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In this research report, the benefits of channel-output feedback in the Gaussian interference channel (G-IC) are studied under the effect of additive Gaussian noise. Using a linear deterministic (LD) model, the signal to noise ratios (SNRs) in the feedback links beyond which feedback plays a significant role in terms of increasing the individual rates or the sum-rate are approximated. The relevance of this work lies on the fact that it identifies the feedback SNRs for which in any G-IC one of the following statements is true: (a) Feedback does not enlarge the capacity region; (b) Feedback enlarges the capacity region and the sum-rate is higher than the largest sum-rate without feedback; and (c) Feedback enlarges the capacity region but no significant improvement is observed in the sum-rate.

Introduction

The two-user Gaussian interference channel (G-IC) is the simplest channel model that captures the impairments brought by mutual interference into point-to-point communications subject to additive Gaussian noise. The interference channel (IC), in its most general form, was first proposed by Claude E. Shannon in [START_REF] Shannon | Two-way communication channels[END_REF]. The G-IC is a particular case that has been studied by several authors, see for instance [START_REF] Ahlswede | The capacity region of a channel with two senders and two receivers[END_REF][START_REF]A case where interference does not reduce capacity[END_REF][START_REF] Sato | Two-user communication channels[END_REF][START_REF]Interference channels[END_REF][START_REF] Sato | The capacity of the Gaussian interference channel under strong interference[END_REF][START_REF] Han | A new achievable rate region for the interference channel[END_REF][START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF][START_REF] Sason | On achievable rate regions for the Gaussian interference channel[END_REF][START_REF] Kramer | Outer bounds on the capacity of Gaussian interference channels[END_REF][START_REF] Chong | A comparison of two achievable rate regions for the interference channel[END_REF][START_REF] Chong | On the Han-Kobayashi region for the interference channel[END_REF] and references therein. However, despite this active research, the capacity region of the G-IC is characterized only in some special cases [START_REF]A case where interference does not reduce capacity[END_REF]. In general, the capacity region is not known exactly and only approximations to within a constant number of bits per channel-use per user are known [START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF].

On the other hand, channel-output feedback, which consists in letting a transmitter observe the channel-output at its intended receiver, was one of the first models for studying two-way point-to-point communications [START_REF] Shannon | The zero-error capacity of a noisy channel[END_REF]. A G-IC with channel-output feedback is a model in which the backward direction (from receivers to transmitters) is exclusively used to let the transmitters observe the channel-output at the receivers with the goal of increasing the information rate or the reliability in the forward direction (from transmitters to receivers). Note that the backward direction may also be an IC since the point-to-point feedback links might be subject to mutual interference. There are several special cases of channel-output feedback in the G-IC. First, the case in which the observation of the channel-output from the intended receiver is noiseless corresponds to perfect channel-output feedback (POF) [START_REF] Suh | Feedback capacity of the Gaussian interference channel to within 2 bits[END_REF]. Second, the case in which such observation is noisy corresponds to noisy channel-output feedback (NOF) [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF][START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF]. Third, the case in which such observation is a linear combination of the channel-outputs from both receivers subject to additive noise corresponds to wireless channel-output feedback (WOF) [START_REF] Sahai | Capacity of all nine models of channel output feedback for the two-user interference channel[END_REF]. The most general formulation is referred to as general channel-output feedback (GOF) [START_REF] Tuninetti | On interference channel with generalized feedback (IFC-GF)[END_REF][START_REF] Yang | Interference channel with generalized feedback (a.k.a. with source cooperation): Part I: Achievable region[END_REF][START_REF] Tuninetti | An outer bound region for interference channels with generalized feedback[END_REF][START_REF]An outer bound for the memoryless two-user interference channel with general cooperation[END_REF]. Other types of feedback, including a channel-output processing, e.g., signal decoding, are known as rate-limited feedback (RLF) [START_REF] Vahid | Interference channels with rate-limited feedback[END_REF].

This work focuses in the case of G-IC with NOF (G-IC-NOF). One of the main motivations to focus on the G-IC-NOF stems from the recent findings regarding the impact of additive noise in the feedback links. In particular, in [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF] and [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF], it is shown that additive noise in the feedback links can dramatically change the number of generalized degrees of freedom (G-DoF) of the G-IC. In particular, one of the main benefits of feedback is that the number of G-DoF with perfect feedback increases monotonically with the interference to noise ratio (INR) in the very strong interference regime. However, in the presence of additive Gaussian noise in the feedback links, the number of G-DoF is bounded [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF][START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF].

From the discussion above a relevant question arises: "When does channel-output feedback enlarge the capacity region of the G-IC?" This paper provides the answer when feedback links are impaired by noise and free of mutual interference, i.e., G-IC-NOF. The desired answer is of the form: "Implementing channel-output feedback in transmitter-receiver i enlarges the capacity region if the feedback SNR is bigger than SNR * i ", with i ∈ {1, 2} and fixed SNRs and INRs in the forward G-IC. Note that the description of the capacity region of the G-IC-NOF in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF] does not provide an answer of the form mentioned above. An answer in the desired form requires some calculations that, despite the conceptual simplicity of this analysis, are long and tedious. More specifically, the value SNR * i is obtained by comparing the capacity region of the linear deterministic IC (LD-IC) in [START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF] and the capacity region of the LD-IC with noisy channel-output feedback (LD-IC-NOF) in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF] to identify the feedback parameters that ensure strict inclusion of the former into the latter. After, using the fact that the capacity region of the LD-IC-NOF approximates the capacity region of the G-IC-NOF, an approximation of SNR * i is obtained. Solving this problem leads to a handful of equally relevant byproducts to determine whether or not implementing feedback in one of the transmitter-receiver pairs increases any of the individual rates or the sum- The answers to the questions above provide a lot of engineering insights about the benefits of feedback in the G-IC. For instance, all the cases in which feedback, even perfect channel-output feedback, is useless for increasing an individual rate or the sum-rate are identified. Similarly, this work provides guidelines for choosing in which of the point-to-point links feedback should be implemented for increasing either an individual rate or the sum-rate. Interestingly, in some cases, implementing feedback in only one of the transmitter-receiver pairs, despite the additive noise, turns out to be as beneficial as perfect channel-output feedback in both links.
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Channel Models

Gaussian Interference Channels

Consider the two-user G-IC-NOF depicted in Figure 1. Transmitter i, with i ∈ {1, 2}, communicates with receiver i subject to the interference produced by transmitter j, with j ∈ {1, 2}\{i}. There are two independent and uniformly distributed messages, W i ∈ W i , with W i = {1, 2, . . . , 2 N Ri }, where N denotes the fixed block-length in channel uses and R i is the transmission rate in bits per channel use. At each block, transmitter i sends the codeword

X i = (X i,1 , X i,2 , . . . , X i,N ) T ∈ C i ⊆ X N i
, where X i and C i are respectively the channel-input alphabet and the codebook of transmitter i.

