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AN INGHAM-MUNTZ TYPE THEOREM AND
SIMULTANEOUS OBSERVATION PROBLEMS

VILMOS KOMORNIK AND GERALD TENENBAUM

1. INTRODUCTION

Non-harmonic Fourier series proved to be very useful in control theory
of partial differential equations [8], [9], [21]. Although less general than
the Hilbert Uniqueness Method (HUM) of J.-L. Lions [17], [18], [13] or the
method based on microlocal analysis [4], in many cases the other methods
fail.

In the case of reversible linear evolutionary systems these methods are
often based on various generalizations of a classical theorem of Ingham [11],
itself a generalization of Parseval’s equality, see, e.g., [10], [14], [16] and their
references. See also |7] for a generalization allowing for complex exponents.

For parabolic systems an equally powerful method is based on the Miintz—
Szasz generalization [19], [24], [6] of the Weierstrass approximation theorem,
see, e.g., [22].

In this paper we establish a theorem combining the estimates of Ingham
and Miintz—Széasz. Moreover, we allow complex exponents instead of purely
imaginary exponents for the Ingham type part or purely real exponents for
the Miintz—Szasz part.

In formulating our theorem we use henceforth Vinogradov’s notation:
f(t) < g(t) (t € E) means that the real or complex quantities f(t) and
g(t) satisfy |f(t)| < Cglg(t)| for all t € E where CF is a constant depending
at most on the set E and possibly various parameters to be specified.

Theorem 1.1. Consider four real sequences

A= Mnezs  €:=(en)nez, M := (up)ken, H:= (Mk)ren

and corresponding complex sequences (zn)nez, (Wi)ken, defined by the for-
mulae

2= A tien (MEZ),  wyi=p+ig (k€N).
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Let v > 0, and assume that the the following conditions hold for some
a>1andp e N*:

— o [Antp — An
: = - —_— 0 27,
(1 1) m rlLIég;{)\n—H )\n} >0, irel%{ P } v

1.2 inf -
(1.2) inf {p+1 — p} >0

(13) >0 (k=0 dooa<tr (u>0,t>1),
g —p|<t
en<<1l (nez), m <1 (keN),

inf |iz, + wg| > 0.
nez, keN

Then the following estimate holds for all T > 2m /v and all square summable
sequences (an)nez, and (bg)ken:

(1.6) /T Z apeint 1+ Z bye Wkt
0

nez keN
Here, the implied constant depends at most on a, v1, v, p, T, and on the
implicit constants in the assumptions.

2
At > " fanl* + > [bel?e T

nel keN

In the second part of this paper we apply Theorem 1.1 to some observ-
ability problems

Simultaneous observability of string—string, string-beam and beam-beam
systems have been investigated in [2], [3], and [23] by applying some weak-
ened Ingham type theorems. A very special case of Theorem 1.1 allows us
to prove the simultaneous observability of some string—heat and beam—heat
systems. We note that for a different kind of wave-heat systems observability
estimates have been obtained by different approaches in [1], [20], [26], [27].

Let us consider a vibrating string of length ¢; and a heated rod of length /s,
both with homogeneous Dirichlet boundary conditions. We assume that they
have a common endpoint, where we may observe only the cumulative action
of them during some time 7. A natural question is whether this observation
allows us to determine the unknown initial data for both equations.

We may model this problem in the following way. For some given real
number k we consider the following two independent problems:

U + 2Kup — Uz =0 in (0,41) x (0, 00),
(1.7) u(0,t) = u(ly,t) =0 for te[0,00),
u(z,0) = oo(z) and w(z,0) = p1(x) for =z € (0,41),
and
v — Uz, =0 in (0,42) x (0,00),
(1.8) v(0,t) =v(la,t) =0 for te|0,00),
v(z,0) = op(x) for =€ (0,0).
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It is well-known that for any given initial data
00 € H3(0,41), 01 € L*(0,¢1) and og € L*(0,4s),
problem (1.7) has a unique solution satisfying
u € €([0,00); Hy(0,£1)) N €'([0, 00); L*(0, £1))
and problem (1.8) has a unique solution satisfying
v € C([0,00); L(0, £5)).

