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AN INGHAM–MÜNTZ TYPE THEOREM AND
SIMULTANEOUS OBSERVATION PROBLEMS

VILMOS KOMORNIK AND GÉRALD TENENBAUM

1. Introduction

Non-harmonic Fourier series proved to be very useful in control theory
of partial differential equations [8], [9], [21]. Although less general than
the Hilbert Uniqueness Method (HUM) of J.-L. Lions [17], [18], [13] or the
method based on microlocal analysis [4], in many cases the other methods
fail.

In the case of reversible linear evolutionary systems these methods are
often based on various generalizations of a classical theorem of Ingham [11],
itself a generalization of Parseval’s equality, see, e.g., [10], [14], [16] and their
references. See also [7] for a generalization allowing for complex exponents.

For parabolic systems an equally powerful method is based on the Müntz–
Szász generalization [19], [24], [6] of the Weierstrass approximation theorem,
see, e.g., [22].

In this paper we establish a theorem combining the estimates of Ingham
and Müntz–Szász. Moreover, we allow complex exponents instead of purely
imaginary exponents for the Ingham type part or purely real exponents for
the Müntz–Szász part.

In formulating our theorem we use henceforth Vinogradov’s notation:
f(t) � g(t) (t ∈ E) means that the real or complex quantities f(t) and
g(t) satisfy |f(t)| 6 CE |g(t)| for all t ∈ E where CE is a constant depending
at most on the set E and possibly various parameters to be specified.

Theorem 1.1. Consider four real sequences

Λ := (λn)n∈Z, E := (εn)n∈Z, M := (µk)k∈N, H := (ηk)k∈N

and corresponding complex sequences (zn)n∈Z, (wk)k∈N, defined by the for-
mulae

zn := λn + iεn (n ∈ Z), wk := µk + iηk (k ∈ N).
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2 V. KOMORNIK AND G. TENENBAUM

Let γ > 0, and assume that the the following conditions hold for some
α > 1 and p ∈ N∗:

γ1 := inf
n∈Z
{λn+1 − λn} > 0, inf

n∈Z

{λn+p − λn
p

}
> γ,(1.1)

inf
k∈N
{µk+1 − µk} > 0(1.2)

µk > 0 (k > 0),
∑

|µk−µ|6t

1� t1/α (µ > 0, t > 1),(1.3)

εn � 1 (n ∈ Z), ηk � 1 (k ∈ N),(1.4)
inf

n∈Z, k∈N
|izn ± wk| > 0.(1.5)

Then the following estimate holds for all T > 2π/γ and all square summable
sequences (an)n∈Z and (bk)k∈N:

(1.6)
∫ T

0

∣∣∣∣∑
n∈Z

aneiznt +
∑
k∈N

bke
−wkt

∣∣∣∣2 dt�
∑
n∈Z
|an|2 +

∑
k∈N
|bk|2e−µkT .

Here, the implied constant depends at most on α, γ1, γ, p, T , and on the
implicit constants in the assumptions.

In the second part of this paper we apply Theorem 1.1 to some observ-
ability problems

Simultaneous observability of string–string, string–beam and beam–beam
systems have been investigated in [2], [3], and [23] by applying some weak-
ened Ingham type theorems. A very special case of Theorem 1.1 allows us
to prove the simultaneous observability of some string–heat and beam–heat
systems. We note that for a different kind of wave-heat systems observability
estimates have been obtained by different approaches in [1], [20], [26], [27].

Let us consider a vibrating string of length `1 and a heated rod of length `2,
both with homogeneous Dirichlet boundary conditions. We assume that they
have a common endpoint, where we may observe only the cumulative action
of them during some time T . A natural question is whether this observation
allows us to determine the unknown initial data for both equations.

We may model this problem in the following way. For some given real
number κ we consider the following two independent problems:

(1.7)


utt + 2κut − uxx = 0 in (0, `1)× (0,∞),

u(0, t) = u(`1, t) = 0 for t ∈ [0,∞),

u(x, 0) = %0(x) and ut(x, 0) = %1(x) for x ∈ (0, `1),

and

(1.8)


vt − vxx = 0 in (0, `2)× (0,∞),

v(0, t) = v(`2, t) = 0 for t ∈ [0,∞),

v(x, 0) = σ0(x) for x ∈ (0, `2).
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It is well-known that for any given initial data

%0 ∈ H1
0 (0, `1), %1 ∈ L2(0, `1) and σ0 ∈ L2(0, `2),

problem (1.7) has a unique solution satisfying

u ∈ C([0,∞);H1
0 (0, `1)) ∩ C1([0,∞);L2(0, `1))

and problem (1.8) has a unique solution satisfying

v ∈ C([0,∞);L2(0, `2)).

Furthermore, the Fourier series representation of the solutions shows that
for any fixed T > 0 the linear maps

(%0, %1) 7→ ux(0, ·)|(0,T ) and σ0 7→ vx(0, ·)|(0,T )
are well defined and continuous from H1

0 (0, `1) × L2(0, `1) to L2(0, T ) and
from L2(0, `2) to L2(0, T ), respectively.

