted little attention in the
CF community. In a preliminary work, [13] tackled the
Netflix challenge using Restricted Boltzmann Machines but
little published work had follow [20]. While Deep Learning
has tremendous success in image and speech recognition
[21], sparse data has received less attention and remains a
challenging problem for Neural Networks.

Nevertheless, Neural Networks are able to discover non-
linear latent variables with heterogeneous data [21] which
makes them a promising tool for CF. [14], [15], [16] directly
train Autoencoders to provide the best predicted ratings.
Those methods report excellent results in the general case.
However, the cold start initialization problem is ignored. For
instance, AutoRec [14] replaces unpredictable ratings by an
arbitrary selected score. In our case, we apply a training
loss designed for sparse rating inputs and we integrate side
information to lessen the cold start effect.

Other contributions deal with this cold start problem
by using Neural Networks properties for CBF: Neural Net-
works are first trained to learn a feature representation from
the item which is then processed by a CF approach such
as Probabilistic Matrix Factorization [22] to provide the
final rating. For instance, [23], [24] respectively auto-encode
bag-of-words from restaurant reviews and movie plots, [25]
auto-encode heterogeneous side information from users and
items. Finally, [26], [27] use Convolutional Networks on
music samples. In our case, side information and ratings
are used together without any unsupervised pretreatment.

2.4. Notation

In the rest of the paper, we will use the following
notations:

• ui, vj are the sparse rows/columns of R;
• ũi, ṽj are corrupted versions of ui, vj;
• ûi, v̂j are dense estimates of R̂;
• ūi, v̄j are dense low rank representations of ui, vj.

Figure 1: Feed Forward/Backward process for sparse Autoencoders. The sparse input is drawn from the matrix of ratings,
unknown values are turned to zero, some ratings are masked (input corruption) and a dense estimate is finally obtained.
Before backpropagation, unknown ratings are turned to zero error, prediction errors are reweighed by α and reconstruction
errors are reweighed by β.

3. Autoencoders and CF

User preferences are encoded as a sparse matrix of
ratings R. A user is represented by a sparse line ui ∈ RN
and an item is represented by a sparse column vj ∈ RM .
The Collaborative Filtering objective can be formulated as:
turn the sparse vectors ui/vj , into dense vectors ûi/v̂j .

We propose to perform this conversion with Autoen-
coders. To do so, we need to define two types of Autoen-
coders:
• U-CFN is defined as ûi = nn(ui),
• V-CFN is defined as v̂j = nn(vj).
The encoding part of these Autoencoders aims at build-

ing a low-rank dense representation of the sparse input
of ratings. The decoding part aims at predicting a dense
vector of ratings from the low-rank dense representation
of the encoder. This new approach differs from classic
Autoencoders which only aim at reconstructing/denoising
the input. As we will see later, the training loss will then
differ from the evaluation one.

3.1. Sparse Inputs

There is no standard approach for using sparse vectors
as inputs of Neural Networks. Most of the papers dealing
with sparse inputs get around by pre-computing an estimate
of the missing values [28], [29]. In our case, we want the
Autoencoder to handle this prediction issue by itself. Such
problems have already been studied in industry [30] where
5% of the values are missing. However in Collaborative
Filtering we often face datasets with more than 95% missing
values. Furthermore, missing values are not known during
training in Collaborative Filtering which makes the task
even more difficult.

Our approach includes three ingredients to handle the
training of sparse Autoencoders:
• inhibit the edges of the input layers by zeroing out

values in the input,

• inhibit the edges of the output layers by zeroing out
back-propagated values,

• use a denoising loss to emphasize rating prediction
over rating reconstruction.

One way to inhibit the input edges is to turn missing
values to zero. To keep the Autoencoder from always re-
turning zero, we also use an empirical loss that disregards
the loss of unknown values. No error is back-propagated for
missing values. Therefore, the error is back-propagated for
actual zero values while it is discarded for missing values.
In other words, missing values do not bring information to
the Network. This operation is equivalent to removing the
neurons with missing values described in [13], [14]. How-
ever, Our method has important computational advantages
because only one Neural Networks is trained whereas other
techniques has to share the weights among thousands of
Networks.