Furthermore, the Fourier series representation of the solutions shows that
for any fixed T' > 0 the linear maps

(00, 01) = uz(0,-)[0,r)y and oo = vz(0,)|(0,1)
are well defined and continuous from Hg(0,¢1) x L?(0,¢1) to L?(0,T) and

from L?(0,¢3) to L?(0,T), respectively.
We ask whether the linear map

(1.9) (00, 01,00) = (uz +v2)(0,)|0,7)

is one-to-one on H{(0,¢1) x L*(0,¢1) x L*(0,£3).

Since there is a finite propagation speed for the wave equation, this cannot
hold unless T is sufficiently large, more precisely unless T' > 2/1; see, e.g.,
[13, Remark 3.6] for a simple proof even in higher dimension.

In order to formulate our result we expand the initial data into Fourier
series:

oo(z) = Zan sin(nmx /1), o1(x) = Z by, sin(nmx/ly),

n=1 n=1

oo(z) = Z e sin(nmz /ls).

n=1

Proposition 1.2. If |k| < w/l; and T > 2{y, then the linear map (1.9) is
one-to-one.

More precisely, there exists a positive constant cp such that the solutions
of (1.7) and (1.8) satisfy the following estimate:

T
/ 0 (0.1) + 0500 dt > 1 3 (0% anl? + b + 7T/ En2 e, ).
0

n>1

Next we investigate the observability problem when the string is replaced
by a hinged beam, modelled by the following system:

Ut + 2KUp + Uggre = 0 in (0,41) x (0, 00),

w(0,t) = ugx(0,t) =0 for te€[0,00),

u(l1,t) = uge(€1,t) =0 for te€[0,00),

u(z,0) = go(x) and w(x,0) = p1(x) for x € (0,0;)

(1.10)
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We recall that for any given initial data oo € H}(0,¢1) and o1 € H~1(0, 1)
the system (1.10) has a unique solution satisfying
u € €([0,00); Hy (0, 41)) N €*([0,00); H~(0, 1))

Furthermore, for any fixed 7" > 0 the linear map

(00, 01) = uz(0, )’(0 T)

is well defined and continuous from H}(0,¢1) x H=1(0,¢;) to L*(0,T).
We ask whether the linear map

(1.11) (00, 01,00) = (uz + v2)(0,-)|(0,7)

is one-to-one on H}(0,¢1) x H=1(0,¢1) x L*(0,¢3). Since the propagation
speed is infinite for both our beam and heat conduction model, we may
expect observability for arbitrarily small 7" > 0. Indeed, we obtain the
following result.

Proposition 1.3. If |k| < w/l1, then the linear map (1.11) is one-to-one
for any fixed T > 0.

More precisely, there exists a positive constant cp such that the solutions
of (1.10) and (1.8) satisfy the following estimate:

T
/|w@w+%@m%n
0

> er Y (R lanl® + 072 [ouf? 4+ e T/ B2, )

n>1

Our next applications illustrate the flexibility provided by Theorem 1.1
regarding the complex sequences of the frequencies. We fix two real or com-
plex numbers «, 5 and we consider the following coupled wave—heat system
on some bounded interval (0, ¢):

(Uit — Upw + v =0 in (0,€) x (0,00),

V¢ —Vge + Pfu=0 in (0,¢) x (0, ),

(1.12) u(0,t) = u(¢,t) =v(0,t) =v(¢,t) =0 for ¢ e [0,00),

u(z,0) = oo(z), u(z,0)=p01(x) for x € (0,0),

v(x,0) = op(xz) for =z € (0,0).

Since the parameters «, 8 represent a bounded perturbation of the uncoupled
system, the problem is well posed. More precisely, given any initial data

(e0, 01,00) € Hy(0,6) x L*(0,£) x L*(0, £),
the system has a unique solution satisfying
u € €([0, 00); Hy (0, €)) N €*([0, 00); L*(0,4))

and

v € €([0,00); L(0,0)).
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Given T > 0, we may then ask whether the linear maps

(1.13) (00, 01,70) = uz(0, )| (0,7)
and
(114) (QO?QlaUO) = Uw(oa ')’(O,T)

are one-to-one.

Since we only observe one of the two unknown functions, these properties
cannot hold in the uncoupling case a = 8 = 0.

We will prove the following results, where we use the Fourier coefficients
of the initial data defined by changing ¢; and {5 to £ in the above formulae.