We ask whether the linear map

(1.9) (%0, %1, σ0) 7→ (ux + vx)(0, ·)|(0,T )
is one-to-one on H1

0 (0, `1)× L2(0, `1)× L2(0, `2).
Since there is a finite propagation speed for the wave equation, this cannot

hold unless T is sufficiently large, more precisely unless T > 2`1; see, e.g.,
[13, Remark 3.6] for a simple proof even in higher dimension.

In order to formulate our result we expand the initial data into Fourier
series:

%0(x) :=
∑
n>1

an sin(nπx/`1), %1(x) :=
∑
n>1

bn sin(nπx/`1),

σ0(x) :=
∑
n>1

cn sin(nπx/`2).

Proposition 1.2. If |κ| < π/`1 and T > 2`1, then the linear map (1.9) is
one-to-one.

More precisely, there exists a positive constant cT such that the solutions
of (1.7) and (1.8) satisfy the following estimate:∫ T

0
|ux(0, t) + vx(0, t)|2 dt > cT

∑
n>1

(
n2 |an|2 + |bn|2 + e−n

2π2T/`22n2 |cn|2
)
.

Next we investigate the observability problem when the string is replaced
by a hinged beam, modelled by the following system:

(1.10)


utt + 2κut + uxxxx = 0 in (0, `1)× (0,∞),

u(0, t) = uxx(0, t) = 0 for t ∈ [0,∞),

u(`1, t) = uxx(`1, t) = 0 for t ∈ [0,∞),

u(x, 0) = %0(x) and ut(x, 0) = %1(x) for x ∈ (0, `1)
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We recall that for any given initial data %0 ∈ H1
0 (0, `1) and %1 ∈ H−1(0, `1)

the system (1.10) has a unique solution satisfying

u ∈ C([0,∞);H1
0 (0, `1)) ∩ C1([0,∞);H−1(0, `1))

Furthermore, for any fixed T > 0 the linear map

(%0, %1) 7→ ux(0, ·)|(0,T )
is well defined and continuous from H1

0 (0, `1)×H−1(0, `1) to L2(0, T ).
We ask whether the linear map

(1.11) (%0, %1, σ0) 7→ (ux + vx)(0, ·)|(0,T )
is one-to-one on H1

0 (0, `1) × H−1(0, `1) × L2(0, `2). Since the propagation
speed is infinite for both our beam and heat conduction model, we may
expect observability for arbitrarily small T > 0. Indeed, we obtain the
following result.

Proposition 1.3. If |κ| < π/`1, then the linear map (1.11) is one-to-one
for any fixed T > 0.

More precisely, there exists a positive constant cT such that the solutions
of (1.10) and (1.8) satisfy the following estimate:∫ T

0
|ux(0, t) + vx(0, t)|2 dt

> cT
∑
n>1

(
n2 |an|2 + n−2 |bn|2 + e−n

2π2T/`22n2 |cn|2
)
.

Our next applications illustrate the flexibility provided by Theorem 1.1
regarding the complex sequences of the frequencies. We fix two real or com-
plex numbers α, β and we consider the following coupled wave–heat system
on some bounded interval (0, `):

(1.12)



utt − uxx + αv = 0 in (0, `)× (0,∞),

vt − vxx + βu = 0 in (0, `)× (0,∞),

u(0, t) = u(`, t) = v(0, t) = v(`, t) = 0 for t ∈ [0,∞),

u(x, 0) = %0(x), ut(x, 0) = %1(x) for x ∈ (0, `),

v(x, 0) = σ0(x) for x ∈ (0, `).

Since the parameters α, β represent a bounded perturbation of the uncoupled
system, the problem is well posed. More precisely, given any initial data

(%0, %1, σ0) ∈ H1
0 (0, `)× L2(0, `)× L2(0, `),

the system has a unique solution satisfying

u ∈ C([0,∞);H1
0 (0, `)) ∩ C1([0,∞);L2(0, `))

and
v ∈ C([0,∞);L2(0, `)).
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Given T > 0, we may then ask whether the linear maps

(1.13) (%0, %1, σ0) 7→ ux(0, ·)|(0,T )
and

(1.14) (%0, %1, σ0) 7→ vx(0, ·)|(0,T )
are one-to-one.

Since we only observe one of the two unknown functions, these properties
cannot hold in the uncoupling case α = β = 0.

We will prove the following results, where we use the Fourier coefficients
of the initial data defined by changing `1 and `2 to ` in the above formulae.

Proposition 1.4. Consider the solutions of the system (1.12) and assume
0 < |αβ| 6 π3/(8`3). Then the linear maps (1.13) and (1.14) are one-to-one
for any fixed T > 2`.

More precisely, there exists a positive constant cT = cT (α, β) such that the
solutions of (1.12) satisfy the estimates∫ T

0
|ux(0, t)|2 dt > cT

∑
n∈N

n−6e−π
2n2T/`2

(
n2 |an|2 + |bn|2 + |cn|2

)
and ∫ T

0
|vx(0, t)|2 dt > cT

∑
n∈N

n−4e−π
2n2T/`2

(
n2 |an|2 + |bn|2 + |cn|2

)
.