Finally, we take advantage of the masking noise from
the Denoising AutoEncoders (DAE) empirical loss. By sim-
ulating missing values in the training process, Autoencoders
are trained to predict them. In Collaborative Filtering, this
prediction aspect is actually the final target. Thus, empha-
sizing the prediction criterion turns the classic unsupervised
training of Autoencoders into a simulated supervfigureised
learning. By mixing both the reconstruction and prediction
criteria, the training can be thought as a pseudo-semi-
supervised learning. This makes the DAE loss a promising
objective function. After regularization, the final training
loss is:

L2,α,β(x, x̃) = α

 ∑
j∈C(x̃)∩K(x)

[nn(x̃)j − xj]2
+

β

 ∑
j 6∈C(x̃)∩K(x)

[nn(x̃)j − xj]2
+ λ‖W‖2F ,

where K(x) are the indices of known values of x, W is
the flatten vector of weights of the Network and λ is the

regularization hyperparameter. The full forward/backward
process is explained in Figure 1. Importantly, Autoencoders
with sparse inputs differs from sparse-Autoencoders [31]
or Dropout regularization [32] in the sense that Sparse
Autoencoders and Droupout inhibit the hidden neurons for
regularization purpose. Every inputs/outputs are also known.

3.2. Low Rank Matrix Factorization

Autoencoders are actually strongly linked with Matrix
Factorization. For an Autoencoder with only one hidden
layer and no output transfer function, the response of the
network is nn(x) = W2 σ(W1x + b1) + b2, where
W1,W2 are the weights matrices and b1,b2 the bias terms.
Let x be the representation ui of the user i, then we recover
a predicted vector ûi of the form Vūi:

ûi = nn(ui) = [W2 IN]︸ ︷︷ ︸
V

[
σ(W1ui + b1)

b2

]
︸ ︷︷ ︸

ūi

.

Symmetrically, v̂j has the form Uv̄j:

v̂j = nn(vj) = [W′
2 IM]︸ ︷︷ ︸
U

[
σ(W′

1vj + b′1)
b′2

]
︸ ︷︷ ︸

v̄j

.

The difference with standard Low Rank Matrix Fac-
torization stands in the definition of ūi/v̄j. For the Matrix
Factorization by ALS, R̂ is iteratively built by solving for
each row i of U (resp. column j of VT) a linear least
square regression using the known values of the ith row
of R (resp. jth column of R) as observations of a scalar
product in dimension k of ūi and the corresponding columns
of VT (resp. v̄j and the corresponding rows of U). An
Autoencoder aims at a projection in dimension k composed
with the non linearity σ. This process corresponds to a non
linear matrix factorization.

Note that CFN also breaks the symmetry between U
and V. For example, while Matrix Factorization approaches
learn both U and V, U-CFN learns V and only indirectly
learns U: U-CFN targets the function to build ūi whatever
the row ui. A nice benefit is that the learned Autoencoder
is able to fill in every vector ui, even if that vector was not
in the training data.

Both non-linear decompositions on rows and columns
are done independently, which means that the matrix V
learned by U-CFN from rows can differ from the concate-
nation of vectors v̄j predicted by V-CFN from columns.

Finally, it is very important to differentiate CFN from
Restrictive Boltzman Machine (RBM) for Collaborative Fil-
tering [13]. By construction, RBM only handles binary
input. Thus, one has to discretize the rating of users/items
for both the input/output layers. First, it striclty limits the
use of RBM on database with real numbers. Secondly,
the resulting weight architecture clearly differs from CFN.
in RBM, Imput/output ratings are encoded by D weights
where D is the number of discretized features while CFN

Figure 2: Integrating side information. The Network has
two inputs: the classic Autoencoder rating input and a
side information input. Side information is wired to every
neurons in the Network.

only requires a single weight. Thus, no direct link can be
done between Matrix Factorization and RBM . Besides, this
architecture also prevents RBM from being used to initialize
the input/ouput layers of CFN.

4. Integrating side information

Collaborative Filtering only relies on the feedback of
users regarding a set of items. When additional information
is available for the users and the items, this can sound
restrictive. One would think that adding more information
can help in several ways: increasing the prediction accuracy,
speeding up the training, increasing the robustness of the
model, etc. Furthermore, pure Collaborative Filtering suffers
from the cold start problem: when very little information
is available on an item, Collaborative Filtering will have
difficulties recommending it. When bad recommendations
are provided, the probability to receive valuable feedback is
lowered leading to a vicious circle for new items. A common
way to tackle this problem is to add some side information
to ensure a better initialization of the system. This is known
in the recommendation community as hybridization.

The simplest approach to integrate side information is
to append additional user/item bias to the rating prediction
[3]:

r̂ij = ūTi v̄j + bu,i + bv,j + b′,

where bu,i, bv,j , b′ are respectively the user, item, and global
bias of the Matrix Factorization. Computing these bias can
be done through hand-crafted engineering or Collaborative
Filtering technique. For instance, one method is to extend
the dense feature vectors of rank k by directly appending
side information on them [9]. Therefore, the estimated rating
is computed by:

r̂ij = {ūi,xi} ⊗ {v̄j ,yj}
def
= ūT[1:k],iv̄[1:k],j + ūT[k+1:k+Q],iyj︸ ︷︷ ︸

bv,j

+ xTi v̄[k+1:k+P],j︸ ︷︷ ︸
bu,i

,

where xi ∈ RP and yj ∈ RQ respectively are a vector
representation of side information for the user and for
the item. Unfortunately, those methods cannot be directly

applied to Neural Networks because Autoencoders optimize
U and V independently. New strategies must be designed
to incorporate side information. One notable example was
recently made by [33] for bitext word alignment.