Proposition 1.4. Consider the solutions of the system (1.12) and assume
0 < |aB| < 73/(803). Then the linear maps (1.13) and (1.14) are one-to-one
for any fixed T > 2£.

More precisely, there exists a positive constant cp = ep(a, 8) such that the
solutions of (1.12) satisfy the estimates

T
6 —n2n2 2
| a0, e > ep 37070 T (1 a2 o e )
0

neN

and

T
/ 00, ) dt > er Y eI (02 a4 bl + fen?)
0

neN
Given an interior point z¢ € (0,¢), we may also ask whether the linear
maps
(0, 01, 00) + u(wo, ')|(0,T)
and
(00, 01,00) = v(Zo, )| (0,1)

are one-to-one.

These problems may be solved by a simple adaptation of the proof of
Proposition 1.4, combined with some Diophantine approximation results as,
e.g., in 2], [3] or [14]. We leave the details for the interested reader.

The same questions may be asked for the following coupled beam-heat
system:

Ut + Ugzzr +@v =0 in (0,¢) x (0,00),
Uy —Uge + Bu=0 in (0,¢) x (0,00),
u(0,t) = u(l,t) = uzg(0,t) = ugz(£,t) =0 for ¢t € [0,00),

(
(1.15) v(0,t) =v(l,t) =0 for t€0,00),
u($7 ) QO($)7 ut(x70) = Ql(x) for =z € (07£)7
v(z,0) =op(x) for =z € (0,4).
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Since the parameters «, 5 represent a bounded perturbation of the uncou-

pled system, for any given initial data

(Qo, 01, 00) S H&(O,E) X H_I(O,f) X LQ(O,E),
the system has a unique solution satisfying

u € €([0,00); Hy (0, £)) N € ([0,00); H(0,£))
and

v € €([0,00); L*(0,£)).

Proposition 1.5. Consider the solutions of the system (1.15) and assume
0 < |aB| < 78/{66°(7 + £)}. Then the linear maps (1.13) and (1.14) are
one-to-one for any fized T > 0.

More precisely, there exists a positive constant cp = cp(a, 8) such that the
solutions of (1.15) satisfy the estimates

T
/ [z (0, )% dt > ep 3 m~Sem T/ <n4 lan]? + [ba]? + |cn|2>
0 neN
and

T
/ 020,07 dt > ep > n e T/ (0 ja, P+ b, + Jen]?)
0 neN
The next two sections are devoted to the proof of Theorem 1.1. The
remainder of the paper is devoted to the proof of Propositions 1.2-1.5.
2. A LEMMA FROM COMPLEX ANALYSIS

The following result is a variant (and actually an extension) of Propo-
sition 2 in [12]. We provide a very simple proof, analogous to that of
Lemma 3.3 in [25].

We systematically write a complex number as z = x + iy and let

h(z) = /R h(t)e " dt

denote the Fourier transform of a function h, extended to suitable complex
values of the variable z.

Lemma 2.1. Let 0 < 8 <1 and € > 0. There exists a function h € > (R)
such that supp h C [—¢,¢], h(0) =1, and

(2.1)  h(z) < e Wl (2 e), Rz)>eM2 (zec, |z < ).
Here the implicit constants depend at most upon B8 and €.

Proof. Let p € N*. Put

H(t) := eXp{ - (?lt?)p} <t (/1 H(t) dt>_1.
-1

0 i ¢ > 1,
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We shall see that, for a sufficiently large p, the function ¢ — h(t) :=
(L/e)H(t/e) meets our requirements. We have

1
=L / H (t)e = dt,

and so, for any integer j > 0 and all z = x + iy € C,

ey < 2HIH s

In order to estimate ||H")||o, we consider some ¢ € [0,1] and put ¢ := 1 —¢.
For ¢ €]0, ], w:=t+ e, —1 < ¥ <, we have
2 1 1 1 1
2 — + - oy T 0
1—w l—w 14w p(1—20e") 2—p+dpel
14+0(00) 1405 2{14+0(0)}
+ = :
0 2-0 o(2—0)
This implies, for each fixed p,
8‘%{( 1 )p}: 14+ 0(0) > 1 7
1—w? eP(2—0)P = (30)P
up to selecting § = 9, sufficiently small. Cauchy’s formula then yields
jle1/(o)?
(00)7
a bound clearly also valid for —1 < ¢ < 0 by symmetry. Taking the supremum
in o, assumed at o = l(p/ 7)Y/P, we get, for some suitable constant K,,

[HD (1)) <

IH oo < KGF@HVP (j > 1).