The channel coefficient from transmitter i to receiver i is denoted by -→ h ii , the channel coefficient from transmitter j to receiver i is denoted by h ij ; and the channel coefficient from channel-output i to transmitter i is denoted by ←h ii . All channel coefficients are assumed to be non-negative real numbers. At a given channel use n ∈ {1, 2, . . . , N }, the channel output at receiver i is denoted by -→ Y i,n . During channel use n, the input-output relation of the channel model is given by

- → Y i,n = - → h ii X i,n + h ij X j,n + - → Z i,n , (1) 
where -→ Z i,n is a real Gaussian random variable with zero mean and unit variance that represents the noise at the input of receiver i. Let d > 0 be the finite feedback delay measured in channel uses. At the end of channel use n, transmitter i observes ← -Y i,n , which consists of a scaled and noisy version of

- → Y i,n-d . More specifically, ← - Y i,n = ® ← - Z i,n for n ∈ {1,2, . . . , d} ← - h ii - → Y i,n-d + ← - Z i,n , for n ∈ {d+1,d+2, . . . ,N }, (2) 
where ← -Z i,n is a real Gaussian random variable with zero mean and unit variance that represents the noise in the feedback link of transmitter-receiver pair i. The random variables -→ Z i,n and ← -Z i,n are independent and identically distributed. In the following, without loss of generality, the feedback delay is assumed to be one channel use, i.e., d = 1. The encoder of transmitter i is defined by a set of deterministic functions f

(1) i , f (2) i , . . . , f (N ) i , with f (1) i : W i → X i and for all n ∈ {2, 3, . . . , N }, f (n) i : W i × R n-1 → X i , such that X i,1 =f (1) i (W i ) , (3a) 
and for all n ∈ {2, 3, . . . , N },

X i,n =f (n) i Ä W i , ← - Y i,1 , ← - Y i,2 , . . . , ← - Y i,n-1 ä . (3b) 
The components of the input vector X i are real numbers subject to an average power constraint:

1

N N n=1 E X 2 i,n ≤ 1, (4) 
where the expectation is taken over the joint distribution of the message indices W 1 , W 2 , and the noise terms, i.e.,

- → Z 1 , - → Z 2 , ← - Z 1 , and ← - Z 2 .
The dependence of X i,n on W 1 , W 2 , and the previously observed noise realizations is due to the effect of feedback as shown in (2) and (3).

Hence, the decoder of receiver i is defined by a deterministic function ψ i : R N i → W i . At the end of the communication, receiver i uses the vector

- → Y i,1 , - → Y i,2 , . . ., - → Y i,N
T to obtain an estimate of the message index:

W i =ψ i Ä - → Y i,1 , - → Y i,2 , . . . , - → Y i,N ä , (5) 
where W i is an estimate of the message index. The decoding error probability in the two-user G-IC-NOF, denoted by P e (N ), is given by

P e (N )=max Pr Ä " W 1 = W 1 ä , Pr Ä " W 2 = W 2 ä . (6) 
The definition of an achievable rate pair (R 1 , R 2 ) ∈ R 2 + follows:

Definition 1 (Achievable Rate Pairs) A rate pair (R 1 , R 2 ) ∈ R 2 + is achievable if there exists at least one pair of codebooks in X N 1 and in X N 2 with codewords of length N , the corresponding encoding functions f

(1) 1 , f (2) 1 , . . . , f (N ) 1 and f (1) 2 , f (2) 2 , . . . , f (N ) 2
, and the decoding functions ψ 1 and ψ 2 , such that the decoding error probability can be made arbitrarily small by letting the block-length N grow to infinity.

The set of all achievable information rate pairs (R 1 , R 2 ) is known as the information capacity region. The capacity region of a G-IC-NOF is described by six parameters:

--→ SNR i , INR ij and ←--SNR i , with i ∈ {1, 2} and j ∈ {1, 2}\{i}, which are defined as follows:

--→ SNR i = - → h 2 ii , (7) 
INR ij =h 2 ij , and (8) 
←-- SNR i = ← - h 2 ii Ä - → h 2 ii + 2 - → h ii h ij + h 2 ij + 1 ä . (9) 
Given fixed parameters

--→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 , ←-- SNR 1
, and ←--SNR 2 , the capacity region of the G-IC-NOF is approximated to within a constant number of bits by Theorem 4 in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF].

Linear Deterministic Interference Channels

Consider the two-user LD-IC-NOF with parameters -→ n 11 , -→ n 22 , n 12 , n 21 , ←n 11 and ←n 22 depicted in Fig. 2. Parameter -→ n ii represents the number of bit-pipes between transmitter i and receiver i; parameter n ij represents the number of bit-pipes between transmitter j and receiver i; and parameter ←n ii represents the number of bit-pipes between receiver i and transmitter i (feedback). At transmitter i, the channel-input X i,n during channel use n, with n ∈ {1, 2, . . . , N }, is a q-dimensional binary vector X i,n = Ä X

i,n , X

i,n , . . . , X (q) i,n ä T , where

q = max ( - → n 11 , - → n 22 , n 12 , n 21 ) , ( 10 
)
and N is the block-length. At receiver i, the channel-output -→ Y i,n during channel use n is also a

q-dimensional binary vector - → Y i,n = Ä - → Y (1) i,n , - → Y (2) i,n , . . . , - → Y (q) i,n ä T .
Let S be a q × q lower shift matrix of the form:

S =         0 0 0 • • • 0 1 0 0 • • • 0 0 1 0 • • • . . . . . . . . . . . . . . . 0 0 • • • 0 1 0         . ( 11 
)
The input-output relation during channel use n is given by

- → Y i,n =S q-- → n ii X i,n + S q-nij X j,n , (12) 
and the feedback signal ← -Y i,n available at transmitter i at the end of channel use n satisfies

← - Y i,n =S (max( - → n ii,nij )-← - n ii) + -→ Y i,n-d , ( 13 
)
where d is a finite delay, additions and multiplications are defined over the Galois Field of two elements GF(2), and (•) + is the positive part operator.
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Signal

Interference Feedback Without any loss of generality, the feedback delay is assumed to be equal to one channel use. Let W i be the set of message indices of transmitter i. Transmitter i sends the message index W i ∈ W i by sending the codeword X i = (X i,1 , X i,2 , . . . , X i,N ), which is a binary q × N matrix. The encoder of transmitter i can be modeled as a set of deterministic mappings f

(1) i , f (2) i , . . . , f (N ) i , with f (1) i : W i → {0, 1} q and for all n ∈ {2, 3, . . . , N }, f (n) i : W i × {0, 1} q×(n-1) → {0, 1} q , such that X i,1 =f (1) i W i (14a)
and for all n ∈ {2, 3, . . . , N },

X i,n =f (n) i W i , ← - Y i,1 , ← - Y i,2 , . . . , ← - Y i,n-1 . (14b) 
The decoder of receiver i is defined by a deterministic function

ψ i : {0, 1} q×N → W i . At the end of the communication, receiver i uses the sequence Ä - → Y i,1 , - → Y i,2 , . . . , - → Y i,N ä to obtain an estimate W i of the message index W i .
The decoding error probability in the two-user LD-IC-NOF, denoted by P e (N ), is given by [START_REF] Sato | The capacity of the Gaussian interference channel under strong interference[END_REF].

