
HAL Id: hal-01281794
https://hal.science/hal-01281794v1

Preprint submitted on 2 Mar 2016 (v1), last revised 18 Jul 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Collaborative Filtering with Neural Networks
Florian Strub, Jérémie Mary, Romaric Gaudel

To cite this version:
Florian Strub, Jérémie Mary, Romaric Gaudel. Hybrid Collaborative Filtering with Neural Networks.
2016. �hal-01281794v1�

https://hal.science/hal-01281794v1
https://hal.archives-ouvertes.fr

Hybrid Collaborative Filtering with Neural Networks

Florian Strub FLORIAN.STRUB@INRIA.FR

Univ of Lille, CRIStAL, Inria, SequeL Team, 40 av. du Halley, 59650 Villeneuve d’Ascq, FRANCE

Jérémie Mary JEREMIE.MARY@INRIA.FR

Univ of Lille, CRIStAL, Inria, SequeL Team, 40 av. du Halley, 59650 Villeneuve d’Ascq, FRANCE

Romaric Gaudel ROMARIC.GAUDEL@INRIA.FR

Univ of Lille, CRIStAL, Inria, SequeL Team, 40 av. du Halley, 59650 Villeneuve d’Ascq, FRANCE

Abstract
Collaborative Filtering aims at exploiting the
feedback of users to provide personalised recom-
mendations. Such algorithms look for latent vari-
ables in a large sparse matrix of ratings. They can
be enhanced by adding side information to tackle
the well-known cold start problem. While Neu-
ral Networks have tremendous success in image
and speech recognition, they have received less
attention in Collaborative Filtering. This is all the
more surprising that Neural Networks are able
to discover latent variables in large and hetero-
geneous datasets. In this paper, we introduce a
Collaborative Filtering Neural network architec-
ture aka CFN which computes a non-linear Ma-
trix Factorization from sparse rating inputs and
side information. We show experimentally on the
MovieLens and Douban dataset that CFN outper-
forms the state of the art and benefits from side
information. We provide an implementation of
the algorithm as a reusable plugin for Torch, a
popular Neural Network framework.

1. Introduction
Recommendation systems advise users on which items
(movies, musics, books etc.) they are more likely to be
interested in. A good recommendation system may dra-
matically increase the amount of sales of a firm or retain
customers. For instance, 80% of movies watched on Net-
flix come from the recommender system of the company
(Gomez-Uribe & Hunt, 2015). One efficient way to de-
sign such algorithm is to predict how a user would rate a
given item. Two key methods co-exist to tackle this issue:
Content-Based Filtering and Collaborative Filtering (CF).

Preliminary work. Under review by the under review by the Inter-
national Conference on Machine Learning (ICML),

Content-Based Filtering explicitly uses the user/item
knowledge to estimate a new rating. For instance, user in-
formation can be the age, gender or graph of friends etc.
Item information can be the movie genre, a short descrip-
tion or the tags. CF uses the ratings history of users and
items. The feedback of one user on some items is com-
bined with the feedback of all other users on all items to
predict a new rating. For instance, if someone rated a few
books, Collaborative Filtering aims at estimating the rat-
ings he would have given to thousands of other books by
using the ratings of all the other readers. CF is often pre-
ferred to Content-Based Filtering because it wins the ag-
nostic vs. studied contest: CF only relies on the ratings of
the users while Content-Based Filtering requires advanced
engineering on items to perform well (Lops et al., 2011).

The most successful approach in CF is to retrieve poten-
tial latent factors from the sparse matrix of ratings. Book
latent factors are likely to encapsulate the book genre (spy
novel, fantasy, etc.) or some writing styles. Common latent
factor techniques compute a low-rank rating matrix by ap-
plying Singular Value Decomposition through gradient de-
scent (Koren et al., 2009) or Regularized Alternative Least
Square algorithm (Zhou et al., 2008). However, these meth-
ods are linear and cannot catch subtle factors. Newer algo-
rithms were explored to face those constraints such as Non
Linear Probabilistic Matrix Factorization (Lawrence & Ur-
tasun, 2009), Factorization Machines (Rendle, 2010) or Lo-
cal Low Rank Matrix Approximation (Lee et al., 2013).

Another limitation of CF is known as the cold start prob-
lem: how to recommend an item to a user when no rat-
ing exists for neither the user nor the item ? To overcome
this issue, one idea is to build a hybrid model mixing CF
and Content Based Filtering where side information is inte-
grated into the training process. The goal is to supplant the
lack of ratings through side information. A successful ap-
proach (Adams & Murray, 2010; Porteous & A. U. Asun-
cion, 2010) extends the Bayesian Probabilistic Matrix Fac-
torization Framework (Salakhutdinov & Mnih, 2008) to in-

Hybrid Collaborative Filtering with Neural Networks

tegrate side information. However, recent algorithms out-
perform them in the general case (Lee et al., 2012).

In this paper we introduce a CF approach based on Stacked
Denoising Autoencoders (Vincent et al., 2010) which tack-
les both challenges: learning a non-linear representation
of users and items, and alleviating the cold start problem
by integrating side information. Compared to previous at-
tempts in that direction (Salakhutdinov et al., 2007; Sed-
hain et al., 2015; Strub & Mary, 2015; Dziugaite & Roy,
2015), our framework integrates the sparse matrix of rat-
ings and side information in a unique Network. This joint
model leads to a scalable and robust approach which beats
state-of-the-art results in CF. Reusable source code is pro-
vided in Lua/Torch to reproduce the results. Last but not
least, we show that CF approaches based on Matrix Factor-
ization have a strong link with our approach.