Given an interior point x0 ∈ (0, `), we may also ask whether the linear
maps

(%0, %1, σ0) 7→ u(x0, ·)|(0,T )
and

(%0, %1, σ0) 7→ v(x0, ·)|(0,T )
are one-to-one.

These problems may be solved by a simple adaptation of the proof of
Proposition 1.4, combined with some Diophantine approximation results as,
e.g., in [2], [3] or [14]. We leave the details for the interested reader.

The same questions may be asked for the following coupled beam-heat
system:

(1.15)



utt + uxxxx + αv = 0 in (0, `)× (0,∞),

vt − vxx + βu = 0 in (0, `)× (0,∞),

u(0, t) = u(`, t) = uxx(0, t) = uxx(`, t) = 0 for t ∈ [0,∞),

v(0, t) = v(`, t) = 0 for t ∈ [0,∞),

u(x, 0) = %0(x), ut(x, 0) = %1(x) for x ∈ (0, `),

v(x, 0) = σ0(x) for x ∈ (0, `).



6 V. KOMORNIK AND G. TENENBAUM

Since the parameters α, β represent a bounded perturbation of the uncou-
pled system, for any given initial data

(%0, %1, σ0) ∈ H1
0 (0, `)×H−1(0, `)× L2(0, `),

the system has a unique solution satisfying

u ∈ C([0,∞);H1
0 (0, `)) ∩ C1([0,∞);H−1(0, `))

and
v ∈ C([0,∞);L2(0, `)).

Proposition 1.5. Consider the solutions of the system (1.15) and assume
0 < |αβ| 6 π6/{6`5(π + `)}. Then the linear maps (1.13) and (1.14) are
one-to-one for any fixed T > 0.

More precisely, there exists a positive constant cT = cT (α, β) such that the
solutions of (1.15) satisfy the estimates∫ T

0
|ux(0, t)|2 dt > cT

∑
n∈N

n−6e−π
2n2T/`2

(
n4 |an|2 + |bn|2 + |cn|2

)
and ∫ T

0
|vx(0, t)|2 dt > cT

∑
n∈N

n−6e−π
2n2T/`2

(
n4 |an|2 + |bn|2 + |cn|2

)
.

The next two sections are devoted to the proof of Theorem 1.1. The
remainder of the paper is devoted to the proof of Propositions 1.2–1.5.

2. A lemma from complex analysis

The following result is a variant (and actually an extension) of Propo-
sition 2 in [12]. We provide a very simple proof, analogous to that of
Lemma 3.3 in [25].

We systematically write a complex number as z = x+ iy and let

ĥ(z) :=

∫
R
h(t)e−itz dt

denote the Fourier transform of a function h, extended to suitable complex
values of the variable z.

Lemma 2.1. Let 0 < β < 1 and ε > 0. There exists a function h ∈ C∞(R)

such that supph ⊂ [−ε, ε], ĥ(0) = 1, and

(2.1) ĥ(z)� e−ε|z|
β+ε|y| (z ∈ C), ĥ(z)� eε|y|/2 (z ∈ C, |x| � 1).

Here the implicit constants depend at most upon β and ε.

Proof. Let p ∈ N∗. Put

H(t) :=

exp
{
−
( 1

1− t2
)p}

if |t| < 1,

0 if |t| > 1,
L :=

(∫ 1

−1
H(t) dt

)−1
.
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We shall see that, for a sufficiently large p, the function t 7→ h(t) :=
(L/ε)H(t/ε) meets our requirements. We have

ĥ(z) = L

∫ 1

−1
H(t)e−iεtz dt,

and so, for any integer j > 0 and all z = x+ iy ∈ C,

(2.2) |ĥ(z)| 6 2L‖H(j)‖∞ eε|y|

(ε|z|)j
·

In order to estimate ‖H(j)‖∞, we consider some t ∈ [0, 1] and put % := 1− t.
For δ ∈]0, 12 ], w := t+ δ%eiϑ, −π < ϑ 6 π, we have

2

1− w2
=

1

1− w
+

1

1 + w
=

1

%(1− δeiϑ)
+

1

2− %+ δ%eiϑ

=
1 +O(δ)

%
+

1 +O(δ)

2− %
=

2{1 +O(δ)}
%(2− %)

.

This implies, for each fixed p,

<
{( 1

1− w2

)p}
=

1 +O(δ)

%p(2− %)p
>

1

(3%)p
,

up to selecting δ = δp sufficiently small. Cauchy’s formula then yields

|H(j)(t)| 6 j! e−1/(3%)
p

(δ%)j
(0 6 t 6 1),

a bound clearly also valid for−1 6 t 6 0 by symmetry. Taking the supremum
in %, assumed at % = 1

3(p/j)1/p, we get, for some suitable constant Kp,

‖H(j)‖∞ 6 Kj
pj
j(p+1)/p (j > 1).