Inserting into (2.2) and choosing j equal to some approximate optimum, for

instance
A ]iz] p/(p+1)
I {e (Kp>

when |z| is sufficiently large, we obtain the expected upper bound in (2.1)
by selecting p sufficiently large.
The lower bound in (2.1) follows immediately from the formula

R 1
Rh(z) = 2L/ H(t) cos(ext) cosh(eyt) dt. O
0

3. PROOF OF THEOREM 1.1

The basic idea of the proof is the construction of a suitable biorthogonal
sequence by using complex analysis tools.

Let g € (271/3,7). By definition, each interval of length pg contains at
most p values of the sequence A. Up to modifying A by inserting some new
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points, we may assume that each interval J, := [rpg, (r + 1)pg), r € Z,
contains exactly p terms from A and that

(3.1) igfé{An+1 An } 71/3 > 0.

Indeed, this may be performed in two steps. First, for each n, we define m,,
by mnvl/?) < A1 — Ap < (myp +1)71/3, and we add the points A, + j71/3,
j=1,...,my,—1. Then we get a sequence with gaps between 1 /3 and 27, /3,
and hence each of the disjoint intervals J, contains at least pg/(2v1/3) > p
elements of the sequence A. We conclude by deleting as many points as
necessary to reach the required goal.

For fixed p, we thus have

zn=ng+0(1) (ne€Z), 7111612%{2”“ —zZn} =2 m/3.

We put

@m(z)::H(1—z_Zm>H Loz 7€),

o1 — 12 Wk

n;Z k>
nF=m
1—2z/z, 12 — wj .
Ui(z):= —_— 1-—2 eN, zeC).
=i (- =) GeNze)
nez I]zio
J

The convergence of the infinite products on the right is immediate, since
each term is 1 + O(k~Y/®). That of the infinite products on the left follows
from the above alteration of the sequence A, as explained in [5], lemma 7,
provided that these products be defined as limits as R — oo of the finite
products for |A,| < R.

We immediately see that
D (2n) = Ppp(—twg) =0 (m,n € Z,n#m, keN),
D, (2m) =1 (m € Z)
Vj(zn) = Wj(—iw) =0 (n€Z, k,jeN, k#j),
U,(—iw;) =1 (j GN)

(3.2)

As a first step, we observe that, still writing z = x + iy, we have for
some suitable ¢; depending only on p and on the implicit constants of our
statement,

(3.3) [1(-2=) <eos)z—z) (z€0).
niz Zn T Zm

Indeed, with an obvious reindexing, we may write the product in the form

H T,T,

n>1
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with Z := (2 — z,,) /g and

Z Z 1Z|
_ S
n+0(1) n+0<

Write Z = X +iY, with, say, X > 0 (the case X < 0 may be dealt with
symmetrically) and let ¢ := | X |. Forn > 1, n # ¢, (¢ + 1), we have

Z? X +1Y|
T ,=11—-—— 1 .
( n>{ +O<n\n—X|+n|Y|>}

We claim that the product, say P,, over n > 1, n # ¢,(q + 1), of the
terms inside curly brackets satisfies the upper bound P, < (1 + |Z|)® for

some constant b depending on our parameters.
First, if X <1, then

P, <exp {O(Z T%)} < (14 [Y))OW,
n>1

T, =1 ) (n€Z%).

n2

since the last sum does not exceed

1 14+ 1Y
-+ > —— <log(1+|Y]) +0(1).

n
1<n<1+]Y| n>14+Y|

If X > 1, we consider in turn the ranges 1 < n < %X, %X <n < %X,
and n > %X: We have

X +1Y| 2
< 2 < log(1 + X),
Z njn — X| +nlY| Z n<<0g( +X)

n<X/2 n<X/2
X+ Y] v 1
1 )
2. nyn—X\+nyY\<<< tx) 2 h+ Y]
X/2<n<3X/2 1<h<X
n#q,q+1
<1 (1 P ) <1
o b
ST Y 1

and

n|n — X |+ n|Y]| n? +n|Y|

n>3X/2 n>X
1 X+
< — —_—
X ot X T
X<n<X+|Y]| n>X+|Y|

< log(1+1Y])+0(1).