The paper is organized as follows. First, Sec. 2 summarizes
the state-of-the-art in CF and Neural Networks. Then, our
model is described in Sec. 3 and 4 and its relation with
Matrix Factorization is characterized in Sec. 3.2. Finally,
experimental results are given and discussed in Sec. 5 and
Sec. 6 discusses algorithmic aspects.

2. Preliminaries
2.1. Denoising Autoencoders

The proposed approach builds upon Autoencoders which
are feed-forward Neural Networks popularized by Kramer
(1991). They are unsupervised Networks where the output
of the Network aims at reconstructing the initial input. The
Network is constrained to use narrow hidden layers, forcing
a dimensionality reduction on the data. The Network is
trained by back-propagating the squared error loss on the
reconstruction. Such Networks are divided into two parts:

• the encoder : f(x) = σ(W1x + b1),

• the decoder : g(y) = σ(W2y + b2),

with x ∈ RN the input, y ∈ RK the output, K the size of
the Autoencoder’s bottleneck (K << N), W1 ∈ RN×K
and W2 ∈ RK×N the weight matrices, b1 ∈ RK and
b2 ∈ RN the bias vectors, and σ(.) a non-linear transfer
function.

Recent work in Deep Learning advocates to stack pre-
trained encoders to initialize Deep Neural Networks (Glo-
rot & Bengio, 2010). This process enables the lowest layers
of the Network to find low-dimensional representations. It
experimentally increases the quality of the whole Network.
Yet, classic Autoencoders often degenerate into identity
Networks and they fail to learn the latent relationship be-
tween data. (Vincent et al., 2010) tackle this issue by cor-
rupting inputs, pushing the Network to denoise the final
outputs. One method is to add Gaussian noise on a random

fraction ν of the input. Another method is to mask a ran-
dom fraction ν of the input by replacing them with zero.
In this case, the Denoising AutoEncoder (DAE) loss func-
tion is modified to emphasize the denoising aspect of the
Network. The loss is based on two main hyperparameters
α, β. They balance whether the Network would focus on
denoising the input (α) or reconstructing the input (β):

L2,α,β(x, x̃) = α

 ∑
j∈C(x̃)

[nn(x̃)j − xj]2
+

β

 ∑
j 6∈C(x̃)

[nn(x̃)j − xj]2
 ,

where x̃ is the corrupted input x ∈ RN , C are the indices
of the corrupted elements of x, nn(x)j is the jth output of
the Network.

2.2. Matrix Factorization

One of the most successful approach of Collaborative Fil-
tering is Matrix Factorization (Koren et al., 2009). This
method retrieves latent factors from the ratings of items
made by the users. The underlying idea is that key fea-
tures are hidden in the ratings themselves. Given N users
and M items, the rating rij is the rating given by the ith

user for the jth item. It entails a sparse matrix of ratings
R ∈ RN×M . In Collaborative Filtering, sparsity is origi-
nally produced by missing values rather than zero values.
The goal of Matrix Factorization is to find a K low rank
matrix R̂ ∈ RN×M where R̂ = UVT with U ∈ RN×K
and V ∈ RM×K are two matrices of rank K encoding a
dense representation of the users/items with

arg min
U,V

∑
(i,j)∈K(R)

(rij−ūTi v̄j)
2 +λ(‖ūi‖2Fro+‖v̄j‖2Fro),

where K(R) is the set of indices of known ratings, ūi, v̄j
are the corresponding line vectors of U ,V and ‖ūi‖Fro is
the Frobenius norm.

2.3. Related Work

Neural Networks have attracted little attention in the
CF community. In a preliminary work, (Salakhutdinov
et al., 2007) tackled the Netflix challenge using Restricted
Boltzmann Machines but little published work had follow
(Truyen et al., 2009). While Deep Learning has tremen-
dous success in image and speech recognition (LeCun
et al., 2015), sparse data has received less attention and re-
mains a challenging problem for Neural Networks.

Nevertheless, Neural Networks are able to discover non-
linear latent variables with heterogeneous data (LeCun
et al., 2015) which makes them a promising tool for CF.

Hybrid Collaborative Filtering with Neural Networks

Figure 1. Feed Forward/Backward process for sparse Autoencoders. The sparse input is extracted from the matrix of ratings, unknown
values are turned to zero, input is corrupted by masking additional ratings and a dense estimate is finally obtained. Before backpropaga-
tion, unknown ratings are turned to zero error, predicted errors are reweighed by α and reconstruction errors are reweighed by β.

(Sedhain et al., 2015; Strub & Mary, 2015; Dziugaite &
Roy, 2015) directly train Autoencoders to provide the best
predicted ratings. Those methods report excellent results
in the general case. However, the cold start initialization
problem is ignored. For instance, AutoRec (Sedhain et al.,
2015) replaces unpredictable ratings by an arbitrary se-
lected score. In our case, we apply a training loss designed
for sparse rating inputs and we integrate side information
to lessen the cold start effect.

Other contributions deal with this cold start problem by us-
ing Neural Networks properties for Content-Based Filter-
ing: Neural Networks are first trained to learn a feature
representation from the item which is then processed ob-
tain a CF approach such as Probabilistic Matrix Factoriza-
tion (Mnih & Salakhutdinov, 2007) to provide the final rat-
ing. For instance, (Glorot et al., 2011; Wang et al., 2014a)
respectively auto-encode bag-of-words from restaurant re-
views and movie plots, (Li et al., 2015) auto-encode het-
erogeneous side information from users and items. Finally,
(den Oord et al., 2013; Wang et al., 2014b) use Convolu-
tional Networks on music samples. In our case, side infor-
mation and ratings are used together without any unsuper-
vised pretreatment.