Inserting into (2.2) and choosing j equal to some approximate optimum, for
instance

j :=

⌊
e−1
( |εz|
Kp

)p/(p+1)
⌋

when |z| is sufficiently large, we obtain the expected upper bound in (2.1)
by selecting p sufficiently large.

The lower bound in (2.1) follows immediately from the formula

< ĥ(z) = 2L

∫ 1

0
H(t) cos(εxt) cosh(εyt) dt. �

3. Proof of Theorem 1.1

The basic idea of the proof is the construction of a suitable biorthogonal
sequence by using complex analysis tools.

Let g ∈ (2γ1/3, γ). By definition, each interval of length pg contains at
most p values of the sequence Λ. Up to modifying Λ by inserting some new
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points, we may assume that each interval Jr := [rpg, (r + 1)pg), r ∈ Z,
contains exactly p terms from Λ and that

(3.1) inf
n∈Z
{λn+1 − λn} > γ1/3 > 0.

Indeed, this may be performed in two steps. First, for each n, we definemn

by mnγ1/3 6 λn+1− λn < (mn + 1)γ1/3, and we add the points λn + jγ1/3,
j = 1, . . . ,mn−1. Then we get a sequence with gaps between γ1/3 and 2γ1/3,
and hence each of the disjoint intervals Jr contains at least pg/(2γ1/3) > p
elements of the sequence Λ. We conclude by deleting as many points as
necessary to reach the required goal.

For fixed p, we thus have

zn = ng +O(1) (n ∈ Z), inf
n∈Z
<{zn+1 − zn} > γ1/3.

We put

Φm(z) :=
∏
n∈Z
n6=m

(
1− z − zm

zn − zm

)∏
k>0

1− iz/wk
1− izm/wk

(m ∈ Z, z ∈ C),

Ψj(z) :=
∏
n∈Z

1− z/zn
1− iwj/zn

∏
k>0
k 6=j

(
1− iz − wj

wk − wj

)
(j ∈ N, z ∈ C).

The convergence of the infinite products on the right is immediate, since
each term is 1 + O(k−1/α). That of the infinite products on the left follows
from the above alteration of the sequence Λ, as explained in [5], lemma 7,
provided that these products be defined as limits as R → ∞ of the finite
products for |λn| 6 R.

We immediately see that

(3.2)

Φm(zn) = Φm(−iwk) = 0 (m,n ∈ Z, n 6= m, k ∈ N),

Φm(zm) = 1 (m ∈ Z),

Ψj(zn) = Ψj(−iwk) = 0 (n ∈ Z, k, j ∈ N, k 6= j),

Ψj(−iwj) = 1 (j ∈ N).

As a first step, we observe that, still writing z = x + iy, we have for
some suitable c1 depending only on p and on the implicit constants of our
statement,

(3.3)
∏
n∈Z
n6=m

(
1− z − zm

zn − zm

)
� eπ|y|/g(1 + |z − zm|)c1 (z ∈ C).

Indeed, with an obvious reindexing, we may write the product in the form∏
n>1

TnT−n
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with Z := (z − zm)/g and

Tn := 1− Z

n+O(1)
= 1− Z

n
+O

( |Z|
n2

)
(n ∈ Z∗).

Write Z = X + iY , with, say, X > 0 (the case X 6 0 may be dealt with
symmetrically) and let q := bXc. For n > 1, n 6= q, (q + 1), we have

TnT−n =

(
1− Z2

n2

){
1 +O

(
X + |Y |

n|n−X|+ n|Y |

)}
.

We claim that the product, say Pq, over n > 1, n 6= q, (q + 1), of the
terms inside curly brackets satisfies the upper bound Pq � (1 + |Z|)b for
some constant b depending on our parameters.

First, if X 6 1, then

Pq 6 exp
{
O
(∑
n>1

|Y |+ 1

n2 + n|Y |

)}
� (1 + |Y |)O(1),

since the last sum does not exceed∑
16n61+|Y |

1

n
+

∑
n>1+|Y |

1 + |Y |
n2

6 log(1 + |Y |) +O(1).

If X > 1, we consider in turn the ranges 1 6 n 6 1
2X, 1

2X < n 6 3
2X,

and n > 3
2X: We have∑
n6X/2

X + |Y |
n|n−X|+ n|Y |

6
∑
n6X/2

2

n
� log(1 +X),

∑
X/2<n63X/2
n6=q,q+1

X + |Y |
n|n−X|+ n|Y |

�
(

1 +
|Y |
X

) ∑
16h6X

1

h+ |Y |

� log
(

1 +
X

|Y |+ 1

)
� 1,

and ∑
n>3X/2

X + |Y |
n|n−X|+ n|Y |

�
∑
n>X

X + |Y |
n2 + n|Y |

�
∑

X<n6X+|Y |

1

n
+

∑
n>X+|Y |

X + |Y |
n2

� log(1 + |Y |) +O(1).

Combining these estimates we obtain the claimed upper bound.
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Invoking Euler’s infinite product formula for sin(πZ), and observing that

sinπZ

πZ
�

(1 + |Z|2)
(

1− Z2

q2

)(
1− Z2

(q + 1)2

)
eπ|Y | (q > 1)

(1 + |Z|2)
(
1− Z2

)
eπ|Y | (q = 0),

we readily get (3.3). Indeed, TqT−q and Tq+1T−q−1 are both bounded above
by fixed a power of 1 + |Z|.