A rate pair (R 1 , R 2 ) ∈ R 2 + is said to be achievable if it satisfies Definition 1.
The set of all achievable information rate pairs (R 1 , R 2 ) is known as the information capacity region and it is characterized by Theorem 1 in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF].

Connections between Linear Deterministic and Gaussian Interference Channels

The capacity region of the G-IC-NOF with parameters

--→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 , ←-- SNR 1 and ←-- SNR 2 can

be approximated by the capacity region of an LD-IC-NOF with parameters

- → n ii = RR n°8862 1 2 log 2 ( --→ SNR i ) ; n ij = 1 2 log 2 (INR ij ) ; ← - n ii = 1 2 log 2 ( ←-- SNR i )
, with i ∈ {1, 2} and j ∈ {1, 2}\{i}. For instance, in the case without feedback, the capacity region of any G-IC with parameters 

--→ SNR 1 > 1, --→ SNR 2 > 1, INR
→ n 11 = 1 2 log 2 ( --→ SNR 1 ) , - → n 22 = 1 2 log 2 ( --→ SNR 2 ) , - → n 12 = 1 2 log 2 ( --→ INR 21 ) , and - → n 21 = 1 2 log 2 ( --→ INR 21 ) (Theorem 2 in [23]
). More specifically, if the capacity region of the G-IC and LD-IC without feedback are denoted by C G and C LD , respectively, the following holds:

C LD ⊆C G + (5, 5), and (15a) 
C G ⊆C LD + (13.6, 13.6). (15b) 
In a more general setting, for instance in the case with noisy channel-output feedback, the LD-IC is known to be a close approximation of the G-IC [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF]. In Section 5, this approximation is used to simplify the identification of the cases in which channel-output feedback, even subject to additive noise, enlarges the capacity region of the G-IC.

3 Main Results

Preliminaries

Let α i ∈ Q, with i ∈ {1, 2} and j ∈ {1, 2} \ {i} be defined as

α i = n ij - → n ii . (16) 
For each transmitter-receiver pair i, there exist five possible interference regimes (IRs), as suggested in [START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF]: the very weak IR (VWIR), i.e., α i 1 2 , the weak IR (WIR), i.e., 1 2 < α i 2 3 , the moderate IR (MIR), i.e., 2 3 < α i < 1, the strong IR (SIR), i.e., 1 α i 2 and the very strong IR (VSIR), i.e., α i > 2. The scenarios in which the desired signal is stronger than the interference (α i < 1), namely the VWIR, the WIR, and the MIR, are referred to as the low-interference regimes (LIRs). Conversely, the scenarios in which the desired signal is weaker than or equal to the interference (α i 1), namely the SIR and the VSIR, are referred to as the high-interference regimes (HIRs).

The main results of this paper are presented using a set of events (Boolean variables) that are determined by the parameters -→ n 11 , -→ n 22 , n 12 , and n 21 . Given a fixed tuple ( -→ n 11 , -→ n 22 , n 12 , n 21 ), the events are defined below:

E 1 : α 1 < 1 ∧ α 2 < 1, (17) 
E 2,i :

α i 1 2 ∧ 1 α j 2, (18) 
E 3,i : α i 1 2 ∧ α j > 2, (19) 
E 4,i : 1 2 < α i 2 3 ∧ α j 1, (20) 
E 5,i : 2 3 < α i < 1 ∧ α j 1, (21) 
E 6,i : 1 2 < α i 1 ∧ α j > 1, (22) 
E 7,i :

α i 1 ∧ α j 1, (23) 
E 8,i : - → n ii > n ji , (24) 
E 9 : - → n 11 + - → n 22 > n 12 + n 21 , (25) 
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E 10,i : - → n ii + - → n jj > n ij + 2n ji , (26) 
E 11,i : - → n ii + - → n jj < n ij . (27) 
In the following, given an event, e.g.

E 8,i : - → n ii > n ji , the notation ‹ E 8,i indicates - → n ii < n ji ; the notation E 8,i indicates - → n ii n ji (logical complement); and the notation Ě8,i indicates - → n ii n ji .
Combining the events ( 17)- [START_REF] Perlaza | Perfect output feedback in the two-user decentralized interference channel[END_REF], five main scenarios are identified:

S 1,i : (E 1 ∧ E 8,i )∨(E 2,i ∧ E 8,i )∨(E 3,i ∧ E 8,i ∧ E 9 )∨(E 4,i ∧ E 8,i ∧ E 9 )∨(E 5,i ∧ E 8,i ∧ E 9 ) , (28) S 2,i : Ä E 3,i ∧ ‹ E 8,j ∧ E 9 ä ∨ Ä E 6,i ∧ ‹ E 8,j ∧ E 9 ä ∨ Ä ‹ E 1 ∧ ‹ E 8,j ä , (29) 
S 3,i : E 1 ∧ E 8,i ∨ E 2,i ∧ E 8,i ∨ E 3,i ∧ Ě8,j ∧ E 8,i ∨ E 4,i ∧ Ě8,j ∧ E 8,i ∨ E 5,i ∧ Ě8,j ∧ E 8,i ∨ E 1 ∧ Ě8,j ∨ (E 7,i ) , (30) 
S 4 : E 1 ∧ E 8,1 ∧ E 8,2 ∧ E 10,1 ∧ E 10,2 , (31) 
S 5 : E 1 ∧ E 11,1 ∧ E 11,2 . (32) 
For all i ∈ {1, 2}, the events S 1,i , S 2,i , S ), due to the effect of channel-output feedback with respect to the case without feedback is

∆ 1 ( ← - n 11 , ← - n 22 )= max 0<R2<R * 2 sup (R1,R2)∈C( ← - n 11, ← - n 22) R 1 - sup (R † 1 ,R2)∈C(0,0) R † 1 and (33) 
∆ 2 ( ← - n 11 , ← - n 22 )= max 0<R1<R * 1 sup (R1,R2)∈C( ← - n 11, ← - n 22) R 2 - sup (R1,R † 2 )∈C(0,0) R † 2 , (34) 
with

R * 1 = sup (r1,r2)∈C(0,0) r 1 and (35) R * 2 = sup (r1,r2)∈C(0,0) r 2 . ( 36 
) RR n°8862
Note that for a fixed i ∈ {1, 2}, ∆ i ( ←n 11 , ←n 22 ) > 0 if and only if it is possible to achieve a rate pair (R 1 , R 2 ) with channel-output feedback such that R i is higher than the maximum rate achievable by transmitter-receiver i without feedback when the rate of transmitter-receiver pair j is fixed at R j . In the following, given fixed parameters ←n 11 and ←n 22 , the statement "the rate R i is improved by using feedback" is used to indicate that ∆ i ( ←n 11 , ←n 22 ) > 0. Alternatively, the maximum improvement of the sum-rate Σ( ←n 11 , ←n 22 ) with respect to the case without feedback is