In our case, the first idea would be to append the
side information to the sparse input vector. For simplicity
purpose, the next equations will only focus on shallow
U-Autoencoders with no output transfer functions. Yet,
this can be extended to more complex Networks and V-
Autoencoders. Therefore, we get:

ûi = nn({ui,xi}) = V σ(W′
1{ui,xi}+ b1) + b2,

where W′
1 ∈ Rk×(N+P) is a weight matrix.

When no previous rating exist, it enables the Neural
Networks to have at an input to predict new ratings. With
this scenario, side information is assimilated to pseudo-
ratings that will always exist for every items. However, when
the dimension of the Neural Network input is far greater than
the dimension of the side information, the Autoencoder may
have difficulties to use it efficiently.

Yet, common Matrix Factorization would append side
information to dense feature representations {ūi,xi} rather
than sparse feature representation as we just proposed
{ui,xi}. A solution to reproduce this idea is to inject the
side information to every layer inputs of the Network:

nn({ui,xi}) = V′ {

ū′
i︷ ︸︸ ︷

σ(W′
1{ui,xi}+ b1),xi}+ b2

= V′ {ū′i,xi}+ b2

= V′[1:k]ū
′
i + V′[k+1:k+P]xi︸ ︷︷ ︸

bu,i

+b2,

where V′ ∈ R(N×k+P) is a weight matrix, V′[1:k] ∈
RN×k,V′[k+1:k+P] ∈ RN×P are respectively the subma-
trices of V′ that contain the columns from 1 to k and k+ 1
to k + P .

By injecting the side information in every layer, the dy-
namic Autoencoders representation is forced to integrate this
new data. However, to avoid side information to overstep the
dense rating representation. Thus, we enforce the following
constraint. The dimension of the sparse input must be greater
than the dimension of the Autoencoder bottleneck which
must be greater than the dimension of the side information
1. Therefore, we get:

P � k � N and Q� k �M.

We finally obtain an Autoencoder which can incorporate
side information and be trained through backpropagation.
See Figure 2 for a graphical representation of the corre-
sponding network.

1. When side information is sparse, the dimension of the side information
can be assimilated to the number of non-zero parameters

5. Experiments

5.1. Benchmark Models

We benchmark CFN with five matrix completion algo-
rithms:

• ALS-WR (Alternating Least Squares with Weighted-
λ-Regularization) [4] solves the low-rank matrix fac-
torization problem by alternatively fixing U and V
and solving the resulting linear regression problem.
Experiments are run with the Apache Mahout2. We
use a rank of 200;

• SVDFeature [34] learns a feature-based matrix fac-
torization: side information are used to predict the
bias term and to reweight the matrix factorization.
We use a rank of 64 and tune other hyperparameters
by random search;

• BPMF (Bayesian Probabilistic Matrix Factorization)
[10] infers the matrix decomposition after a statisti-
cal model. We use a rank of 10;

• LLORMA [6] estimates the rating matrix as a
weighted sum of low-rank matrices. Experiments
are run with the Prea API3. We use a rank of 20,
30 anchor points which entails a global pseudo-
rank of 600. Other hyperparameters are picked as
recommended in [6];

• I-Autorec [14] trains one Autoencoder per item,
sharing the weights between the different Autoen-
coders. We use 600 hidden neurons with the training
hyperparameters recommended by the author.

In every scenario, we selected the highest possible rank
which does not lead to overfitting despite a strong regular-
ization. For instance, increasing the rank of BPMF does not
significantly increase the final RMSE, idem for SVDFeature.
Furthermore, we constrained the algorithms to run in less
than two days. Similar benchmarks can be found in the
litterature [6], [7], [35].

5.2. Data

Experiments are conducted on MovieLens and Douban
datasets. The MovieLens-1M, MovieLens-10M and
MovieLens-20M datasets respectively provide 1/10/20
millions discrete ratings from 6/72/138 thousands users
on 4/10/27 thousands movies. Side information for
MovieLens-1M is the age, sex and gender of the user and
the movie category (action, thriller etc.). Side information
for MovieLens-10/20M is a matrix of tags T where Tij
is the occurrence of the jth tag for the ith movie and the
movie category. No side information is provided for users.