Now, we have

1− iz/wk
1− izm/wk

= 1− i(z − zm)

wk − izm
(m ∈ Z, k ∈ N)

and∑
k>0

log
(

1 +
|z − zm|
|wk − izm|

)
�
∑
k>0

∫ |z−zm|
0

dt

t+ µk

�
∫ |z−zm|
0

∑
k>0

1

t+ (k + 1)α
dt� |z − zm|1/α

for z ∈ C, where we used the fact that the last inner sum is trivially� t1/α−1.
Hence there exists a constant K = K(Λ,H) such that

Φm(z)� eπ|y|/g+K|z−zm|
1/α

(z ∈ C).

Next, we give ourselves a parameter ε > 0 and recall the definition of the
function h from Lemma 2.1. We then put

Fm(z) := Φm(z)ĥ(z − zm) (m ∈ Z, z ∈ C).

Select β := 2/(1 + α) in Lemma 2.1. For any integer m ∈ Z, we have

Fm(zm) = 1, Fm(zn) = Fm(−iwk) = 0 (n ∈ Z, n 6= m, k ∈ N)

Fm(z)� eTε|z| (z ∈ C), Fm(x)� e−
1
2
ε|x−zm|β (x ∈ R),

with Tε := 2ε + π/g. In the last two upper bounds, implicit constants only
depend on α, γ1, γ, ε, p, and the implicit constants in the statement.

Since Fm belongs to L1(R) ∩ L2(R) and has exponential type at most T ,
we infer from the Paley–Wiener theorem that it is the Fourier transform of
some function ϕm with support included in [−Tε, Tε], i.e.

Fm(z) =

∫ Tε

−Tε
ϕm(t)e−izt dt (z ∈ C).
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In order to obtain an analogous result for Ψj , we first observe that rela-
tion (3.3) with zm = 0 enables us to write∏

n∈Z

1− z/zn
1 + iwj/zn

� eπ|y|/g(1 + |z|)c1 (j ∈ N, z ∈ C).

Indeed, it may be readily checked that the infinite product of the denomina-
tors converges and is bounded from below independently of j: this follows
from the estimates

θn := 1 +
iwj
zn

=
(

1 +
iwj
n

){
1 +O

( wj
n(|n|+ |wj |)

)}
(n ∈ Z∗),

ϑnϑ−n =

(
1 +

w2
j

n2

){
1 +O

( wj
n(|n|+ |wj |)

)}
(n ∈ N∗),

where we used the fact that, since µj > 0 for all j and ηj remains bounded,
we have |n+ iwj | = |n− ηj + iµj | � |n|+ |wj | for n ∈ Z∗.

Furthermore, we have, uniformly with respect to z ∈ C,

P (j, z) : =
∑
k>0
k 6=j

log
(

1 +
|iz − wj |
|wk − wj |

)
=
∑
k>0
k 6=j

∫ |iz−wj |
0

dt

t+ |wk − wj |

=

∫ |iz−wj |
0

∑
k>0
k 6=j

∫ ∞
|wk−wj |

ds

(t+ s)2
dt�

∫ |iz−wj |
0

∫ ∞
γ

Mj(s) ds

(s+ t)2
dt,

where we have put Mj(s) :=
∑
|wk−wj |6s 1� s1/α. Hence the inner integral

is � t1/α−1 and so
P (j, z)� |iz − wj |1/α.

Therefore, there exists a constant C = C(M, E) such that

Ψj(z)� (1 + |z|)c1eπ|y|/g+C|iz−wj |
1/α � (1 + µj)

c1eπ|y|/g+2C|iz−wj |1/α

for all z ∈ C. Let us then put

Gj(z) := Ψj(z)ĥ(z)/ĥ(−iwj) (m ∈ Z, z ∈ C).

For any integer j ∈ N, we have

Gj(−iwj) = 1, Gj(zn) = Gj(−iwk) = 0 (n ∈ Z, k ∈ N, k 6= j)

Gj(z)� eTε|z| (z ∈ C), Gj(x)� e−
1
3
ε{|x|β+µj} (x ∈ R),

with Tε := 2ε+π/g, and where, as previously, implied constants only depend
on α, γ1, γ, ε, p, and the implicit constants in the statement.

Since, for each j ∈ N, the function Gj belongs to L1(R) ∩ L2(R) and has
exponential type at most Tε, it is the Fourier transform of a function ψj
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supported in [−Tε, Tε], i.e.

Gj(z) =

∫ Tε

−Tε
ψj(t)e

−izt dt (j ∈ N, z ∈ C).

Now let us consider the functions

f(t) :=
∑
n∈Z

aneiznt +
∑
k>0

bke
−wkt,

g(t) :=
∑
n∈Z

anϕn(t) +
∑
k>0

bkψk(t)

for t ∈ R. We have, using also the Cauchy–Schwarz inequality,∑
n∈Z
|an|2 +

∑
k>0

|bk|2 =

∫ Tε

−Tε
f(t)g(t) dt

6

(∫ Tε

−Tε
|f(t)|2 dt

)1/2(∫ Tε

−Tε
|g(t)|2 dt

)1/2

.