Combining these estimates we obtain the claimed upper bound.
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Invoking Euler’s infinite product formula for sin(7Z), and observing that

, (1 Z\(1_ 2 N
ez fui (-2) (- o o) @>1)
(14122 (1~ 227 (@=0)

we readily get (3.3). Indeed, T; T, and T, 417 ,—1 are both bounded above
by fixed a power of 1+ |Z|.
Now, we have

1 o
wzl_w (meZ,keN)
1 — iz, /wg Wi — 12Zm
and
_ |Z_Zm| d
Z—Z t
Zlog(l—!—‘.m|)<<2/ :
= [wr — 12| = o + p

for z € C, where we used the fact that the last inner sum is trivially < ¢%/o—1,
Hence there exists a constant K = K (A, H) such that

B, (2) < emWl/oHKlz—zm]!® (z €C).

Next, we give ourselves a parameter € > 0 and recall the definition of the
function A from Lemma 2.1. We then put

F(2) i= ®p(2)h(z — 2m) (meZ,zeC).
Select 5:=2/(1+ «) in Lemma 2.1. For any integer m € Z, we have

Fon(zm) =1, Fun(zn) = Fp(—iwg) =0 (n€Z,n#m, keN)
Fp(z) < efel#l (z € C), Fo(r) < e~ acle—zml? (x € R),

with T, := 2¢ 4+ 7/g. In the last two upper bounds, implicit constants only
depend on «, 71, v, €, p, and the implicit constants in the statement.

Since F, belongs to L'(R) N L?(R) and has exponential type at most T,
we infer from the Paley—Wiener theorem that it is the Fourier transform of
some function ¢,, with support included in [-7%, T¢], i.e.

T:

F(z) = / om()e™ At (2 €C).

_TE
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In order to obtain an analogous result for ¥;, we first observe that rela-
tion (3.3) with z,, = 0 enables us to write

1-— n .
H,iz/z<<eﬂyl/g(1+yz\)@ (j €N, zeC).
o L +iwi/z,

Indeed, it may be readily checked that the infinite product of the denomina-
tors converges and is bounded from below independently of j: this follows
from the estimates

0, ::1+ZZ (H){HO(WUJ}:W)} (n ez,

w? W,
Il = <1 + n;){l +O(M>} (n € N¥),

where we used the fact that, since p; > 0 for all j and n; remains bounded,
we have |n + iw;| = |n —n; +ipi| > |n| + |w;| for n € Z*.
Furthermore, we have, uniformly with respect to z € C,

— W; | |’LZ le t
| ( 1oz = Wil /
Zog ]wk—w]] Z t—i—]wk—wjl

k>0 k>0
k#j k#j
_ /|zz—wj Z /oo & o< /|zz—wj /oo M &
0 k>0 |wi—wj| (t + 5)2 0 5 (‘9 + t)2 7
k#j

where we have put M;(s) := Z\wk—wj\gs 1 < s'/®. Hence the inner integral
is < t'/*~1 and so
P(j,z) < iz — wj|1/°‘.
Therefore, there exists a constant C' = C'(M, &) such that

U,(z) < (1+ |2|) 1 emlul/atCliz—wi [V (1 4 Mj)qe?rlyl/ﬁ?cliz—wjIl/a

for all z € C. Let us then put
G(2) = W;(2)h(z)/h(—iw;)  (m€Z, z € C).

For any integer j € N, we have

Gj(—iwj) =1, Gj(zp) =Gj(—iwg) =0 (ne€Z,keN, k#j)

Gj(z) <« eTell (z € C), Gj(z) < e~ sellel’ s} (x € R),

with T, := 2e+7/g, and where, as previously, implied constants only depend
on a, V1, v, €, p, and the implicit constants in the statement.

Since, for each j € N, the function G, belongs to L*(R) N L*(R) and has
exponential type at most T¢, it is the Fourier transform of a function 1,
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supported in [T, T¢], i.e
T. .
Gj(z) = Yi(t)e # dt (jeN, z€C).