2.4. Notation

In the rest of the paper, we will use the following notations:

• ui, vj are the sparse lines/columns of R

• ũi, ṽj are corrupted versions of ui, vj

• ûi, v̂j are dense estimates of R̂

• ūi, v̄j are dense low rank representations of ui, vj.

3. Autoencoders for Collaborative Filtering
User preferences are encoded as a sparse matrix of ratings
R. A user is represented by a sparse line ui ∈ RN and
an item is represented by a sparse column vj ∈ RM . The
Collaborative Filtering objective can be formulated as: turn
the sparse vectors ui/vj , into dense vectors ûi/v̂j .

We propose to perform this conversion with Autoencoders.
To do so, we need to define two types of Autoencoders:

• U-CFN is defined as nn(ui) = ûi,
• V-CFN is defined as nn(vj) = v̂j .

The encoding part of these Autoencoder aims at building
a low-rank dense representation of the sparse input of rat-
ings. The decoding part aims at predicting a dense vector
of ratings from the low-rank dense representation of the
encoder. This new approach differs from classic Autoen-
coders which only aim at reconstructing/denoising the in-
put. As we will see later, the training loss will then differ
from the evaluation one.

3.1. Sparse Inputs

There is no standard approach for using sparse vectors as
inputs of Neural Networks. Most of the papers dealing with
sparse inputs get around by pre-computing an estimate of
the missing values (Tresp et al., 1994; Bishop, 1995). In
our case, we want the Autoencoder to handle this prediction
issue by itself. Such problems have already been studied in
industry (Miranda et al., 2012) where 5% of the values are
missing. However in Collaborative Filtering we often face
datasets with more than 95% missing values. Furthermore,
missing values are not known during training in Collabo-
rative Filtering which makes the task even more difficult.

Our approach includes three ingredients to handle the train-
ing of sparse Autoencoders:

Hybrid Collaborative Filtering with Neural Networks

• inhibit the edges of the input layers by zeroing out
values in the input,

• inhibit the edges of the output layers by zeroing out
back-propagated values,

• use a denoising loss to emphasize rating prediction
over rating reconstruction.

One way to inhibit the input edges is to turn missing val-
ues to zero. To keep the Autoencoder from always return-
ing zero, we also use an empirical loss that disregards the
loss of unknown values. No error is back-propagated for
missing values. Therefore, the error is back-propagated for
actual zero values while it is discarded for missing values.
In other words, missing values do not bring information to
the Network. This operation is equivalent to removing the
neurons with missing values described in (Salakhutdinov
et al., 2007; Sedhain et al., 2015). However, Our method
has important computational advantages because only one
Neural Networks is trained whereas other techniques has to
share the weights among thousands of Networks.

Finally, we take advantage of the masking noise from the
Denoising AutoEncoders (DAE) empirical loss. By simu-
lating missing values in the training process, Autoencoders
are trained to predict them. In Collaborative Filtering, this
prediction aspect is actually the final target. Thus, em-
phasizing the prediction criterion turns the classic unsuper-
vised training of Autoencoders into a simulated supervised
learning. By mixing both the reconstruction and predic-
tion criteria, the training can be thought as a pseudo-semi-
supervised learning. This makes the DAE loss a promising
objective function. After regularization, the final training
loss is:

L2,α,β(x, x̃) = α

 ∑
j∈C(x̃)∩K(x)

[nn(x̃)j − xj]2
+

β

 ∑
j 6∈C(x̃)∩K(x)

[nn(x̃)j − xj]2
+ λ|W|2Fro,

where K(x) are the indices of known values of x, W is
the flatten vector of weights and λ is the regularization
hyperparameter. The full forward/backward process is ex-
plained in Figure 1. Importantly, Autoencoders with sparse
inputs differs from sparse-Autoencoders (Lee et al., 2006)
or Dropout regularization (Srivastava et al., 2014) in the
sense that Sparse Autoencoders and Droupout inhibit the
hidden neurons while inputs/outputs are actually known.

3.2. Autoencoder and Low Rank Matrix Factorization

Autoencoders are actually strongly linked with Matrix Fac-
torization. For an Autoencoder with only one hidden layer

and no output transfer function, the response of the network
can be written as

nn(x) = W2 σ(W1x + b1) + b2,

where W1,W2 are the weights matrices and b1,b2 the
bias terms. Up to the bias term b2, if we replace x by
the representation ui of the user i, we recover a predicted
vector ûi of the form Vūi:

ûi = nn(ui) = W2︸︷︷︸
V

σ(W1ui + b1)︸ ︷︷ ︸
ūi

+b2.

Symmetrically, v̂j has the form Uv̄j:

v̂j = nn(vj) = W′
2︸︷︷︸

U

σ(W′
1vj + b′1)︸ ︷︷ ︸

v̄j

+b′2.

For the Matrix Factorization by ALS ; R̂ is iteratively built
by solving for each row i of U (resp. column j of VT) a
penalized least square regression using the known values of
the ith row of R (resp. jth column of R) as observations
of a scalar product in dimension k of ūi and a column of
VT (resp v̄i and a row of U). An Autoencoder replaces
the regularization introduced by the alternate scheme by a
projection in dimension k composed with the non linearity
σ. This process corresponds to a non linear matrix factor-
ization.