Σ( ← - n 11 , ← - n 22 )= sup (R1,R2)∈C( ← - n 11, ← - n 22) R 1 + R 2 - sup (R † 1 ,R † 2 )∈C(0,0) R † 1 + R † 2 . ( 37 
)
Note that Σ( ←n 11 , ←n 22 ) > 0 if and only if there exists a rate pair with feedback whose sum is higher than the maximum sum-rate achievable without feedback. In the following, given fixed parameters ←n 11 and ←n 22 , the statement "the sum-rate is improved by using feedback" is used to imply that Σ( ←n 11 , ←n 22 ) > 0. In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e., ←n ii > 0 and ←n jj = 0, then the maximum improvement of the individual rate of transmitter-receiver k, with k ∈ {1, 2}, and the maximum improvement of the sum-rate are denoted by ∆ k ( ←n ii ) and Σ( ←n ii ), respectively. Hence, this notation

∆ k ( ← - n ii ) replaces either ∆ k ( ← - n 11 , 0) or ∆ k (0, ← - n 22
), when i = 1 or i = 2, respectively. The same holds for the notation Σ( ← -

n ii ) that replaces Σ( ← - n 11 , 0) or Σ(0, ← - n 22
), when i = 1 or i = 2, respectively. 

Enlargement of the Capacity Region

← - n * ii = ® max Ä n ji , ( - → n ii -n ij ) + ä if S 1,i = True - → n jj + ( - → n ii -n ij ) + if S 2,i = True. (38) 
Assume that S 3,i = True. Then, for all ← -

n ii ∈ N, C 0, 0 = C ← - n ii . Assume that either S 1,i = True or S 2,i = True. Then, for all ← - n ii ← - n * ii , C 0, 0 = C ← - n ii and for all ← - n ii > ← - n * ii , C 0, 0 ⊂ C ← - n ii .
Proof: The proof of Theorem 1 is presented in Appendix A. Theorem 1 shows that under event S 3,i in (30), implementing feedback in transmitter-receiver pair i, with any ←n ii > 0 and ←n jj = 0, does not enlarge the capacity region. Note that when both E 8,i and ‹ E 8,j hold false, then both S 1,i and S 2,i hold false, which implies that S 3,i holds true (Corollary 1). The following remark is a consequence of this observation.

Remark 1: A necessary but not sufficient condition for enlarging the capacity region by using feedback in transmitter-receiver pair i is: there exists at least one transmitter able to send more information bits to receiver i than to receiver j, i.e., -

→ n ii > n ji (Event E 8,i ) or n ij > - → n jj (Event ‹ E 8,j ).

RR n°8862

Alternatively, under events S 1,i in (28) and S 2,i in (29), the capacity region can be enlarged when ← -

n ii > ← - n * ii .
It is important to highlight that in the cases in which feedback enlarges the capacity region of the two-user LD-IC-NOF, that is, in events S 1,1 , S 2,1 , S 1,2 or S 2,2 , for all i ∈ {1, 2} and j ∈ {1, 2} \ {i}, the following is always true :

← - n * ii > ( - → n ii -n ij ) + . ( 39 
)
Essentially, the inequality in (39) unveils a necessary but not sufficient condition to enlarge the capacity region using channel-output feedback. This condition is that for at least one i ∈ {1, 2}, with j ∈ {1, 2} \ {i}, transmitter i decodes a subset of the information bits sent by transmitter j at each channel use.

Another interesting observation is that the threshold ←n * ii beyond which feedback is useful is different under event S 1,i in (28) and event S 2,i in (29). In general when S 1,i holds true, the enlargement of the capacity region is due to the fact that feedback allows using interference as side information [START_REF] Shannon | Channels with side information at the transmitter[END_REF]. Alternatively, when S 2,i in (29) holds true, the enlargement of the capacity region occurs as a consequence of the fact that some of the bits that cannot be transmitted directly from transmitter j to receiver j, can arrive to receiver j via an alternative path: transmitter j -receiver i -transmitter i -receiver j. Both scenarios, interference as side information and alternative path, are extensively discussed in [START_REF] Suh | Feedback capacity of the Gaussian interference channel to within 2 bits[END_REF], [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF], and [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF]. 

Improvement of the

n † ii = max Ä n ji , ( - → n ii -n ij ) + ä . ( 40 
)
Assume that either S 2,i = True or S 3,i = True. Then, for all ← -

n ii ∈ N, ∆ i ( ← - n ii ) = 0. Assume that S 1,i = True. Then, when ← - n ii ← - n † ii , it holds that ∆ i ( ← - n ii ) = 0; and when ← - n ii > ← - n † ii , it holds that ∆ i ( ← - n ii ) > 0.
Proof: The proof of Theorem 2 is presented in Appendix B. Theorem 2 highlights that under events S 2,i in (29) and S 3,i in (30), the individual rate R i cannot be improved by using feedback in transmitter-receiver pair i, i.e., ∆ i ( ←n ii ) = 0.

Alternatively, under event S 1,i in (28), the individual rate R i can be improved, i.e., ∆ i ← -

n ii > 0, whenever ← - n ii > max Ä n ji , ( - → n ii -n ij ) + ä
. Hence, given the definition of S 1,i , the following remark is relevant.

Remark 2: A necessary but not sufficient condition for ∆ i ←n ii > 0 is: the number of bit-pipes from transmitter i to receiver i is higher than the number of bit-pipes from transmitter i to receiver j, i.e., -→ n ii > n ji (Event E 8,i ) 

Improvement of the

n ii ∈ N, ∆ j ( ← - n ii ) = 0. Assume that either S 1,i = True or S 2,i = True. Then, when ← - n ii ← - n *
ii , it holds that ∆ j ( ←n ii ) = 0; and when ← -

n ii > ← - n * ii , it holds that ∆ j ( ← - n ii ) > 0.
Proof: The proof of Theorem 3 follows along the same lines of the proof of Theorem 2 in Appendix B.

Theorem 3 shows that under event S 3,i in (30), implementing feedback in transmitter-receiver pair i does not bring any improvement on the rate R j . This is in line with the results of Theorem 1. In contrast, under events S 1,i in (28) and S 2,i in (29), the individual rate R j can be improved, i.e., ∆ j ( ← -

n ii ) > 0 for all ← - n ii > ← - n * ii .
From the definition of events S 1,i and S 2,i , the following remark holds:

Remark 3: A necessary but not sufficient condition for ∆ j ←n ii > 0 is: there exists at least one transmitter able to send more information bits to receiver i than to receiver j, i.e., -→ n ii > n ji

(Event E 8,i ) or n ij > - → n jj (Event ‹ E 8,j
). It is important to highlight that under event S 1,i , the threshold on ←n ii for increasing the individual rate R i i.e., ←n † ii , and R j i.e., ←n * ii , are identical, see Theorem 2 and Theorem 3. This implies that in this case, the use of feedback in transmitter-receiver pair i, with ← -

n ii > ← - n † ii = ← - n *
ii , benefits both transmitter-receiver pairs, i.e., ∆ i ( ←n ii ) > 0 and ∆ j ( ←n ii ) > 0. Under event S 2,i , using feedback in transmitter-receiver pair i, with ← -

n ii > ← - n *
ii , exclusively benefits transmitterreceiver pair j, i.e., ∆ i ( ←n ii ) = 0 and ∆ j ( ←n ii ) > 0. 