Now let us consider the functions

— Z aneiznt + Z bke_wkt,

nez k>0
=Y anpa(t) + Y bt (t)
neL k>0

for t € R. We have, using also the Cauchy—Schwarz inequality,

S Janl?+ 3 ol = / 0

nez k>0
T. 1/2 T: 1/2
< 2d 2d> )
<</T5|f(t)\ t) </T5'g“)' '

Moreover, by Plancherel’s formula, still with the notation 8 := 2/(1 + «),

we have
TE
| atwrar= 5 [ )P
_CZ"s

<<Z|aman‘/e ZE{I'Z Z"iﬁ'i_ix ZnLiB}d.fC

m,n

+) |bbyo|e 250 k) / emselel” 4

ik R

< an + 3 e,

nez k=0

where we used the fact that the penultimate integral is

— - B — —m|B /38
<e Be|zn—2zm| <e Bevyi|ln—m|” /3

for some constant B depending only on (5.
Combining the above two inequalities we obtain that

/ Z anet 4+ Z bke_w’“t dt > Z |an\2 + Z \bk]2
Te

nez keN nez keEN
Replacing a,, by a,e**’= and by, by bke_wkTE we get

/QTE D ane’t 43 " be k! dt>>Z]an]2+Z|bk\2e mele,

nez keN neZ keN
Now (1.6) follows easily. Indeed, given T" > 2w/~ arbitrarily, we may
choose g € (271/3,7) such that T > 27 /g, and then select € > 0 such that
T =2T,.
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4. PROOF OF PROPOSITIONS 1.2 AND 1.3

In order to simplify the formulae, we consider only the case ¢ = ¢, = .
The proofs may be extended without any difficulty to the general case.

Proof of Proposition 1.2. Using the Fourier series

(4.1) o1(x Z apsinnx, o1(z) = Z by sinnzx, op(x) = Z Cp, Sinne

n>1 n=1 n>1
of the initial data and writing n, := vn? — k2, we may write the solutions as
sin (tn )
= Z et <an cos (tny) + bn(”)> sin nz
Nk
n=1

and

2
_ —n“t .;
t) = E cne sin nz,

n=1

whence

Uz (0,1) + v,(0,1)

o Z { (nan nb ) e(*l‘i‘i’inn)t
21N,

n=1
4 nan n.bn e(_m—mﬁ)t_i_ncne_n% '
2 21N,

The proposition follows by applying Theorem 1.1 with 2y := 0, and with
2

Zop =Nk + 1K, Zp:i=Ng+Ik, Wy =N

for n € N*. Indeed, the assumptions of the theorem are satisfied with v =1
and o = 2. O

Proof of Proposition 1.3. Using the same Fourier series (4.1) again, but re-
defining n,;, := vn* — k2 we may write the solutions as

i t

= E e Ht <an cos (ngt) + bnsnl(n,{)) sinnz,
Nk

n>1

and

E cne " tsin n,

n>1

whence

Uz (0, ) + v,(0,1)

. Z nan len e(—f‘i'i‘inn)t
22'11,.Q

n>1

T % B nbn e(fnfinn)t_i_ncneant )
2 2in,
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The proposition follows by applying Theorem 1.1 with 2y := 0, and
Zop = —Ng F IR, 2 =Nkt Ik, Wy = n?

for n € N*. Indeed, the assumptions of the theorem are satisfied with arbi-
trarily large v and o = 2. O

5. PROOF OF PROPOSITIONS 1.4 AND 1.5

First we prove Proposition 1.4. Writing ny := 7n/¢ (n > 1), we may
expand the solutions of (1.12) into Fourier series

u(z,t) = Z up (t) sin(nex), v(z,t) = Zvn(t) sin(ngx),
n=1 n=1

where the functions wu, (t), v, (t) are solutions, for each n, of the linear initial
value problem

ull + n?un +av, =0 in (0,00),
(5.1) vl +niv, + PBu, =0 in (0,00),

un(0) = an, ul(0) =by,, v,(0)=cy.
Lemma 5.1. If |af| < 73/(863), then, for each positive integer n, the char-
acteristic equation

Bani 4 niz+(nf—aBf) =0
of (5.1) has three distinct complex T00ts iz_y, iz, and —wy, satisfying
max{|z,n + ng|, |2n — el |wn - nlg}} < m/(20).