Note that CFN breaks the symmetry between U and V. For
example, while Matrix Factorization approaches learn both
U and V, U-CFN learns V and only indirectly learns U:
U-CFN targets the function to build ūi whatever the row
ui. A direct benefit is that the learned Autoencoder is able
to fill in every vector ui, even if that vector was not in the
training data.

Finally, both non-linear decompositions on rows and
columns are done independently, which means that the
matrix V learned by U-CFN from rows can differ from
the concatenation of vectors v̄j predicted by V-CFN from
columns.

4. Integrating side information
Collaborative Filtering only relies on the feedback of users
regarding a set of items. When additional information is
available for the users and the items, this can sound re-
strictive. One would think that adding more information
can help in several ways: increasing the prediction accu-
racy, speeding up the training, increasing the robustness of
the model, etc. Furthermore, pure Collaborative Filtering
suffers from the cold start problem: when very little infor-
mation is available on an item, Collaborative Filtering will
have difficulties recommending it. When bad recommenda-
tion are provided, the probability to receive valuable feed-
back is lowered leading to a vicious circle for new items.

Hybrid Collaborative Filtering with Neural Networks

A common way to tackle this problem is to add some side
information to ensure a better initialization of the system.
This is known in the recommendation community as hy-
bridization.

The simplest approach to integrate side information is to
append additional user/item bias to the rating prediction
(Koren et al., 2009):

r̂ij = ūTi v̄j + bu,i + bu,j + b′,

where bu,i, bu,j , b′ are respectively the user, item, and
global bias of the Matrix Factorization. Computing these
bias can be done through hand-crafted engineering or Col-
laborative Filtering technique. For instance, one method
is to extend the dense feature vectors by directly append-
ing side information on them (Porteous & A. U. Asuncion,
2010). Therefore, the estimated rating is computed by:

r̂ij = {ūi,xi} ⊗ {v̄j ,yj}
def
= ūT[1:k],iv̄[1:k],j + ūT[k+1:k+p],iyj︸ ︷︷ ︸

bv,j

+ v̄T[k+1:k+p],jxi︸ ︷︷ ︸
bu,i

,

where xi ∈ RP and yj ∈ RQ are respectively a vector rep-
resentation of side information for the user and the item. If
we decompose the previous scalar product, ūT[1:k],iv̄[1:k],j

is the classic Matrix Factorization term, ūT[k+1:k+p],iyj is
the linear regression of the dense user representation and
the item side information, v̄T[k+1:k+p],jxj is the linear re-
gression of the dense item representation and the user side
information. For users, they can encode the genre, the age,
job, circle of friends and so on. For items, they can be tags,
a bag of words etc.

Unfortunately, those methods cannot be directly applied to
Neural Networks because Autoencoders optimize U and
V independently. New strategies must be designed to in-
corporate side information. One notable example for bi-
text word alignment was recently made by (Ammar et al.,
2014).

In our case, the first idea would be to append the side
information to the sparse input vector. For simplicity
purpose, the next equations will only focus on shallow
U-Autoencoders with no output transfer functions. Yet,
this can be extended to more complex Networks and V-
Autoencoders. Therefore, we would get:

nn({ui,xi}) = V σ(W′
1{ui,xi}+ b1) + b2

= ûi,

where W′
1 ∈ Rk×(n+p) is a weight matrix . When no pre-

vious rating exist, it enables the Neural Networks to have at
an input to predict new ratings. With this scenario, side in-
formation is assimilated to pseudo-ratings that will always

Figure 2. Integrating side information. The Network has two in-
puts: the classic Autoencoder rating input and a side information
input. Side information is wired to every neurons in the Network.

exist for every items. However, when the dimension of the
Neural Network input is far greater than the dimension of
the side information, the Autoencoder may have difficulties
to use it efficiently.

Yet, common Matrix Factorization would append side in-
formation to dense feature representations {ūi,xi} rather
than sparse feature representation as we just proposed
{ui,xi}. Thus, one way to reproduce this idea is to inject
the side information to every layer inputs of the Network.

nn({ui,xi}) = V′ {

ū′︷ ︸︸ ︷
σ(W′

1{ui,xi}+ b1),xi}+ b2

= V′ {ū′i,xi}+ b2

= V′[1:k]ū
′
i + V′[k+1:k+p]xi︸ ︷︷ ︸

bu,i

+b2,

where V′ ∈ R(n×k+p) is a weight matrix, V′[1:k] ∈
Rn×k,V′[k+1:k+p] ∈ Rn×p are respectively the submatri-
ces of V′ that contain the columns from 1 to k and k+ 1 to
k + p.

By injecting the side information in every layer, the dy-
namic Autoencoders representation is forced to integrate
this new data. In addition, the output layer computes a lin-
ear regression of the side information. However, we do not
want the side information to overstep the dense rating rep-
resentation. Thus, we enforced the following constraint.
The dimension of the sparse input must be greater than the
dimension of the Autoencoder bottleneck which must be
greater than the dimension of the side information 1:

P << Ku << N and Q << Kv << M.

We finally obtain an Autoencoder which can incorporate
side information and be trained through backpropagation.

1When side information is sparse, the dimension of the side
information can be assimilated to the number of non-zero param-
eters

Hybrid Collaborative Filtering with Neural Networks

5. Experiments
5.1. Benchmark Models

We benchmark CFN with two SVD techniques that are
broadly used in the industry.