The Douban dataset [36] provides 17 million discrete
ratings from 129 thousands users on 58 thousands movies.
Side information is the bi-directional user/friend relations
for the user. The user/friend relation are treated like the

2. http://mahout.apache.org/
3. http://prea.gatech.edu/

http://mahout.apache.org/
http://prea.gatech.edu/

matrix of tags from MovieLens. No side information is
provided for items.

Pre/post-processing. For each dataset, the full dataset
is considered and the ratings are normalized from -1 to 1.
We split the dataset into random 90%-10% train-test datasets
and inputs are unbiased before the training process: denoting
µ the mean over the training set, bui

the mean of the ith
user and bvi the mean of the vth item, U-CFN and V-
CFN respectively learn from runbiasedij = rij − bui

and
runbiasedij = rij − bvi . The bias computed on the training
set is added back while evaluating the learned matrix.

Side Information. In order to enforce the side in-
formation constraint, Q � kv � M , Principal Com-
ponent Analysis is performed on the matrix of tags. We
keep the 50 greatest eigenvectors4 and normalize them
by the square root of their respective eigenvalue: given
T = PDQT with D the diagonal matrix of eigenvalues
sorted in descending order, the movie tags are represented
by Y = P[1:M],[1:K′]D

0.5
[1:K′],[1:K′] with K ′ the number of

kept eigenvectors. Binary representation such as the movie
category is then concatenated to Y.

5.3. Error Function

We measure the prediction accuracy by the mean of Root
Mean Square Error (RMSE). Denoting Rtest the matrix
test ratings and R̂ the full matrix returned by the learning
algorithm, the RMSE is:

RMSE(R̂,Rtest) =√√√√ 1

|K(Rtest)|
∑

(i,j)∈K(Rtest)

(rtest,ij − r̂ij)2,

where |K(Rtest)| is the number of ratings in the testing
dataset. Note that, in the case of Autoencoders, R̂ is com-
puted by feeding the network with training data. As such,
r̂ij stands for nn(utrain,i)j for U-CFN, and nn(vtrain,j)i
for V-CFN.

5.4. Training Settings

We train 2-layers Autoencoders for MovieLens-
1/10/20M and the Douban datasets. The layers have from
500 to 700 hidden neurons. Weights are initialized using the
fan-in rule [37]. Transfer functions are hyperbolic tangents.
The Neural Network is optimized with stochastic backprop-
agation with minibatch of size 30 and a weight decay is
added for regularization. Hyperparameters5 are tuned by a
genetic algorithm already used by [38] in a different context.

4. The number of eigenvalues is arbitrary selected. We do not focus on
optimizing the quality of this representation.

5. Hyperparameters used for the experiments are provided with the
source code.

5.5. Results

Comparison to state-of-the-art. Table 1 displays the
RMSE on MovieLens and Douban datasets. Reported results
are computed through k-fold cross-validation and confidence
intervals correspond to a 95% range. Except for the small-
est dataset, V-CFNs leads to the best results; V-CFN is
competitive compared to the state-of-the-art Collaborative
Filtering approaches. To the best of our knowledge, the best
result published regarding MovieLens-10M (training ratio of
90%/10% and no side information) are reported by [35] and
[7] with a final RMSE of respectively 0.7682 and 0.7769.
However, those two methods require to recompute the full
matrix for every new ratings. CFN has the key advantage to
provide similar performance while being able to refine its
prediction on the fly for new ratings. More generally, we are
not aware of recent works that both manage to reach state of
the art reslts while successfully integrated side information.
For instance, [39], [40] reported a global RMSE above 0.8
on MovieLens-10M.

Note that V-CFN outperforms U-CFN. It suggests that
the structure on the items is stronger than the one on users
i.e. it is easier to guess tastes based on movies you liked
than to find some users similar to you. Of course, the
behaviour could be different on some other datasets. The
training evoluation is described in the Figure 4.

Impact of side information. At first sight at Table 1, the
use of side information has a limited impact on the RMSE.
This statement has to be mitigated: as the repartition of
known entries in the dataset is not uniform, the estimates
are biased towards users and items with a lot of ratings. For
theses users and movies, the dataset already contains a lot of
information, thus having some extra information will have
a marginal effect. Users and items with few ratings should
benefit more from some side information but the estimation
bias hides them.

In order to exhibit the utility of side information, we
report in Table 2 the RMSE conditionally to the number of
missing values for items. As expected, the fewer number of
ratings for an item, the more important the side information.
This is very desirable for a real system: the effective use of
side information to the new items is crucial to deal with the
flow of new products. A more careful analysis of the RMSE
improvement in this setting shows that the improvement is
uniformly distributed over the users whatever their number
of ratings. This corresponds to the fact that the available
side information is only about items. To complete the pic-
ture, we train V-CFN on MovieLens-10M with either the
movie genre or the matrix of tags with a training ratio of
90%/10%. Both side information increase the global RMSE
by 0.10% while concatenating them increases the final score
by 0.14%. Therefore, V-CFN handles the heterogeneity of
side information.