Improvement of the Sum-Rate

← - n + ii = ® max Ä n ji , ( - → n ii -n ij ) + ä if S 4 = True - → n jj + ( - → n ii -n ij ) + if S 5 = True. (41) 
Assume that S 4 = False and S 5 = False. Then, Σ( ← -

n ii ) = 0 for all ← - n ii ∈ N. Assume that S 4 = True or S 5 = True. Then, when ← - n ii ← - n + ii , it holds that Σ( ← - n ii ) = 0; and when ← - n ii > ← - n + ii , it holds that Σ( ← - n ii ) > 0.
Proof: The proof of Theorem 4 is presented in Appendix C. Theorem 4 highlights a necessary but not sufficient condition for improving the sum-rate by implementing feedback in transmitter-receiver pair i.

Remark 4: A necessary but not sufficient condition for observing Σ( ←n ii ) > 0 is to satisfy one of the following conditions: (a) both transmitter-receiver pairs are in LIR (Event E 1 ); or (b) both transmitter-receiver pairs are in HIR (Event E 1 ).

Finally, it follows from Corollary 3 that when S 4 or S 5 holds true, with i ∈ {1, 2} and ← - In Example 1, both S 1,1 and S 1,2 hold true. Hence, from Theorem 1, when ←n 11 > 5 or ←n 22 > 3, there always exists an enlargement of the capacity region. More specifically, it follows from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1, with ←n 11 > 5 or using feedback in transmitter-receiver pair 2, with ←n 22 > 3, both individual rates can be simultaneously improved, i.e., ∆ 1 ( ←n ii ) > 0 and ∆ 2 ( ←n ii ) > 0 with i = 1 or i = 2 respectively. Alternatively, note that S 4 holds true. Hence, it follows from Theorem 4 that using feedback in transmitter-receiver pair 1, with ←n 11 > 5 or using feedback in transmitter-receiver pair 2, with ←n 22 > 3, improves the sum-rate, i.e., Σ( ←n ii ) > 0 with i = 1 or i = 2 respectively. These conclusions are observed in Figure 3, for the case ←n 11 = 6 and ←n 22 = 0, where the capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue line) are plotted. Note that, when ←n 11 = 6, there always exist a rate pair (R 1 , R 2 ) ∈ C (0, 0) and a rate pair In Example 2, the events S 1,1 and S 1,2 hold true; and the events S 4 and S 5 hold false. Hence, it follows from Theorem 4 that using feedback in either transmitter-receiver pair does not improve the sum-rate, i.e., for all i ∈ {1, 2} and for all ←n ii > 0, Σ( ←n ii ) = 0. These conclusions are observed in Figure 4, for the case ←n 11 = 0 and ←n 22 = 7, where the capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue line) are plotted. From Example 2, it becomes evident that when S 1,1 and S 1,2 hold true, S 4 and S 5 do not necessarily hold true. That is, the improvements on the individual rates, despite that they can be observed simultaneously, are not enough to improve the sum-rate beyond what is already achievable without feedback. In Example 3, both S 2,1 in (29) and S 3,2 in (30) hold true. Hence, it follows from Theorem 1 that the capacity region can be enlarged by using feedback in transmitter-receiver pair 1 when ←n 11 > 3, whereas using feedback in transmitter-receiver pair 2 is useless. More specifically, it follows from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1 does not improve the individual rate R 1 but R 2 , i.e., ∆ 1 ( ←n 11 ) = 0 and ∆ 2 ( ←n 11 ) > 0. Note also that S 4 and S 5 hold false. Hence, it follows from Theorem 4 that using feedback in either transmitterreceiver pair does not improve the sum-rate, i.e., Σ( ←n 11 ) = 0 and Σ( ←n 22 ) = 0. These conclusions are observed in Figure 5, for the case ←n 11 = 4 and ←n 22 = 0, where the capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line) are plotted.

n ii > ← - n + ii , aside from the fact that Σ( ← - n ii ) > 0, it also holds that ∆ 1 ( ← - n ii ) > 0 and ∆ 2 ( ← - n ii ) > 0.
(R 1 , R 2 ) ∈ C(6, 0) \ C(0, 0) such that R 1 < R 1 and R 2 = R 2 (Theorem 2). Simultaneously, there always exist a rate pair (R 1 , R 2 ) ∈ C (0, 0) and a rate pair (R 1 , R 2 ) ∈ C(6, 0) \ C(0, 0) such that R 2 < R 2 and R 1 = R 1 (Theorem 3). Finally, note that for all rate pairs (R 1 , R 2 ) ∈ C (0, 0) there always exists a rate pair (R 1 , R 2 ) ∈ C(6, 0), for which R 1 + R 2 > R 1 + R 2 (Theorem 4).

Implications on the Gaussian Interference Channel

Given a fixed tuple

Ä --→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 ä , let R( ←-- SNR 1 , ←-- SNR 2
) be the achievable region of the G-IC-NOF described by Theorem 2 in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF] with parameters 

Improvement Metrics

In order to quantify the benefits of channel-output feedback in enlarging the achievable region

R( ←-- SNR 1 , ←-- SNR 2 ) or the converse region R( ←-- SNR 1 , ←-- SNR 2 )
, consider the following improvement metrics, which are similar to those defined in Sec. 3.2 for the LD-IC-NOF. The improvement metrics on the individual rates are defined as

∆ A 1 ( ←-- SNR 1 , ←-- SNR 2 )= max 0<R2<R * 2 sup (R1,R2)∈R( ← -- SNR1, ← -- SNR2) {R 1 } - sup (R † 1 ,R2)∈R(0,0) {R † 1 } , (43) 
∆ A 2 ( ←-- SNR 1 , ←-- SNR 2 )= max 0<R1<R * 1 sup (R1,R2)∈R( ← -- SNR1, ← -- SNR2) {R 2 } - sup (R1,R † 2 )∈R(0,0) {R † 2 } , (44) 
∆ C 1 ( ←-- SNR 1 , ←-- SNR 2 )= max 0<R2<R † 2 sup (R1,R2)∈R( ← -- SNR1, ← -- SNR2) {R 1 } - sup (R † 1 ,R2)∈R(0,0) {R † 1 } , and (45) 
∆ C 2 ( ←-- SNR 1 , ←-- SNR 2 )= max 0<R1<R † 1 sup (R1,R2)∈R( ← -- SNR1, ← -- SNR2) {R 2 } - sup (R1,R † 2 )∈R(0,0) {R † 2 } , (46) 
with