Alternating Least Squares with Weighted-λ-Regularization
(ALS-WR) (Zhou et al., 2008) solves the low-rank matrix
factorization problem by alternatively fixing U and V and
solving the resulting linear problem. Tikhonov regulariza-
tion is used as it empirically provides excellent results:

L2 =
∑

(i,j)∈K(R)

(rij−uTi vj)
2+λ(ni‖ui‖2Fro+nj‖vj‖2Fro),

where ni is the number of rating for the ith user and nj is
the number of rating for the jth item. Experiments are run
with the Apache Mahout Software. 2

SVDFeature (Chen et al., 2012) is a Machine Learning
Toolkit for feature-based Collaborative Filtering. He won
the KDD Cup for two consecutive years. Ratings are given
by the following equation:

r̂ =

N+P∑
p

xpb
(u)
p +

M+Q∑
q

yqb
(v)
q +

‖R‖∑
r

zrb
(g)
r

+

(
N+P∑
p

xpup

)T (M+Q∑
q

yqvq

)

where b(u) ∈ RN+P , b(i) ∈ RM+Q, b(g) ∈ R‖R‖ are
the the side information bias, and U ∈ RN+P×K , V ∈
RM+Q×K encode the latent factors. The model parameters
are computed by gradient descent.

5.2. Data

Experiments are conducted on MovieLens and Douban
datasets.

The MovieLens-1M, MovieLens-10M and MovieLens-
20M datasets respectively provide 1/10/20 millions discrete
ratings from 6/72/138 thousands users on 4/10/27 thou-
sands movies. Side information for MovieLens-1M is the
age, sex and gender of the user and the movie category (ac-
tion, thriller etc.). Side information for MovieLens-10/20M
is a matrix of tags T where Tij is the occurrence of the jth

tag for the ith movie and the movie category. No side in-
formation is provided for users.

The Douban dataset (Ma et al., 2011) provides 17 million
discrete ratings from 129 thousands users on 58 thousands
movies. Side information is the bi-directional user/friend
relations for the user. The user/friend relation are treated

2http://mahout.apache.org/

like the matrix of tags from MovieLens. No side informa-
tion is provided for items.

Preprocessing For each of these datasets, the full dataset
is considered and the ratings are normalized from -1 to 1.
We split them into random 80%-20% train-test datasets and
inputs are unbiased before the training process: denoting µ
the mean over the training set, bui the mean of the ith user
and bvi the mean of the vth item, SVD algorithms, U-CFN
and V-CFN respectively learn from runbiasedij = rij + µ−
bui − bvj , runbiasedij = rij − bui and runbiasedij = rij − bvi .

Postprocessing The bias computed on the training set is
added back while evaluating the final RMSE.

Side Information In order to enforce the side informa-
tion constraint, Q � Kv � M , Principal Component
Analysis is performed on the matrix of tags. We keep the
50 greatest eigenvectors3 and normalize them by the square
root of their respective eigenvalue: given T = PDQT

with D the diagonal matrix of eigenvalues sorted in de-
scending order, the movie tags are represented by Y =
PJ×K′D0.5

K′×K′ with K ′ the number of kept eigenvectors.
Binary representation such as the movie category is then
concatenated to Y.

5.3. Error Function

Two Mean Square Errors (MSE) co-exist for Autoencoders
and one must be careful to use the right estimator for bench-
marking. The classic Autoencoder loss estimates the qual-
ity of the input reconstruction:

MSErec(Xtr) =
1

|Rtr|
∑

x∈Xtr

∑
k∈K(x)

[nn(x)k − xk]2,

where |Rtr| is the number of ratings in the training dataset.

In Collaborative Filtering context, while this loss provides
useful information during the training phase, the quality of
the learned Autoencoder is given by its prediction accuracy
for unknown inputs. This prediction accuracy is summed
up couples (xte,xtr) of training-testing examples:

MSEpred(Xte,Xtr) =

1

|Rte|
∑

(xte,xtr)∈(Xte,Xtr)

∑
k∈K(xte)

[nn(xtr)k − xte,k]2.

We use MSEpred to evaluate both the baselines and CFN.

3The number of eigenvalues is arbitrary selected. We do not
focus on optimizing the quality of this representation.

Hybrid Collaborative Filtering with Neural Networks

Table 1. RMSE with a training ratio of 90%/10%. The ++ acronym is appended to algorithms with side information. When no side
information is available, the N/A acronym is used. When no good results were found after two days of computation, the * character is
used.

Algorithms MovieLens-1M MovieLens-10M MovieLens-20M Douban
ALS-WR 0.8526 ± 2.4e-3 0.7949 ± 1.8e-3 0.7864 ± 3.2e-3 0.7117 ± 3.3e-3
SVDFeature 0.8631 ± 2.5e-3 0.7907 ± 8.4e-4 * *
U-CFN 0.8574 ± 2.4e-3 0.7954 ± 7.4e-4 0.7896 ± 1.4e-4 0.7049 ± 2.2e-4
U-CFN++ 0.8572 ± 1.6e-3 N/A N/A 0.7050 ± 1.2e-4
V-CFN 0.8388 ± 2.5e-3 0.7780 ± 5.4e-4 0.7669 ± 2.6e-4 0.6911 ± 3.2e-4
V-CFN++ 0.8377 ± 1.8e-3 0.7764 ± 6.3e-4 0.7762 ± 4.6e-4 N/A

5.4. Training Settings

We train 4-layers Autoencoders for MovieLens-1M and
2-layers Autoencoders for MovieLens-10/20M and the
Douban datasets. The first and second layers have from 500
to 700 hidden neurons. The decoding layers have the same
dimension in the reverse order. Weights are initialized us-
ing the fan-in rule Wij ∼ U

[
− 1√

n
,− 1√

n

]
(LeCun et al.,

1998). Transfer functions are hyperbolic tangents. The
Neural Network is optimized with stochastic backpropaga-
tion with minibatch of size 30 and a weight decay is added
for regularization. Hyperparameters 4 are tuned by a sim-
ple genetic algorithm already used by (Teytaud et al., 2007)
in a different context.