Impact of the loss. The impact of the denoising loss
is highlighted in Table 3: the bigger the dataset, the more
usefull the de noising loss. On the other side, a network
dealing with smaller dataset such as MovieLens-1M may
suffer from masked entries.

TABLE 1: RMSE with a training ratio of 90%/10%. The ++ suffix denotes algorithms using side information. When side
information are missing, the N/A acronym is used. The * character indicates that the results were too low after four days
of computation.

Algorithms MovieLens-1M MovieLens-10M MovieLens-20M Douban
BPMF 0.8705 ± 4.3e-3 0.8213 ± 6.5e-4 0.8123 ± 3.5e-4 0.7133 ± 3.0e-4
ALS-WR 0.8433 ± 1.8e-3 0.7830 ± 1.9e-4 0.7746 ± 2.7e-4 0.7010 ± 3.2e-4
SVDFeature 0.8631 ± 2.5e-3 0.7907 ± 8.4e-4 0.7852 ± 5.4e-4 *
LLORMA 0.8371 ± 2.4e-3 0.7949 ± 2.3e-4 0.7843 ± 3.2e-4 0.6968 ± 2.7e-4
I-Autorec 0.8305 ± 2.8e-3 0.7831 ± 2.4e-4 0.7742 ± 4.4e-4 0.6945 ± 3.1e-4
U-CFN 0.8574 ± 2.4e-3 0.7954 ± 7.4e-4 0.7856 ± 1.4e-4 0.7049 ± 2.2e-4
U-CFN++ 0.8572 ± 1.6e-3 N/A N/A 0.7050 ± 1.2e-4
V-CFN 0.8388 ± 2.5e-3 0.7767 ± 5.4e-4 0.7663 ± 2.9e-4 0.6911 ± 3.2e-4
V-CFN++ 0.8377 ± 1.8e-3 0.7754 ± 6.3e-4 0.7652 ± 2.3e-4 N/A

TABLE 2: RMSE computed by cluster of items sorted by their respective number of ratings on MovieLens-10M. For
instance, the first cluster contains the 20% of items with the lowest number of ratings. The last cluster far outweigh other
clusters and hide more subtle results.

(a) MovieLens-10M (50%/50%)

Interval V-CFN V-CFN++ %Improv.
0.0-0.2 1.0030 0.9938 0.96
0.2-0.4 0.9188 0.9084 1.15
0.4-0.6 0.8748 0.8669 0.91
0.6-0.8 0.8473 0.8420 0.63
0.8-1.0 0.7976 0.7964 0.15
Full 0.8075 0.8055 0.25

(b) MovieLens-10M (90%/10%)

Interval V-CFN V-CFN++ %Improv.
0.0-0.2 0.9539 0.9444 1.01
0.2-0.4 0.8815 0.8730 0.96
0.4-0.6 0.8487 0.8408 0.95
0.6-0.8 0.8139 0.8110 0.35
0.8-1.0 0.7674 0.7669 0.06
Full 0.7767 0.7756 0.14

TABLE 3: Impact of the denoising loss in the training process. If we focus on the prediction (aka supervised setting), the
autoencoder provides poor results. If we focus on the reconstruction with no masking noise (aka unsupervised setting), the
Autoencoder already provides excellent results. By using a mixture of those techniques, the network converges to a better
score.

(a) MovieLens-10M (90%/10%)

α β %Mask RMSE
Supervised 0.91 0 0 0.8020
Unsup. 0 0.54 0.25 0.7795
Mixed 0.91 0.54 0.25 0.7768

(b) MovieLens-20M (90%/10%)

α β %Mask RMSE
Supervised 1 0 0.25 0.7982
Unsup. 0 0.60 0 0.7690
Mixed 1 0.60 0.25 0.7663

Impact of the non-linearity. We train I-CFN by removing
the non-linearity to study its impact on the training. For
fairness, we kept the α, β, the masking ratio and the number
of hidden neurons constant. Furthermore, we search for the
best learning rates and L2 regularization throught the genetic
algorithm. For movieLens-10M, we obtain a final RMSE of
0.8151 ± 1.4e-3 which is far worse than classic I-CFN.

Impact of the training ratio. Last but not least, CFN
remains very robust to a variation of data density as shown in
Figure 3. It is all the more impressive that hyperparameters
are first optimized for a training/testing ratio of 90%/10%.
Cold-start and Warm-start scenario are also far more well-
handled by Neural Networks than more classic CF algo-
rithms. These are highly valuable properties in an industrial
context.