Moreover, the triplets of roots corresponding to distinct values of n are dis-
joint.
Proof. Put sy := 7/¢. Rewriting the equation in the form

F(2) = (2 —ing)(z + ing) (2 + ) = o,
it is sufficient by Rouché’s theorem to show that |f(z)| > s7/8 on each of

the three circles of radius sy/2, centered at iny, —in, and —n%.
If |z — ing| = %5y, then

NI

|z +ing| = 2ny — %Sz > 23y
and
’Z +n§| = ‘Tl§ +in4} — %Se >ny — %Sg = %8@,
so that
| (2)] > 3.
Similarly, if |z 4 ing| = Fs¢, then [f(z)| > 2s3.
Finally, if ‘z + n%‘ = s¢/2, then

|2 £ ing| > |nf Fing| — S50 > ne — §se > gse,

so that
1f(2)] > §st. O
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In the remaining of the proof, we assume ¢ = 7 for notational simplicity.
The proof of the general case is the same: we only have to change the
coefficients n to ny everywhere.

It follows from the lemma that the above sequences (z,) and (w,,) satisfy
the hypotheses of Theorem 1.1, and that, for each n > 1, we have

Un(w ::a_nem_nt+_anemnt+_ﬁnefwna
Un(w =:V—nen‘"t4-7ne”"t%-5ne_w"a
with suitable complex coefficients ., By, Yn, 0n. Substituting these expres-
sions into the equations (5.1) we may express these coefficients through a,,,
b, and ¢,
a (=22, +n%) +ay ., =0,
an(—22 +n%) + ay, =0,
Bn(w? +n?) 4 ad, = 0,
Yen(iz—n + n2) + Ba_p, =0,
Yn(izn +n2) + By, = 0,
6n(_wn + n2) + BB =0,
a_p + ap + By = ay,
12 nQ_p + 12,0 — Wy By = by,
Y—n +Vn + On = Cp.
Expressing v_n, Yn, and &, from the first three equations and substituting
their expressions into the last equation, the last three equations become
ap = Q_p + 0y + By,
bp = 12 pQ_p + 120 — Wy Bn,

acy, = (22, —nHa_, + (22 — n®)a, — (w2 4+ n?)B,.

Since |z4n| < n, |wy| < n? and
‘Zin - n2‘ = |24n — 0| - |24n + 1| K n,

it follows that

(5.2) P anl + [baf* + |eal* < 0 |onl® + 0 Jacnf® +n® |Baf”.

Since

u,(0,t) = Z nagent + Z kBre Wkt

nez* keN

we deduce from Theorem 1.1, for each T" > 27, the estimate

T
/ (0, 8)2 dt > S 0 a2+ 3K |G 2 e T
0

nez* keN
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or equivalently

T
/ (0.0 dt > 3" 02 (Joul 4l + |27
0

neN

Combining this with (5.2), the first estimate of Proposition 1.4 follows:

T
/ Jua(0, )2 dt > 3 nSenT <n2|an|2+n2]a_n|2+n8|ﬁn]2)
0

neN
> Z n~Se=pnT <n2 |an|® + |bn|® + ]cn\Q) .
neN

The proof of the second estimate is similar. Considering the same linear
system of nine equations as above, now we start by expressing «,,, a_, and
0By from the three middle equations, and we substitute the results into the
last three equations to obtain

Ban = —y—n(iz—p + n2) — Yn(izn + n2) — Op(—wy, + n2),
Bby, = —v_pniz_n(iz_p + n2) — Ynizn(izn + n2) + dpwn (—wy, + n2),
Cp = "Y—n + Y0+ 571

Similarly to above, using also the relation ’wn — n2| < 1, we infer that

(5.3) n? |an|2 + |bn‘2 + ‘Cn|2 <n’ |’Yn‘2 +n° |'Y—n|2 +nt ‘5n|2 :

=) et 4y ke,

nez* keN

Since

we deduce from Theorem 1.1, for each T' > 2, the validity of the estimate

/ 00,0 dt > >0 (Il + [r-al” + 10?77 .
0

neN

Combining this with (5.3) the second estimate of Proposition 1.4 follows:

/\vat dt > e “"T(nﬁmﬁ+n6w_nl2+n4lén\2)
neN

> Z n~teHnT (n2 |an|® + |bn]? + ]cn]2) .
neN

Now we turn to the proof of Proposition 1.5. We retain the notations
s¢ = w/¢ and ny := nsy. Expanding the solutions of (1.15) into Fourier
series

= Z un(t) sin(ngx), v(x,t) = Zvn(t) sin(ngz),

n>1 n=1
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we see that, for each n, the functions u,(t), v,(t) are solutions of the linear
initial value problem

ull + nju, + av, =0 in  (0,00),
(5.4) vl +n2v, + Bu, =0 in (0,00),
un(0) = an, u,(0) =by, v,(0)=cy.