5.5. Results

Table 1 summarizes the RMSE on MovieLens and Douban
datasets. Reported results are computed through k-fold
cross-validation and confidence intervals correspond to a
95% range. To the best of our knowledge, the best results
published regarding MovieLens-1M and MovieLens-10M
are reported by both (Lee et al., 2013; Sedhain et al., 2015)
with a final RMSE of 0.831 ± 0.003 and 0.782 ± 0.003.
These scores are obtained with a training ratio of 90%/10%
and without side information. (Kim & Choi, 2014) use
a scalable version of BPMF with side information and
they report respectively 0.844 and 0.6856 RMSE score
on MovieLens-10M and Douban with a training ratio of
80%/20% while V-CFN++ returns 0.782 and 0.694 with
the same experimental conditions.

5.6. Discussion

V-CFNs have excellent performance in our experiments
for every dataset we run. It is competitive compared
to the state-of-the-art Collaborative Filtering algorithms
and clearly outperforms them for MovieLens-10M. For in-
stance, recent works still reports a global RMSE above 0.8
even using some side information with MovieLens-10M

4Hyperparameters used for the experiments are provided with
the source code.

(Kim & Choi, 2014; Kumar et al., 2014). The confidence
interval of CFN is also low on large datasets which make
him a robust algorithm for Collaborative Filtering.

In the experiments, V-CFN outperforms U-CFN. It sug-
gests that the structure on the items is stronger than the one
on users i.e. it is easier to guess tastes based on movies you
liked than to find some users similar to you. Of course, the
behavior could be different on some other data .

At first sight, the use of side information has a limited im-
pact on the RMSE. This statement has to be mitigated: as
the repartition of known entries in the dataset is not uni-
form, the estimates are biased towards users and items with
a lot of ratings. For theses users and movies, the dataset al-
ready contains a lot of information, thus having some extra
information will have a marginal effect. Users and items
with few ratings should benefit more from some side infor-
mation but the estimation biais hides them.

Table 3. RMSE computed by cluster of items sorted by their re-
spective number of ratings on MovieLens-10M with a training
ratio of 90%/10%. For instance, the first cluster contains the 20%
of items with the lowest number of ratings. The provided figures
are the mean reported through k-cross validation. The last cluster
far outweigh other clusters and hide more subtle results.

Interval V-CFN V-CFN++ Improvement %
0.0-0.2 0.9568 0.9373 1.811
0.2-0.4 0.8746 0.8644 1.215
0.4-0.6 0.8501 0.8446 0.760
0.6-0.8 0.8130 0.8097 0.398
0.8-1.0 0.7675 0.7671 0.052
Full 0.7780 0.7764 0.206

In order to exhibit the utility of side information, we report
in Table 3 the RMSE conditionally to the number of miss-
ing values for items. As expected, the fewer number of rat-
ings for an item, the more important the side information.
A more careful analysis of the RMSE improvement in this
setting shows that the improvement is uniformly distributed
over the users whatever their number of ratings. This corre-
sponds to the fact that the available side information is only
about items. This is very desirable for a real system: the ef-

Hybrid Collaborative Filtering with Neural Networks

Table 2. MAE with a training ratio of 90%/10%.
Algorithms MovieLens-1M MovieLens-10M MovieLens-20M Douban
ALS-WR 0.6773 ± 2.2e-3 0.6199 ± 1.8e-4 0.6104 ± 5.3e-4 0.5669 ± 3.4e-4
U-CFN 0.6727 ± 2.3e-4 0.6089 ± 2.4e-4 0.6004 ± 1.2e-4 0.5561 ± 2.4e-4
U-CFN++ 0.6725 ± 9.7e-4 N/A N/A 0.5563 ± 1.8e-4
V-CFN 0.6564 ± 1.9e-3 0.5951 ± 1.3e-4 0.5824 ± 2.4e-4 0.5442 ± 3.1e-4
V-CFN++ 0.6548 ± 1.3e-3 0.5936 ± 3.6e-4 0.5817 ± 1.9e-4 N/A

fective use of side information to the new items is crucial
to deal with the flow of new products.

In the end, we trained V-CFN on MovieLens-10M with ei-
ther the movie genre or the matrix of tags. Both side in-
formation increase the global RMSE by 0.1% and concate-
nating them increase the final score by a small margin of
0.15%. Therefore, V-CFN could handle the heterogeneity
of side information. However, the U-CFN failed to use the
friendship relationship to increase the RMSE.

6. Remarks
6.1. Source code

Torch is a powerful framework written in Lua to quickly
prototype Neural Networks. It is a widely used (Facebook,
Deep Mind) industry standard. However, Torch lacks some
important basic tools to deal with sparse inputs. Thus, we
develop several new modules to deal with DAE loss, sparse
DAE loss and sparse inputs on both CPU and GPU. They
can easily be plugged into existing code. An out-of-the-box
tutorial is available to directly run the experiments. The
code is freely available on Github and Luarocks. 5

6.2. Scalability

One major problem that most Collaborative Filtering have
to resolve is scalability since dataset often have hundred of
thousands users and items. An efficient algorithm must be
trained in a reasonable amount of time and provide quick
feedback during evaluation time.