6. Remarks

6.1. Source code

Torch is a powerful framework written in Lua to quickly
prototype Neural Networks. It is a widely used (Facebook,

Deep Mind) industry standard. However, Torch lacks some
important basic tools to deal with sparse inputs. Thus, we
develop several new modules to deal with DAE loss, sparse
DAE loss and sparse inputs on both CPU and GPU. They
can easily be plugged into existing code. An out-of-the-
box tutorial is available to run the experiments. The code is
freely available on Github6 and Luarocks 7.

6.2. Scalability

One major problem that most Collaborative Filtering
have to solve is scalability since dataset often have hundred
of thousands users and items. An efficient algorithm must
be trained in a reasonable amount of time and provide quick
feedback during evaluation time.

Recent advances in GPU computation managed to re-
duce the training time of Neural Networks by several orders
of magnitude. However, Collaborative Filtering deals with
sparse data and GPUs are designed to perform well on dense
data. [13], [14] face this sparsity constraint by building small

6. https://github.com/fstrub95/Autoencoders cf
7. luarocks install nnsparse

https://github.com/fstrub95/Autoencoders_cf

Figure 3: RMSE as a function of the training set ratio for MovieLens-10M. Training hyperparameters are kept constant
across dataset. CFN and I-Autorec are very robust to a change in the density. On the other side, SVDFeature turns out to
be unstable and should be fine-tuned for each ratio.

Figure 4: RMSE as a function of the numer of epoch for
CFN for MovieLens-10M (90%/10%). The network quickly
converges to a very low RMSE and then refine its prediction
upon epoches.

dense Networks with shared weights. Yet, this approach may
lead to important synchronisation latencies. In our case, we
tackle the issue by selectively densifying the inputs just
before sending them to the GPUs cores without modification
of the result of the computation. It introduces an overhead
on the computational complexity but this implementation
allows the GPUs to work at their full strength. In practice,
vector operations overtake the extra cost. Such approach is
an efficient strategy to handle sparse data which achieves a
balance between memory footprint and computational time.
We are able to train Large Neural Networks within a few
minutes as shown in Table 4. For purpose of comparison, on
MovieLens-20M with a 16 thread 2.7Ghz Core processor,
ALS-WR (r=20) computes the final matrix within a half-
hour with close results, SVDFeatures (r=64) requires a few

hours, BPMF (r=10) and I-Autorec (r=600) require half a
day, ALS-WR (r=200) a full day and LLORMA (r=20*30)
needs several days with the Prea library. At the time of
writing, alternative strategies to train networks with sparse
inputs on GPUs are under development. Although, one may
complain that CFN benefit from GPU, no other algorithm
(except ALS-WR) can be easily parallelized on such device.
we believe that algorithms that natively work on GPU are
auspicious in the light of the progress achieved on GPU.

TABLE 4: Training time and memory footprint for a 2-
layers CFN without side information for MovieLens-10M
(90%/10%). The GPU is a standard GTX 980. Time is the
average training duration (around 20-30 epochs). Parameters
are the weight and bias matrices. Memory is retrieved by
the GPU driver during the training. It includes the dataset,
the model parameters and the training buffer. Although the
memory footprint highly depends on the implementation, it
provides a good order of magnitude. Adding side informa-
tion would increase by around 5% the final time and memory
footprint.

Dataset CFN #Param Time Memory
MLens-1M V 8M 2m03s 250MiB
MLens-10M V 100M 18m34s 1,532MiB
MLens-20M V 194M 34m45s 2,905MiB
MLens-1M U 5M 7m17s 262MiB
MLens-10M U 15M 34m51s 543MiB
MLens-20M U 38M 59m35s 1,044Mib

6.3. Future Works

Implicit feedback may greatly enhance the quality of
Collaborative Filtering algorithms [3], [5]. For instance,
Implicit feedback would be incorporated to CFN by feeding
the Network with an additional binary input. By doing

so, [13] enhance the quality of prediction for Restricted
Boltzmann Machine on the Netflix Dataset. Additionally,
Content-Based Techniques with Deep learning such as [26],
[27] would be plugged to CFN. The idea is to train a joint
Network that would directly link the raw item features to
the ratings such as music, pictures or word representations.
As a different topic, V-CFN and U-CFN sometimes report
different errors. This is more likely to happen when they are
fed with side information. One interesting work would be to
combine a suitable Network that mix both of them. Finally,
other metrics exist to estimate the quality of Collaborative
Filtering to fit other real-world constraints. Normalized Dis-
counted Cumulative Gain [41] or F-score are sometimes
preferred to RMSE and should be benchmarked.