Moreover, by Plancherel’s formula, still with the notation β := 2/(1 + α),
we have ∫ Tε

−Tε
|g(t)|2 dt =

1

2π

∫
R
|ĝ(x)|2 dx

�
∑
m,n

|aman|
∫
R

e−
1
2
ε{|x−zn|β+|x−zm|β} dx

+
∑
j,k

|bjbk|e−
1
2
ε(µj+µk)

∫
R

e−
2
3
ε|x|β dx

�
∑
n∈Z
|an|2 +

∑
k>0

|bk|2,

where we used the fact that the penultimate integral is

� e−Bε|zn−zm|
β � e−Bεγ1|n−m|

β/3β

for some constant B depending only on β.
Combining the above two inequalities we obtain that∫ Tε

−Tε

∣∣∣∣∑
n∈Z

aneiznt +
∑
k∈N

bke
−wkt

∣∣∣∣2 dt�
∑
n∈Z
|an|2 +

∑
k∈N
|bk|2.

Replacing an by aneiznTε and bk by bke−wkTε , we get∫ 2Tε

0

∣∣∣∣∑
n∈Z

aneiznt +
∑
k∈N

bke
−wkt

∣∣∣∣2 dt�
∑
n∈Z
|an|2 +

∑
k∈N
|bk|2e−µkTε .

Now (1.6) follows easily. Indeed, given T > 2π/γ arbitrarily, we may
choose g ∈ (2γ1/3, γ) such that T > 2π/g, and then select ε > 0 such that
T = 2Tε.
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4. Proof of Propositions 1.2 and 1.3

In order to simplify the formulae, we consider only the case `1 = `2 = π.
The proofs may be extended without any difficulty to the general case.

Proof of Proposition 1.2. Using the Fourier series

(4.1) %1(x) =
∑
n>1

an sinnx, %1(x) =
∑
n>1

bn sinnx, σ0(x) =
∑
n>1

cn sinnx

of the initial data and writing nκ :=
√
n2 − κ2, we may write the solutions as

u(x, t) =
∑
n>1

e−κt
(
an cos (tnκ) + bn

sin (tnκ)

nκ

)
sinnx

and
v(x, t) =

∑
n>1

cne−n
2t sinnx,

whence

ux(0, t) + vx(0, t)

=
∑
n>1

{(
nan

2
+

nbn
2inκ

)
e(−κ+inκ)t

+

(
nan

2
− nbn

2inκ

)
e(−κ−inκ)t + ncne−n

2t

}
.

The proposition follows by applying Theorem 1.1 with z0 := 0, and with

z−n := −nκ + iκ, zn := nκ + iκ, wn := n2

for n ∈ N∗. Indeed, the assumptions of the theorem are satisfied with γ = 1
and α = 2. �

Proof of Proposition 1.3. Using the same Fourier series (4.1) again, but re-
defining nκ :=

√
n4 − κ2 we may write the solutions as

u(x, t) =
∑
n>1

e−κt
(
an cos (nκt) + bn

sin (nκt)

nκ

)
sinnx,

and
v(x, t) =

∑
n>1

cne−n
2t sinnx,

whence

ux(0, t) + vx(0, t)

=
∑
n>1

{(
nan

2
+

nbn
2inκ

)
e(−κ+inκ)t

+

(
nan

2
− nbn

2inκ

)
e(−κ−inκ)t + ncne−n

2t

}
.
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The proposition follows by applying Theorem 1.1 with z0 := 0, and

z−n := −nκ + iκ, zn := nκ + iκ, wn := n2

for n ∈ N∗. Indeed, the assumptions of the theorem are satisfied with arbi-
trarily large γ and α = 2. �

5. Proof of Propositions 1.4 and 1.5

First we prove Proposition 1.4. Writing n` := πn/` (n > 1), we may
expand the solutions of (1.12) into Fourier series

u(x, t) =
∑
n>1

un(t) sin(n`x), v(x, t) =
∑
n>1

vn(t) sin(n`x),

where the functions un(t), vn(t) are solutions, for each n, of the linear initial
value problem

(5.1)


u′′n + n2`un + αvn = 0 in (0,∞),

v′n + n2`vn + βun = 0 in (0,∞),

un(0) = an, u′n(0) = bn, vn(0) = cn.

Lemma 5.1. If |αβ| 6 π3/(8`3), then, for each positive integer n, the char-
acteristic equation

z3 + n2`z
2 + n2`z + (n4` − αβ) = 0

of (5.1) has three distinct complex roots iz−n, izn and −wn, satisfying
max

{
|z−n + n`| , |zn − n`| ,

∣∣wn − n2` ∣∣} < π/(2`).

Moreover, the triplets of roots corresponding to distinct values of n are dis-
joint.