R * 1 = sup (r1,r2)∈R(0,0) r 1 , (47) 
R * 2 = sup (r1,r2)∈R(0,0) r 2 , (48) 
R † 1 = sup (r1,r2)∈R(0,0) r 1 , and (49) 
R † 2 = sup (r1,r2)∈R(0,0) r 2 . ( 50 
) RR n°8862
Alternatively, the maximum improvements of the sum-rate

Σ A ( ←-- SNR 1 , ←-- SNR 2 ) and Σ C ( ←-- SNR 1 , ←-- SNR 2
) with respect to the case without feedback are

Σ A ( ←-- SNR 1 , ←-- SNR 2 )= sup (R1,R2)∈R( ← -- SNR1, ← -- SNR2) R 1 + R 2 - sup (R † 1 ,R † 2 )∈R(0,0) R † 1 + R † 2 , and (51) 
Σ C ( ←-- SNR 1 , ←-- SNR 2 )= sup (R1,R2)∈R( ← -- SNR1, ← -- SNR2) R 1 + R 2 - sup (R † 1 ,R † 2 )∈R(0,0) R † 1 + R † 2 . (52) 

Approximate Thresholds on the Feedback SNRs

In Sec. 2.3, the connections between the LD-IC-NOF and the G-IC-NOF were discussed. Using these connections, a G-IC with fixed parameters

Ä --→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 ä is ap- proximated by an LD-IC with parameters - → n 11 = 1 2 log 2 ( --→ SNR 1 ) , - → n 22 = 1 2 log 2 ( --→ SNR 2 ) , - → n 12 = 1 2 log 2 ( --→ INR 21 ) and - → n 21 = 1 2 log 2 ( --→ INR 21
) . From this observation, the results from Theorem 1 -Theorem 4 can used to determine the feedback SNR thresholds beyond which either an individual rate or the sum-rate is improved in the original G-IC-NOF. The procedure consists on using the equalities ← -

n ii = 1 2 log 2 Ä ←-- SNR i ä , with i ∈ {1, 2}.
Hence, the corresponding thresholds in the G-IC can be approximated by:

←-- SNR * i =2 2 ← - n * ii (53a) ←-- SNR † i =2 2 ← - n † ii and (53b) ←-- SNR + i =2 2 ← - n + ii . (53c) 
When the corresponding LD-IC-NOF is such that its capacity region can be improved when ←n ii > ←n * ii (Theorem 1), for a given i ∈ {1, 2}, it is expected that either the achievability or converse regions of the original G-IC-NOF become larger when ←--

SNR i > ←-- SNR * i .
Similarly, when the corresponding LD-IC-NOF is such that ∆ i ( ←n ii ) > 0 or ∆ i ( ←n jj ) > 0, it is expected to observe an improvement on the individual rate R i by either using feedback in transmitter-receiver pair i, with ←--SNR i > ←--SNR † i or by using feedback in transmitter-receiver pair j, with ←--SNR j > ←--SNR * j . In the case of the sum-rate, when the corresponding LD-IC-NOF is such that Σ( ←n ii ) > 0 using feedback in transmitter-receiver pair i, with ←n ii > ←n + ii , (Theorem 4), it is expected to observe an improvement on the sum-rate by using feedback in transmitter-receiver pair i, with ←--SNR i > ←--SNR + i . Finally, when no improvement in a given metric is observed in the LD-IC-NOF, i.e., ∆ 1 ( ← -

n 11 ) = 0, ∆ 1 ( ← - n 22 ) = 0, ∆ 2 ( ← - n 11 ) = 0, ∆ 2 ( ← - n 22 ) = 0, Σ( ← - n 11 ) = 0, or Σ( ← - n 22 ) = 0, only a negligible improvement (if any) is observed in the corresponding metric of the G-IC-NOF. For instance, when ∆ 1 ( ← - n 11 ) = 0, it is expected that ∆ C 1 ( ←-- SNR 1 , 0) < and ∆ A 1 ( ←-- SNR 1 , 0) < , with > 0 small. Similarly, when ∆ 2 ( ← - n 11 ) = 0, it is expected that ∆ C 2 ( ←-- SNR 1 , 0) < and ∆ A 2 ( ←-- SNR 1 , 0) < . Finally, when Σ( ← - n 11 ) = 0, it is expected that Σ C ( ←-- SNR 1 , 0) < and Σ A ( ←-- SNR 1 , 0) < .

Examples

The following examples highlight the relevance of the approximations in (53). 7 shows that significant improvements on the metrics 6b, and Figure 6d, where

! SNR1 = 44dB; ! SNR2 = 44dB; INR12 = 20dB; INR21 = 33dB; SNR1 = 100dB ⌃(bits/channel use) ⌃ C ( 100dB, SNR2) ⌃ A ( 100dB, SNR2) (e) (f) SNR ⇤ 1 SNR + 1 SNR + 2 SNR ⇤ 2 SNR ⇤ 1 SNR ⇤ 2 Figure 7: Improvement metrics ∆ A i , ∆ C i , Σ A , and Σ C as functions of ←-- SNR 1 and ←-- SNR 2 , with i ∈ {1, 2}, for Example 4. RR n°8862 ←-- SNR * 1 = ←-- SNR † 1 = ←-- SNR + 1 = 30dB and ←-- SNR * 2 = ←-- SNR † 2 = ←-- SNR + 2 = 18dB. Figure
∆ A i ( ←-- SNR 1 , ←-- SNR 2 ), ∆ C i ( ←-- SNR 1 , ←-- SNR 2 ), Σ A ( ←-- SNR 1 , ←-- SNR 2 ) and Σ C ( ←-- SNR 1 , ←-- SNR 
∆ A 1 Ä -100dB, ←-- SNR 2 ä < 0.15 and ∆ C 1 Ä -100dB, ←-- SNR 2 ä < 0.1.
Finally, note that using feedback in either transmitter-receiver pair does not increase the sum-rate in the LD-IC-NOF, i.e., Σ( ←n 11 ) = Σ( ←n 22 ) = 0. This is also verified in the G-IC-NOF by Figure 6e and Figure 6f, where

Σ A Ä ←-- SNR 1 , -100dB ä < 0.15, Σ C Ä ←-- SNR 1 , -100dB ä < 0.05, Σ A Ä -100dB, ←-- SNR 2 ä < 0.15, and Σ C Ä -100dB, ←-- SNR 2 ä < 0.05.

Generalized Degrees of Freedom

This section focuses on the analysis of the number of GDoF of the LD-IC-NOF for studying the case in which feedback is simultaneously implemented in both transmitter-receiver pairs. Moreover, the analysis is only performed for the symmetric case, i.e., -

→ n = - → n 11 = - → n 22 , m = n 12 = n 21 , and ← - n = ← - n 11 = ← - n 22 , with ( - → n , m, ← - n ) ∈ N 3 .
The results in Lemma 1 allow a more general analysis of the GDoF, e.g., non-symmetric case. However, the symmetric case captures some of the most important insights about how the capacity region is enlarged when feedback is used in both transmitter-receiver pairs.