Recent advances in GPU computation managed to reduce
the training time of Neural Networks by several orders of
magnitude. However, Collaborative Filtering deals with
sparse data and GPUs are designed to perform well on
dense data. (Salakhutdinov et al., 2007; Sedhain et al.,
2015) face this sparsity constraint by building small dense
Networks with shared weights. Yet, this approach may
lead to important synchronisation latencies. In our case, we
tackle the issue by selectively densifying the inputs just be-
fore sending them to the GPUs cores without modification
of the result of the computation. It introduces an overhead
on the computational complexity but this implementation

5https://github.com/*******

allows the GPUs to work at their full strength. In prac-
tice, vectorial operations overtake the extra cost. Such ap-
proach is an efficient strategy to handle sparse data which
achieves a balance between memory footprint and compu-
tational time. We are able to train Large Neural Networks
within a few minutes as shown in Table 4. At the time of
writing, alternative strategies to train networks with sparse
inputs on GPUs are under development.

6.3. Future Works

Implicit feedback may greatly enhance the quality of Col-
laborative Filtering algorithms (Koren et al., 2009; Rendle,
2010). For instance, Implicit feedback would be incorpo-
rated to CFN by feeding the Network with an additional
binary input. By doing so, (Salakhutdinov et al., 2007) en-
hance the quality of prediction for Restricted Boltzmann
Machine on the Netflix Dataset. Additionally, Content
Based Technique with Deep learning such as (den Oord
et al., 2013; Wang et al., 2014b) would be plugged to CFN.
The idea would be to train a joint Network that would di-
rectly link the raw item features to the ratings such as mu-
sic, pictures or word representations. As a different topic,
V-CFN and U-CFN does not always report the same type of
errors. This is more likely to happen when they are fed with
side information. One interesting work would be to com-
bine a suitable Network that mix them both. Finally, other
metrics exist to estimate the quality of Collaborative Fil-
tering to fit other real-world constraints. Normalized Dis-
counted Cumulative Gain (Järvelin & Kekäläinen, 2002) or
F-score are often sometimes preferred to RMSE/MAE and
should be benchmarked.

7. Conclusion
In this paper, we have introduced a Neural Network archi-
tecture, aka CFN, to perform Collaborative Filtering with
side information. Contrary to other attempts with Neu-
ral Networks, this joint Network integrate side information
and learn a non-linear representation of users or items into
a unique Neural Network. This approach manages to both
beats state of the art results in CF and ease the cold start
problem on the MovieLens and Douban datasets. CFN is
also scalable and robust to deal with large size dataset. We
made several claims that Autoencoders are closely linked

Hybrid Collaborative Filtering with Neural Networks

Table 4. Training time and memory footprint for a 2-layers CFN
without side information. The GPU is a standard GTX 980. T ime
is the average training duration (around 20 epochs/networks). Pa-
rameters are the weight and bias matrices. Memory is retrieved
by the GPU driver during the training. It includes the dataset,
the model parameters and the training buffer. Although the mem-
ory footprint highly depends on the implementation, it provides
a good order of magnitude. Adding side information would in-
crease by fewer than 5% the final time and memory footprint.

Dataset Type # Param Time Memory
MLens-1M V 8M 2m03s 250MiB
MLens-10M V 100M 18m34s 1532MiB
MLens-20M V 194M 34m45s 2905MiB
MLens-1M U 5M 7m17s 262MiB
MLens-10M U 15M 34m51s 543MiB
MLens-20M U 38M 59m35s 1044Mib

to low-rank Matrix Factorization in Collaborative Filtering.
Finally, a reusable source code is provided in Torch and hy-
perparameters are provided to reproduce the results.

References
Adams, R. P. and Murray, G. E. Dahland I. Incor-

porating side information in probabilistic matrix fac-
torization with gaussian processes. arXiv preprint
arXiv:1003.4944, 2010.

Ammar, W., Dyer, C., and Smith, N. A. Conditional ran-
dom field autoencoders for unsupervised structured pre-
diction. In Advances in Neural Information Processing
Systems, pp. 3311–3319, 2014.

Bishop, C. M. Neural networks for pattern recognition.
Oxford university press, 1995.

Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., and
Yong, Y. Svdfeature: a toolkit for feature-based col-
laborative filtering. The Journal of Machine Learning
Research, 13(1):3619–3622, 2012.

den Oord, A. Van, Dieleman, S., and Schrauwen, B. Deep
content-based music recommendation. In Advances in
Neural Information Processing Systems, pp. 2643–2651,
2013.

Dziugaite, G.K. and Roy, D.M. Neural network matrix fac-
torization. arXiv preprint arXiv:1511.06443, 2015.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Interna-
tional conference on artificial intelligence and statistics,
pp. 249–256, 2010.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rec-
tifier neural networks. In International Conference on
Artificial Intelligence and Statistics, pp. 315–323, 2011.

Gomez-Uribe, C. and Hunt, N. The netflix recommender
system: Algorithms, business value, and innovation.
ACM Trans. Manage. Inf. Syst., 6(4):13:1–13:19, 2015.

Järvelin, K. and Kekäläinen, K. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on In-
formation Systems (TOIS), 20(4):422–446, 2002.

Kim, Yong-Deok and Choi, Seungjin. Scalable variational
bayesian matrix factorization with side information. In
Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), Reykjavik,
Iceland, 2014.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, (8):
30–37, 2009.

Kramer, M. A. Nonlinear principal component analysis us-
ing autoassociative neural networks. AIChE journal, 37
(2):233–243, 1991.