Proof. Put s` := π/`. Rewriting the equation in the form

f(z) := (z − in`)(z + in`)(z + n2` ) = αβ,

it is sufficient by Rouché’s theorem to show that |f(z)| > s3`/8 on each of
the three circles of radius s`/2, centered at in`, −in` and −n2` .

If |z − in`| = 1
2s`, then

|z + in`| > 2n` − 1
2s` >

3
2s`

and ∣∣z + n2`
∣∣ > ∣∣n2` + in`

∣∣− 1
2s` > n` − 1

2s` >
1
2s`,

so that
|f(z)| > 3

8s
3
` .

Similarly, if |z + in`| = 1
2s`, then |f(z)| > 3

8s
3
` .

Finally, if
∣∣z + n2`

∣∣ = s`/2, then

|z ± in`| >
∣∣n2` ∓ in`∣∣− 1

2s` > n` − 1
2s` >

1
2s`,

so that
|f(z)| > 1

8s
3
` . �



SIMULTANEOUS OBSERVATION 15

In the remaining of the proof, we assume ` = π for notational simplicity.
The proof of the general case is the same: we only have to change the
coefficients n to n` everywhere.

It follows from the lemma that the above sequences (zn) and (wn) satisfy
the hypotheses of Theorem 1.1, and that, for each n > 1, we have

un(t) = α−neiz−nt + αneiznt + βne−wnt,

vn(t) = γ−neiz−nt + γneiznt + δne−wnt,

with suitable complex coefficients αn, βn, γn, δn. Substituting these expres-
sions into the equations (5.1) we may express these coefficients through an,
bn and cn:

α−n(−z2−n + n2) + αγ−n = 0,

αn(−z2n + n2) + αγn = 0,

βn(w2
n + n2) + αδn = 0,

γ−n(iz−n + n2) + βα−n = 0,

γn(izn + n2) + βαn = 0,

δn(−wn + n2) + ββn = 0,

α−n + αn + βn = an,

iz−nα−n + iznαn − wnβn = bn,

γ−n + γn + δn = cn.

Expressing γ−n, γn, and δn from the first three equations and substituting
their expressions into the last equation, the last three equations become

an = α−n + αn + βn,

bn = iz−nα−n + iznαn − wnβn,
αcn = (z2−n − n2)α−n + (z2n − n2)αn − (w2

n + n2)βn.

Since |z±n| � n, |wn| � n2 and∣∣z2±n − n2∣∣ = |z±n − n| · |z±n + n| � n,

it follows that

(5.2) n2 |an|2 + |bn|2 + |cn|2 � n2 |αn|2 + n2 |α−n|2 + n8 |βn|2 .

Since
ux(0, t) =

∑
n∈Z∗

nαneiznt +
∑
k∈N

kβke
−wkt,

we deduce from Theorem 1.1, for each T > 2π, the estimate∫ T

0
|ux(0, t)|2 dt�

∑
n∈Z∗

n2 |αn|2 +
∑
k∈N

k2 |βk|2 e−µkT ,
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or equivalently∫ T

0
|ux(0, t)|2 dt�

∑
n∈N

n2
(
|αn|2 + |α−n|2 + |βn|2 e−µnT

)
.

Combining this with (5.2), the first estimate of Proposition 1.4 follows:∫ T

0
|ux(0, t)|2 dt�

∑
n∈N

n−6e−µnT
(
n2 |αn|2 + n2 |α−n|2 + n8 |βn|2

)
�
∑
n∈N

n−6e−µnT
(
n2 |an|2 + |bn|2 + |cn|2

)
.

The proof of the second estimate is similar. Considering the same linear
system of nine equations as above, now we start by expressing αn, α−n and
βn from the three middle equations, and we substitute the results into the
last three equations to obtain

βan = −γ−n(iz−n + n2)− γn(izn + n2)− δn(−wn + n2),

βbn = −γ−niz−n(iz−n + n2)− γnizn(izn + n2) + δnwn(−wn + n2),

cn = γ−n + γn + δn.

Similarly to above, using also the relation
∣∣wn − n2∣∣� 1, we infer that

(5.3) n2 |an|2 + |bn|2 + |cn|2 � n6 |γn|2 + n6 |γ−n|2 + n4 |δn|2 .

Since
vx(0, t) =

∑
n∈Z∗

nγneiznt +
∑
k∈N

kδke
−wkt,

we deduce from Theorem 1.1, for each T > 2π, the validity of the estimate∫ T

0
|vx(0, t)|2 dt�

∑
n∈N

n2
(
|γn|2 + |γ−n|2 + |δn|2 e−µnT

)
.

Combining this with (5.3) the second estimate of Proposition 1.4 follows:∫ T

0
|vx(0, t)|2 dt�

∑
n∈N

n−4e−µnT
(
n6 |γn|2 + n6 |γ−n|2 + n4 |δn|2

)
�
∑
n∈N

n−4e−µnT
(
n2 |an|2 + |bn|2 + |cn|2

)
.