The following proof is a variant of Lemma 5.1.

Lemma 5.2. If |afB] < s8/(6 + 6sy), then, for each positive integer n, the
characteristic equation

B ani+niz+ (nf —aBf) =0
of (5.4) has three distinct real or complex ro0ts iz—_y,, iz, and —wy, satisfying

)

max{‘z,n+n§ znfn%‘ , ‘wn—nﬂ} < s7/(1+ sp).

Moreover, the triplets of roots corresponding to distinct values of n are dis-
joint.
Proof. Put € := s7/(1 4 s;) and observe that |m7 — n?| > 2e for m > 1,
n = 1, m # m. Rewriting the equation in the form

f(2) = (2 = inf)(z +in})(z + nf) = af,

we infer from Rouché’s theorem that it is sufficient to show that the lower
bound |f(z)| > s}e/6 holds on each of the three circles of radius e centered
at in%, —in% and —n%.

If }z—in?‘ = ¢, then }z+inf‘ > 2n§ —e> s% and
|z +ng| > |nf +ing| — 5§ > (V2 —1)s2,

so that |f(2)] > (V2 — 1)es} > es}/6.
Similarly, if |z + ing| = ¢, then |f(2)] > es}/6.
Finally, if ‘z + n%‘ = ¢, then

|z £ing| > |nf Finj| —e > V2n] — 5] > (V2—1)s{,
so that |f(2)] > (V2 — 1)%es} > e5}/6. O
For the completion of the proof, let us assume again for notational sim-
plicity that £ = 7.
It follows from the lemma that the above sequences (z,) and (wy,) satisfy

the hypotheses of Theorem 1.1 for any fixed T' > 0, and that, for each n > 1,
we have

’LLn(t) — a,neiz*"t + anez’znt + Bne—wnt7

Un (t) = ’Y—neiz_nt + ’Yneiznt + 5ne7wnt,
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with suitable complex coefficients ., By, Yn, On. Substituting these expres-
sions into the equations (5.4) we may express these coefficients in terms of
Gn, by and c;,:
a,n(—zgn +nt) +ay_, =0,
an(—zi +nf) 4+ ay, =0,
Bn(w? +nt) 4+ ad, =0,
Y—n(iz—pn + n2) + fa—n =0,
Yn(izn + n2) + Bay, =0,
Sn(—wp +n%) + BB, =0,
a_p + ap + By = ay,
12_p0i_p + 12000 — WpBn = by,
Y—n + Yn + 0n = cn.

Adapting the proof of the previous proposition we now obtain:

(5.5) n* |an? 4 |bn)? + el < 0t on]? + 0t a2 4 n® [Ba)%;
(5.6)  n*anl® + [bal® + cnl® < 0B Jynl® 4+ 08 yon|? + 0t (6]

Since

t) = Z naget + Z kBe” Wkt

nez* keN

we deduce from Theorem 1.1, for each T > 0, the validity of the estimate

T
/ Jug (0, 8)* dt > " n? <|an\2 + an)® + |8l e*“"T>.
0

neN

Combining this with (5.5) the first estimate of Proposition 1.5 follows:

T
| 0.0 dt > Ym0 T (i g2t a4 1 |5f7)
0

neN

> Z nSe=#nT <n4 |an|2 + |bn|2 + ]cn|2) )

neN
Similarly, since
_ iznt —wgt
= nype”"t + kope ,
nez* keN

applying Theorem 1.1 we conclude for each T' > 0 the estimate

/\Um()t dt>> > " n? (m +!7n|+!5\eunT)

neN
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Combining this with (5.6) the second estimate of Proposition 1.5 follows:

T
/ [0, dt > > 00T (n® [y 4 n® [y + 1 |6
0 neN

> Y nbemnT (n4 lan|? + [ba]® + |cn|2) .
neN
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