7. Conclusion

In this paper, we have introduced a Neural Network
architecture, aka CFN, to perform Collaborative Filtering
with side information. Contrary to other attempts with Neu-
ral Networks, this joint Network integrates side information
and learns a non-linear representation of users or items
into a unique Neural Network. This approach manages to
beats state of the art results in CF on both MovieLens
and Douban datasets. It performs excellent results in both
cold-start and warm-start scenario. CFN has also valuable
assets for industry, it is scalable, robust and it successfully
deals with large dataset. Finally, a reusable source code
is provided in Torch and hyperparameters are provided to
reproduce the results.

Acknowledgements

The authors would like to acknowledge the stimulating
environment provided by SequeL research group, Inria and
CRIStAL. This work was supported by French Ministry
of Higher Education and Research, by CPER Nord-Pas
de Calais/FEDER DATA Advanced data science and tech-
nologies 2015-2020, the Projet CHIST-ERA IGLU and by
FUI Hermès. Experiments were carried out using Grid’5000
tested, supported by Inria, CNRS, RENATER and several
universities as well as other organizations.

References

[1] C. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Manage.
Inf. Syst., vol. 6, no. 4, pp. 13:1–13:19, 2015.

[2] P. Lops, M. D. Gemmis, and G. Semeraro, “Content-based recom-
mender systems: State of the art and trends,” in Recommender systems
handbook. Springer, 2011, pp. 73–105.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[4] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Algorithmic Aspects in
Information and Management. Springer, 2008, pp. 337–348.

[5] S. Rendle, “Factorization machines,” in Proc. of ICDM’10, 2010, pp.
995–1000.

[6] J. Lee, S. Kim, G. Lebanon, and Y. Singerm, “Local low-rank matrix
approximation,” in Proc. of ICML’13, 2013, pp. 82–90.

[7] C. Chen, D. Li, Y. Zhao, Q. Lv, and L. Shang, “Wemarec: Accurate
and scalable recommendation through weighted and ensemble matrix
approximation,” in Proc. of the International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 2015,
pp. 303–312.

[8] R. P. Adams and G. E. D. I. Murray, “Incorporating side information
in probabilistic matrix factorization with gaussian processes,” arXiv
preprint arXiv:1003.4944, 2010.

[9] I. Porteous and M. W. A. U. Asuncion, “Bayesian matrix factorization
with side information and dirichlet process mixtures.” in Proc. of
AAAI’10, 2010.

[10] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix fac-
torization using markov chain monte carlo,” in Proc. of ICML’08.
ACM, 2008, pp. 880–887.

[11] J. Lee, M. Sun, and G. Lebanon, “A comparative study of collabora-
tive filtering algorithms,” arXiv preprint arXiv:1205.3193, 2012.

[12] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion,” Jour. of Mach.
Learn. Res., vol. 11, no. 3, pp. 3371–3408, 2010.

[13] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in Proc. of ICML’07. ACM,
2007, pp. 791–798.

[14] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoen-
coders meet collaborative filtering,” in Proc. of Int. Conf. on World
Wide Web Companion, 2015, pp. 111–112.

[15] F. Strub and J. Mary, “Collaborative Filtering with Stacked Denoising
AutoEncoders and Sparse Inputs,” in NIPS Workshop on Machine
Learning for eCommerce, Montreal, Canada, 2015.

[16] G. Dziugaite and D. Roy, “Neural network matrix factorization,”
arXiv preprint arXiv:1511.06443, 2015.

[17] Y. Wu, C. DuBois, A. Zheng, and M. Ester, “Collaborative de-
noising auto-encoders for top-n recommender systems,” in Proc. of
WSDM’16. ACM, pp. 153–162.

[18] M. A. Kramer, “Nonlinear principal component analysis using au-
toassociative neural networks,” AIChE journal, vol. 37, no. 2, pp.
233–243, 1991.

[19] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. of AISTATS’10, 2010,
pp. 249–256.

[20] T. T. Truyen, D. Phung, and S. Venkatesh, “Ordinal boltzmann
machines for collaborative filtering,” in Proc. of UAI’09. AUAI
Press, 2009, pp. 548–556.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[22] A. Mnih and R. Salakhutdinov, “Probabilistic matrix factorization,” in
Advances in neural information processing systems, 2007, pp. 1257–
1264.

[23] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. of AISTATS’11, 2011, pp. 315–323.

[24] H. Wang, N. Wang, and D. Y. Yeung, “Collaborative deep learning
for recommender systems,” arXiv preprint arXiv:1409.2944, 2014.