Now we turn to the proof of Proposition 1.5. We retain the notations
s` := π/` and n` := ns`. Expanding the solutions of (1.15) into Fourier
series

u(x, t) =
∑
n>1

un(t) sin(n`x), v(x, t) =
∑
n>1

vn(t) sin(n`x),
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we see that, for each n, the functions un(t), vn(t) are solutions of the linear
initial value problem

(5.4)


u′′n + n4`un + αvn = 0 in (0,∞),

v′n + n2`vn + βun = 0 in (0,∞),

un(0) = an, u′n(0) = bn, vn(0) = cn.

The following proof is a variant of Lemma 5.1.

Lemma 5.2. If |αβ| < s6`/(6 + 6s`), then, for each positive integer n, the
characteristic equation

z3 + n2`z
2 + n4`z + (n6` − αβ) = 0

of (5.4) has three distinct real or complex roots iz−n, izn, and −wn, satisfying

max
{∣∣z−n + n2`

∣∣ , ∣∣zn − n2` ∣∣ , ∣∣wn − n2` ∣∣} < s2`/(1 + s`).

Moreover, the triplets of roots corresponding to distinct values of n are dis-
joint.

Proof. Put ε := s2`/(1 + s`) and observe that |m2
` − n2` | > 2ε for m > 1,

n > 1, m 6= m. Rewriting the equation in the form

f(z) := (z − in2` )(z + in2` )(z + n2` ) = αβ,

we infer from Rouché’s theorem that it is sufficient to show that the lower
bound |f(z)| > s4`ε/6 holds on each of the three circles of radius ε centered
at in2` , −in2` and −n2` .

If
∣∣z − in2` ∣∣ = ε, then

∣∣z + in2`
∣∣ > 2n2` − ε > s2` and∣∣z + n2`

∣∣ > ∣∣n2` + in2`
∣∣− s2` > (

√
2− 1)s2` ,

so that |f(z)| > (
√

2− 1)εs4` > εs4`/6.
Similarly, if |z + in`| = ε, then |f(z)| > εs4`/6.
Finally, if

∣∣z + n2`
∣∣ = ε, then∣∣z ± in2` ∣∣ > ∣∣n2` ∓ in2` ∣∣− ε > √2n2` − s2` > (

√
2− 1)s2` ,

so that |f(z)| > (
√

2− 1)2εs4` > εs4`/6. �

For the completion of the proof, let us assume again for notational sim-
plicity that ` = π.

It follows from the lemma that the above sequences (zn) and (wn) satisfy
the hypotheses of Theorem 1.1 for any fixed T > 0, and that, for each n > 1,
we have

un(t) = α−neiz−nt + αneiznt + βne−wnt,

vn(t) = γ−neiz−nt + γneiznt + δne−wnt,



18 V. KOMORNIK AND G. TENENBAUM

with suitable complex coefficients αn, βn, γn, δn. Substituting these expres-
sions into the equations (5.4) we may express these coefficients in terms of
an, bn and cn:

α−n(−z2−n + n4) + αγ−n = 0,

αn(−z2n + n4) + αγn = 0,

βn(w2
n + n4) + αδn = 0,

γ−n(iz−n + n2) + βα−n = 0,

γn(izn + n2) + βαn = 0,

δn(−wn + n2) + ββn = 0,

α−n + αn + βn = an,

iz−nα−n + iznαn − wnβn = bn,

γ−n + γn + δn = cn.

Adapting the proof of the previous proposition we now obtain:

n4 |an|2 + |bn|2 + |cn|2 � n4 |αn|2 + n4 |α−n|2 + n8 |βn|2 ;(5.5)

n4 |an|2 + |bn|2 + |cn|2 � n8 |γn|2 + n8 |γ−n|2 + n4 |δn|2 .(5.6)

Since

ux(0, t) =
∑
n∈Z∗

nαneiznt +
∑
k∈N

kβke
−wkt,

we deduce from Theorem 1.1, for each T > 0, the validity of the estimate∫ T

0
|ux(0, t)|2 dt�

∑
n∈N

n2
(
|αn|2 + |α−n|2 + |βn|2 e−µnT

)
.

Combining this with (5.5) the first estimate of Proposition 1.5 follows:∫ T

0
|ux(0, t)|2 dt�

∑
n∈N

n−6e−µnT
(
n4 |αn|2 + n4 |α−n|2 + n8 |βn|2

)
�
∑
n∈N

n−6e−µnT
(
n4 |an|2 + |bn|2 + |cn|2

)
.

Similarly, since

vx(0, t) =
∑
n∈Z∗

nγneiznt +
∑
k∈N

kδke
−wkt,

applying Theorem 1.1 we conclude for each T > 0 the estimate∫ T

0
|vx(0, t)|2 dt�

∑
n∈N

n2
(
|γn|2 + |γ−n|2 + |δn|2 e−µnT

)
.
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Combining this with (5.6) the second estimate of Proposition 1.5 follows:∫ T

0
|vx(0, t)|2 dt�

∑
n∈N

n−6e−µnT
(
n8 |γn|2 + n8 |γ−n|2 + n4 |δn|2

)
�
∑
n∈N

n−6e−µnT
(
n4 |an|2 + |bn|2 + |cn|2

)
.
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