Kumar, R., Verma, B. K., and Rastogi, S. S. Social popu-
larity based svd++ recommender system. International
Journal of Computer Applications, 87(14), 2014.

Lawrence, N.D. and Urtasun, R. Non-linear matrix fac-
torization with gaussian processes. In Proceedings of
the 26th Annual International Conference on Machine
Learning, pp. 601–608. ACM, 2009.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

LeCun, Y.A., Bottou, L., Orr, G.B., and Muller, K.R. Effi-
cient backprop. In Neural networks: Tricks of the trade,
pp. 9–48. Springer, 1998.

Lee, H., Battle, A., Raina, R., and Ng, A.Y. Efficient sparse
coding algorithms. In Advances in neural information
processing systems, pp. 801–808, 2006.

Lee, J., Sun, M., and Lebanon, G. A comparative study
of collaborative filtering algorithms. arXiv preprint
arXiv:1205.3193, 2012.

Lee, J., Kim, S., Lebanon, G., and Singerm, Y. Local low-
rank matrix approximation. In Proceedings of The 30th
International Conference on Machine Learning, pp. 82–
90, 2013.

Li, S., Kawale, J., and Fu, Y. Deep collaborative filtering
via marginalized denoising auto-encoder. In Proceed-
ings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 811–820.
ACM, 2015.

Hybrid Collaborative Filtering with Neural Networks

Lops, P., Gemmis, M. De, and Semeraro, G. Content-based
recommender systems: State of the art and trends. In
Recommender systems handbook, pp. 73–105. Springer,
2011.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. Rec-
ommender systems with social regularization. In Pro-
ceedings of the fourth ACM international conference on
Web search and data mining, WSDM ’11, pp. 287–296,
Hong Kong, China, 2011.

Miranda, V., Krstulovic, J., Keko, H., Moreira, C., and
Pereira, J. Reconstructing Missing Data in State Estima-
tion With Autoencoders. IEEE Transactions on Power
Systems, 27(2):604–611, 2012. ISSN 0885-8950.

Mnih, A. and Salakhutdinov, R. Probabilistic matrix fac-
torization. In Advances in neural information processing
systems, pp. 1257–1264, 2007.

Porteous, I. and A. U. Asuncion, M. Welling. Bayesian
matrix factorization with side information and dirichlet
process mixtures. In AAAI, 2010.

Rendle, S. Factorization machines. In Data Mining
(ICDM), 2010 IEEE 10th International Conference on,
pp. 995–1000. IEEE, 2010.

Salakhutdinov, R. and Mnih, A. Bayesian probabilistic ma-
trix factorization using markov chain monte carlo. In
Proceedings of the 25th international conference on Ma-
chine learning, pp. 880–887. ACM, 2008.

Salakhutdinov, R., Mnih, A., and Hinton, G. Restricted
boltzmann machines for collaborative filtering. In Pro-
ceedings of the 24th international conference on Ma-
chine learning, pp. 791–798. ACM, 2007.

Sedhain, S., Menon, A. K., Sanner, S., and Xie, L. Au-
torec: Autoencoders meet collaborative filtering. In Pro-
ceedings of the 24th International Conference on World
Wide Web Companion, pp. 111–112. International World
Wide Web Conferences Steering Committee, 2015.

Srivastava, N, Hinton, G., Krizhevsk, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Ma-
chine Learning Research, 15(1):1929–1958, 2014.

Strub, F. and Mary, J. Collaborative Filtering with Stacked
Denoising AutoEncoders and Sparse Inputs. In NIPS
Workshop on Machine Learning for eCommerce, Mon-
treal, Canada, 2015.

Teytaud, O., S., and Mary, J. Active learning in regres-
sion, with application to stochastic dynamic program-
ming. In International Conference On Informatics in
Control, Automation and Robotics (eds.), ICINCO and
CAP, pp. 373–386, 2007.

Tresp, V., Ahmad, S., and Neuneier, R. Training Neural
Networks with Deficient Data. Advances in Neural In-
formation Processing Systems 6, pp. 128–135, 1994. doi:
10.1.1.23.6971.

Truyen, T. T., Phung, D.Q., and Venkatesh, S. Ordinal
boltzmann machines for collaborative filtering. In Pro-
ceedings of the Twenty-fifth Conference on Uncertainty
in Artificial Intelligence, pp. 548–556. AUAI Press,
2009.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-
zagol, P. Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local
Denoising Criterion. Journal of Machine Learning Re-
search, 11(3):3371–3408, 2010. ISSN 15324435. doi:
10.1111/1467-8535.00290.

Wang, H., Wang, N., and Yeung, D. Y. Collaborative
deep learning for recommender systems. arXiv preprint
arXiv:1409.2944, 2014a.

Wang, H., Wang, N., and Yeung, D. Y. Improving content-
based and hybrid music recommendation using deep
learning. In Proceedings of the ACM International Con-
ference on Multimedia, pp. 627–636. ACM, 2014b.

Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. Large-
scale parallel collaborative filtering for the netflix prize.
In Algorithmic Aspects in Information and Management,
pp. 337–348. Springer, 2008.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the stimulating en-
vironment provided by SequeL research group, Inria and
CRIStAL. This work was supported by French Ministry
of Higher Education and Research, by CPER Nord-Pas de
Calais/FEDER DATA Advanced data science and technolo-
gies 2015-2020, the Projet CHIST-ERA IGLU and by FUI
Hermès. Experiments were carried out using Grid’5000
tested, supported by Inria, CNRS, RENATER and several
universities as well as other organizations.