[25] S. Li, J. Kawale, and Y. Fu, “Deep collaborative filtering via marginal-
ized denoising auto-encoder,” in Proc. of CIKM’15. ACM, 2015,
pp. 811–820.

[26] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-
based music recommendation,” in Proc. of NIPS’13, 2013, pp. 2643–
2651.

[27] H. Wang, N. Wang, and D. Y. Yeung, “Improving content-based and
hybrid music recommendation using deep learning,” in Proceedings
of the ACM International Conference on Multimedia. ACM, 2014,
pp. 627–636.

[28] V. Tresp, S. Ahmad, and R. Neuneier, “Training Neural Networks
with Deficient Data,” Advances in Neural Information Processing
Systems 6, pp. 128–135, 1994.

[29] C. M. Bishop, Neural networks for pattern recognition. Oxford univ.
press, 1995.

[30] V. Miranda, J. Krstulovic, H. Keko, C. Moreira, and J. Pereira, “Re-
constructing Missing Data in State Estimation With Autoencoders,”
IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 604–611,
2012.

[31] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding
algorithms,” in Advances in neural information processing systems,
2006, pp. 801–808.

[32] N. Srivastava, G. Hinton, A. Krizhevsk, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[33] W. Ammar, C. Dyer, and N. A. Smith, “Conditional random field
autoencoders for unsupervised structured prediction,” in Proc. of
NIPS’14, 2014, pp. 3311–3319.

[34] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yong,
“Svdfeature: a toolkit for feature-based collaborative filtering,” JMLR,
vol. 13, no. 1, pp. 3619–3622, 2012.

[35] D. Li, C. Chen, Q. Lv, J. Yan, L. Shang, and S. Chu, “Low-rank
matrix approximation with stability,” in Proc. of ICML’16, 2016.

[36] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender
systems with social regularization,” in Proceedings of the fourth ACM
international conference on Web search and data mining, ser. WSDM
’11, Hong Kong, China, 2011, pp. 287–296.

[37] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient backprop,” in
Neural networks: Tricks of the trade. Springer, 1998, pp. 9–48.

[38] O. Teytaud, S. Gelly, and J. Mary, “Active learning in regression,
with application to stochastic dynamic programming.” in ICINCO
and CAP, A. International Conference On Informatics in Control and
Robotics, Eds., 2007, iConf, pp. 373–386.

[39] Y.-D. Kim and S. Choi, “Scalable variational bayesian matrix fac-
torization with side information,” in Proc. of AISTATS’14, Reykjavik,
Iceland, 2014.

[40] R. Kumar, B. K. Verma, and S. S. Rastogi, “Social popularity based
svd++ recommender system,” International Journal of Computer
Applications, vol. 87, no. 14, 2014.

[41] K. Järvelin and K. Kekäläinen, “Cumulated gain-based evaluation of
ir techniques,” ACM Transactions on Information Systems (TOIS),
vol. 20, no. 4, pp. 422–446, 2002.

8. Appendix

8.1. Genetic Algorithm

We use the following genetic algorithm [38] to find
the hyperparameters of our model. The cross-over of two
individuals x and y gives birth to two new individuals
2
3x + 1

3y and 1
3x + 2

3y. The mutation of one individual is
obtained by using an isotropic Gaussian law with the mean
centred on the current values of parameters and a standard
deviation of σ√

sqrt[n]d with n the number of individuals and
d the dimension of the space. Let λ1, λ2, λ3 and λ4 be
such that λ1 +λ2 +λ3 +λ4 = 1. Once an initial population

of n individuals is created, we proceed as follow at each
iteration:

• We copy nλ1 best individuals (Set S1)
• We apply the cross-over rule to the n

2λ2 following
best individuals with randomly picked individuals in
S1

• We mutate nλ3 randomly picked individuals in S1

• We generate nλ4 new individuals

TABLE 5: Gene description for CFN. Hyperparameters of
the genetic algorithms were n = 20, σ = 0.08, λ1 = 1/10,
λ2 = 2/10, λ3 = 3/10, λ4 = 4/10

CFN hyperparameters Probabilistic law-1M
alpha U[0.8,1.2]
beta U[0,1]
masking ratio U[0,1]
bottleneck size U[500,700]
learning rate U[0,0.5]
learning rate decay U[0,0.5]
weight decay U[0,0.5]

	Introduction
	Preliminaries
	Denoising Autoencoders
	Matrix Factorization
	Related Work
	Notation

	Autoencoders and CF
	Sparse Inputs
	Low Rank Matrix Factorization

	Integrating side information
	Experiments
	Benchmark Models
	Data
	Error Function
	Training Settings
	Results

	Remarks
	Source code
	Scalability
	Future Works

	Conclusion
	References
	Appendix
	Genetic Algorithm