Essentially The plot without feedback is obtained from [START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF] and the plot with perfect-output feedback is obtained from [START_REF] Suh | Feedback capacity of the Gaussian interference channel to within 2 bits[END_REF]. and β is given by 

D(α, β)=min max(1, α), max Ä 1, β -(1 -α) + ä , 1 2 
Ä max(1, α) + (1 -α) + ä , max Ä (1 -α) + , α, 1 -(max(1, α) -β) + ä ,
Properties (56a) and (56b) highlight the fact that the existence of feedback links in the symmetric LD-IC in the VWIR and WIR does not have any impact in the GDoF when β 1 2 , and the GDoF is equal to the case with perfect-output feedback when β > 1. Property (56c) underlines that in the symmetric LD-IC in MIR and SIR, the number of GDoF is identical in

RR n°8862

both extreme cases: without feedback (β = 0) and with perfect-output feedback β = max(1, α) . Finally, from (56d) and (56e), it follows that for observing an improvement in the GDoF of the LD-IC-NOF in VSIR, the following condition must be met: β > 1. That is, the number of bit-pipes in the feedback links must be strictly bigger than the number of bit-pipes in the direct links.

Figure 8 shows the number of GDoF for the two user symmetric LD-IC-NOF for the case in which 0 α 3 and β ∈ { ) holds with strict inclusion. Using these results from the LD approximation, the SNRs in the feedback links beyond which feedback plays a significant role in terms of increasing the individual rates or the sum-rate in the G-IC are identified. The relevance of this work lies on the fact that it allows identifying a number of scenarios in any G-IC for which one of the following statements is true: (a) Feedback does not enlarge the capacity region; (b) Feedback enlarges the capacity region and the sum-rate is higher than the largest sum-rate without feedback; and (c) Feedback enlarges the capacity region but no significant improvement is observed in the sum-rate.

Figure 2 :

 2 Figure 2: Two-user linear deterministic interference channel with noisy channel-output feedback. The bit-pipe line number 1 represents the most significant bit.

Theorem 1

 1 Given fixed parameters ( -→ n 11 , -→ n 22 , n 12 , n 21 ), i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, the capacity region of a two-user LD-IC, when feedback is available only at transmitter-receiver pair i, i.e., ←n ii > 0 and ←n jj = 0, is denoted by C ( ←n ii ) instead of C ( ←n 11 , 0) or C (0, ←n 22 ), when i = 1 or i = 2, respectively. Following this notation, Theorem 1 identifies the exact values of ←n ii for which the strict inclusion C (0, 0) ⊂ C ( ←n ii ) holds for i ∈ {1, 2}. Let ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←n * ii ∈ N be fixed integers, with

Figure 3 : 4 ExamplesExample 1

 341 Figure 3: Capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue line), with -→ n 11 = 7, -→ n 22 = 7, n 12 = 3, n 21 = 5.

Example 2

 2 Consider an LD-IC-NOF with parameters -→ n 11 = 7, -→ n 22 = 8, n 12 = 6, and n 21 = 5.

Figure 4 :

 4 Figure 4: Capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue line), with -→ n 11 = 7, -→ n 22 = 8, n 12 = 6, n 21 = 5.

Example 3

 3 Consider an LD-IC-NOF with parameters -→ n 11 = 5, -→ n 22 = 1, n 12 = 3, and n 21 = 4.

Figure 5 :

 5 Figure 5: Capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line), with -→ n 11 = 5, -→ n 22 = 1, n 12 = 3, n 21 = 4.

Example 4 1 Figure 6 : 22 = 3 .

 416223 Figure 6: Improvement metrics ∆ A i , ∆ C i , Σ A , and Σ C as functions of ←--SNR 1 and ←--SNR 2 , with i ∈ {1, 2}, for Example 5. The linear deterministic approximation to the G-IC in Example 4 is the one presented in Example 1. Hence, ←n * 11 = ←n † 11 = ←n + 11 = 5 and ←n * 22 = ←n † 22 = ←n + 22 = 3. This implies that

Theorem 5

 5 , given the parameters -→ n , m and ←n , with α = m -→ n and β = ←n -→ n , the number of GDoF, denoted by D(α, β), is the ratio between the symmetric capacity, i.e.,C sym ( -→ n , m, ←n ) = sup{R : (R, R) ∈ C( -→ n , -→ n , m, m, ←n , ←n )},and the individual interference-free point-to-point capacity, i.e., -→ n , when ( -→ n , m, ←n ) → (∞, ∞, ∞) at constant ratios α = m -→ n and β = the number of GDoF for the two-user LD-IC-NOF. The number of GDoF for the two user symmetric LD-IC-NOF with parameters α RR n°8862

Figure 8 :

 8 Figure 8: Generalized Degrees of Freedom (GDoF) as a function of parameters α and β, with 0 α 3 and β ∈ { 3 5 , 4 5 , 6 5 }, of the symmetric LD-IC-NOF.The plot without feedback is obtained from[START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF] and the plot with perfect-output feedback is obtained from[START_REF] Suh | Feedback capacity of the Gaussian interference channel to within 2 bits[END_REF].

1 3 ÅCorollary 4 2 ò

 1342 max(1, α) + (1α) + + max ÅÅ 1α ã + , α, 1 -(max (1, α)β)The proof of Theorem 5 is presented in Appendix D. The result in Theorem 5 can also be obtained from Theorem 1 in[START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF]. The following properties are a direct consequence of Theorem 5. The number of GDoF for the two user symmetric LD-IC-NOF with parameters α and β satisfies the following properties: andβ ∈ [0, ∞), D(α, 0) = D(α, β) = D(α, max(1, α)), (56c) ∀α ∈ (2, ∞) and β 1, 1 D(α, β) min α 2 , β ,(56d)∀α ∈ (2, ∞) and β < 1, D(α, β) = 1.

  In this research report, for any 4-tuple ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 , the exact values on the feedback parameters ←n 11 and ←n 22 of the two-user LD-IC-NOF beyond which the capacity region can be enlarged are characterized. That is, the exact values of ←n 11 (resp. ←n 22 ) for which C(0, 0) ⊂ C( ←n 11 , 0) resp. C(0, 0) ⊂ C(0, ←n 22

  12 > 1 and INR 21 > 1 is within 18.6 bits per channel use per user of the capacity of an LD-IC with parameters -

  3,i , S 4 and S 5 exhibit the properties stated by the following corollaries.

Corollary 1 For all ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 , given a fixed i ∈ {1, 2}, only one of the events S 1,i , S 2,i and S 3,i is true. Corollary 2 For all ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 , when one of the events S 4 or S 5 holds true, then the other necessarily holds false. Note that Corollary 2 does not exclude the case in which both S 4 and S 5 are simultaneously false. Corollary 3 For all ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 , when S 4 holds true, then both S 1,1 and S 1,2

hold true; and when S 5 holds true, then both S 2,1 and S 2,2 hold true.

3.2 Rate Improvement Metrics

Given a fixed tuple ( -→ n 11 , -→ n 22 , n 12 , n 21 ), let C( ←n 11 , ←n 22 ) be the capacity region of an LD-IC with noisy channel-output feedback with parameters ←n 11 and ←n 22 . The maximum improvement of the individual rates R 1 and R 2 , denoted by ∆ 1 ( ←n 11 , ←n 22 ) and ∆ 2 ( ←n 11 , ←n 22

  Individual Rate R i by Using Feedback in Link i

Given fixed parameters ( -→ n 11 , -→ n 22 , n 12 , n 21 ), and i ∈ {1, 2}, implementing channel-output feedback in transmitter-receiver pair i increases the individual rate R i , i.e., ∆ i ( ←n ii ) > 0 for some values of ←n ii . Theorem 2 identifies the exact values of ←n ii for which ∆ i ( ←n ii ) > 0. Theorem 2 Let ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←n † ii ∈ N be fixed integers, with ← -

  Individual Rate R j by Using Feedback in Link i

	∆ j ( ← -n ii ) > 0 for some values of ← -n ii . Theorem 3 identifies the exact values of ← -n ii for which ∆ j ( ← -n ii ) > 0.
	Theorem 3 Let ( -→ n 11 , -→ n 22 , n 12 , n 21 ) ∈ N 4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ← -n * ii ∈ N given in (38), be fixed integers. Assume that S 3,i = True. Then, for all ← -
	Given fixed parameters ( -→ n 11 , -→ n 22 , n 12 , n 21 ), i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, implementing
	RR n°8862

channel-output feedback in transmitter-receiver pair i increases the individual rate R j , i.e.,

  2 ) are obtained when the feedback SNRs are beyond the corresponding thresholds. More importantly, negligible effects are observed when It follows from the LD-IC that using feedback in transmitter-receiver pair 1 exclusively increases the individual rate R 2 . This is observed in Figure6c. Note that the improvement in the individual rate R 2 for all Note also that using feedback in either transmitter-receiver pair does not improve the rate R 1 in the LD-IC-NOF, i.e., ∆ 1 ( ← -n 11 ) = ∆ 1 ( ← -n22 ) = 0. This is also verified in the G-IC-NOF by Figure 6a, Figure

	←--SNR * 1 and	←--SNR 2 <	←--SNR * 2 .		←--SNR 1 <
	Example 5 Consider a G-IC with parameters	--→ SNR 1 = 33dB,	--→ SNR 2 = 9dB, INR 12 = 20dB, and
	INR 21 = 27dB.		
	The linear deterministic approximation to the G-IC in Example 5 is the one presented in Example 3. Hence, ← -n * 11 = 3, which implies that ←--SNR * 1 = 18dB. ←--SNR 1 < ←--SNR * 1 is negligible. Significant improvement is observed only beyond the threshold ←--SNR * 1 .
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) ensures C(0, 0) ⊂ C( ←n 11 , 0) (resp. C(0, 0) ⊂ C(0, ←n 22 )) is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, e.g., VWIR -VWIR.

Proof: Consider that both transmitter-receiver pairs are in VWIR, that is,

Under conditions (57), it follows from Theorem 1 in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF] that C(0, 0) is the set of non-negative rate pairs (R 1 , R 2 ) that satisfy 

Under conditions (57) and (59), it follows from Theorem 1 in [START_REF] Quintero | Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback[END_REF] that

When comparing C(0, 0) and C( ←n 11 , 0), note that (58a), (58b), (58c), and (58e) are equivalent to (60a), (60b), (60c), and (60e), respectively. Under these observations, the region C( ←n 11 , 0) is greater than the region C(0, 0) if at least one of the following conditions is true:

min(θ 6 , θ 1 + 2θ 

Plugging (63) into (58) yields:

To simplify the inequalities containing the operator max(•, •) in (66), the following 2 cases are identified:

Case 2a : -→ n 11 > n 21 ; and (68)

Case 2a: Plugging (68) into (66) yields:

Comparing inequalities (70a) and (70b) with inequality (67a), it can be verified that min -

Comparing inequalities (70c) and (67b), it can be verified that 2 59), (63), and (68).

Case 2b: Plugging (69) into (66) yields: ). However, under the assumptions (57), ( 59), (63), and (69), the bounds (67b) and (71c) are not active. Hence, condition (61b) does not hold. Therefore, for all ←n 11 ∈ N, the capacity region cannot be enlarged under assumptions (57), ( 59), (63), and (69).

Case 3: Under assumptions (57) and (64), this case is possible. Plugging (64) into (60) yields:

Plugging ( 64) into (58) yields:

To simplify the inequalities containing the operator max(•, •) in ( 72) and (73), the following 2 cases are identified:

Case 3b :

Case 3a: Plugging (74) into (72) yields:

Plugging (74) into (73) yields: Case 3b: Plugging (75) into (72) yields:

Plugging (74) into (73) yields:

Comparing inequalities (78a) and (78b) with inequality (79a), it can be verified that min -→ n 

Plugging ( 65) into (58) yields: ), then C(0, 0) ⊂ C( ←n 11 , 0). Otherwise C(0, 0) = C( ←n 11 , 0). Note that when events E 1 and E 8,1 hold simultaneously true, then the event S 1,1 is true, which verifies the statement of Theorem 1. The same procedure can be applied for all the other combinations of interference regimes. This completes the proof. 

B Proof of

, is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, e.g., VWIR -VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (57) hold. Under these conditions, the capacity regions C(0, 0) and C( ←n 11 , 0) are given by ( 58) and (60), respectively. When comparing C(0, 0) and C( ←n 11 , 0), note that (58a), (58b), (58c), and (58e) are equivalent to (60a), (60b), (60c), and (60e), respectively. In this case any improvement on R 1 is produced by an improvement on R 1 + R 2 (condition (61a)) or 2R 1 + R 2 (condition (61a)), and thus, the proof of Theorem 2 in these particular interference regimes follows exactly the same steps in Theorem 1. This completes the proof. 

C Proof of

, is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, e.g., VWIR -VWIR.

Proof: Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (57) hold. Under these conditions, the capacity regions C(0, 0) and C( ←n 11 , 0) are given by ( 58) and (60), respectively. When comparing C(0, 0) and C( ←n 11 , 0), note that (58a), (

are equivalent to (60a), (60b), (60c), and (60e), respectively.

In this case, the proof is focused on any improvement on R 1 + R 2 (condition (61a)), and thus, the proof of Theorem 4 in these particular interference regimes follows exactly the same steps in Theorem 1.

From the analysis presented in Appendix A, it follows that: Case 2a: condition (61a) holds true, when ← - , and E 10,2 hold simultaneously true, then the event S 4 is true, which verifies the statement of Theorem 4. The same procedure can be applied for all the other combinations of interference regimes. This completes the proof.

D Proof of Theorem 5: Generalized Degrees of Freedom

This appendix provides a proof to Theorem 5 for the two user LD-IC-NOF. ) of the two-user LD-IC-NOF is the set of non-negative rate pairs (R 1 , R 2 ) that satisfy ∀i ∈ {1, 2} and j ∈ {1, 2} \ {i}: RR n°8862

RR n°8862