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Abstract

How can effective barotropic matter emerge from the interaction of cosmological fluids in an
isotropic and homogeneous cosmological model ?

The dynamics of homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker universes
is a natural special case of generalized Lotka-Volterra systems where each of the universes fluid
components can be seen as a competitive species in a predator-prey model. (Jungle universe : [7])

In addition to numerical simulations illustrating this behaviour among the barotropic fluids
filling the universe, we analytically pinpoint that effective time-dependent barotropic indices can
arise from a physical coupling between those fluids whose dynamics could then look like that of
another type of cosmic fluid, such as a cosmological constant.

Since the nature of dark energy is still unknown, this dynamical approach could help under-
standing some of the properties of dark matter and dark energy at large cosmological scales.

Introduction

Einstein’s general relativity for gravitation has led him to study the dynamics of the universe. His
cosmology describes an isotropic, homogeneous and static universe, while the current ΛCDM model
includes a possible accelerated expansion supported by the observation of distant supernovae [1, 2]
and the cosmic microwave background [3]. This late-time cosmic acceleration could be explained by
dark energy whose nature still remains undetermined.

Several possible explanations have been proposed to account for this acceleration, from modifica-
tions of gravity - with f(R) gravity, scalar-tensor theories, braneworlds - to new cosmological fluids
such as generalised Chaplygin gas, scalar field with various couplings with matter, or more natu-
rally non-gravitational couplings between the constituents of the universe [4]. But the form of these
time-dependent [5] and often linear [6] interactions lacks physical justifications.

After a reformulation of the standard cosmological model in terms of the density proportion of the
constituents filling the universe, we study a natural quadratic coupling between cosmological fluids
suggested by the intrinsic Lotka-Volterra structure of the fields equations. This coupling leads to an
effective dynamical behaviour [7]. We eventually propose the basis for a new interpretation of the
acceleration of the universe.

1 The standard universe is a generalised predator-prey system

The dynamics of homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker universes is a
special case of generalised Lotka-Volterra system where the competitive species are the barotropic
cosmological fluids filling the universe, as it will be underlined in this section.

The field equations of the standard cosmological model can be written as

ä

a
= − 4πGN

3

n−1∑
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8πGN

3

n−1∑
i=1
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c2
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Λ− c2

a2
k. (2)

Let us consider barotropic fluids with equation of state

for i = 1, . . . , n+ 1, pi = ωiρi c
2

where each fluid i = 1, . . . , n can be baryonic matter, radiation, dark matter, dark energy, etc. In the
previous equations, i = n would be associated to the cosmological constant Λ with ρΛ = Λc2

8πGN
and

ωΛ = −1, while i = n+ 1 could be associated to curvature introducing ρk = − 3c2k
8πGN

a−2 and ωk = −1
3 .

A change of variable for the time parameter, λ = ln(a), and a reformulation in terms of relative
abundances Ωi, instead of densities ρi, lead to the following dynamics for each independent cosmological
fluid governed by a continuity equation of type ρ̇i = −3H(ρi + pi

c2
) :

for i = 1, . . . , n+ 1,
dΩi

dλ
= Ωi

−(1 + 3ωi) +
n∑
j=1

(1 + 3ωj) Ωj


which reads as a predator-prey system, with a community matrix A and a capacity vector r

d
dλ
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︸ ︷︷ ︸
A matrix

︸ ︷︷ ︸
r vector

in IRn+1. The search for equilibria in a Lotka-Volterra system governing the evolution of n + 1 inde-
pendent fluids, with a (n + 1)th fluid made of curvature with index k, consists in solving Ω̇ = 0 =
diag(Ω) (AΩ + r), see e.g. [8] chap. 4. If all fluids interact with each other only gravitationally, then
the system (AΩ + r) = 0 has no solution, since the capacity vector does not lie in the image of
the community matrix. The flat Minkowski spacetime is the solution of diag(Ω) = 0, while all other
equilibria correspond to universes containing a single fluid j, i.e. when Ωj 6= 0 but Ωi 6=j = 0, then
diag(Ω) is a zero divisor matrix.

The usual asymptotic states of FLRW universes, such as Einstein-de Sitter (Ωm 6= 0), de Sitter
(ΩΛ 6= 0) or Milne (Ωk 6= 0) universes, thus appear as particular equilibria between cosmic species,
where generally one species dominates the others, see Fig. 1. These equilibria correspond to Ω vectors
with only one non-zero value which equals 1 because of (2). Consequently, in the absence of non-
gravitational interactions, they must lie on the axes of (Ωi,Ωj)-planes for all i, j = 0, . . . , n+ 1.

2 Jungle Universes : cooperation and competition among cosmic
fluids

A universe without any interaction between cosmological fluids apart from a gravitational one seems
a little awkward, whereas a natural coupling between cosmic fluids leads to a much richer dynamics.

Various types of coupling, most of the time linear in the densities [6], have been proposed by several
authors, see e.g. [5], but very few with non-linear interactions have been studied [9, 10, 11]. Except for
scalar fields, the non-linearity is introduced in the equations of state [12] but rarely as an interaction
between fluids [13, 14]. A natural non-linear coupling preserving the intrinsic Lotka-Volterra structure
previously mentioned has been studied in [7]. This “jungle coupling”, defined by Q(εij) = εij Ωi Ωj ,
naturally vanishes in the absence of one of the interacting fluids, and the interaction rate increases
with the coupled densities. Interactions which are proportionnal to the product of these densities
also provide one of the best observational fits for holographic dark energy models coupled to dark

28th Texas Symposium on Relativistic Astrophysics
Geneva, Switzerland – December 13-18, 2015



3

dS

M EdS 1

¡ · ·¡1 1/3!

¤ ¤

dS

M EdS

! ¸¡1/3
1

Figure 1: Dynamics in the (Ω1,Ω2) = (Ω1,ΩΛ)-plane, considering a species 1, a cosmological constant
and curvature. Time increases when following the arrows and we define ω = ω1 (e.g. ω = ωm = 0 for
baryonic matter in the ΛCDM model). Common universes such as Einstein-de Sitter (EdS), de Sitter
(dS) or Milne (M) universes are equilibria whose stability depends on the nature of fluid 1, i.e. on the
value of ω.

matter [11] and are the bests, with respect to linear couplings, to alleviate the coincidence problem
with common time-dependent equations of state [15]. The quadratic coupling term Q(εij) added to
and substracted from the conservation equations of the interacting fluids i and j

dΩi/j

dλ
= Ωi/j

[
−(1 + 3ωi/j) +

n∑
l=1

(1 + 3ωl) Ωl

]
+/− Q(εij)

partially breaks the degeneracy of the community matrix A. Equilibria may be located outside the
axes of (Ωi,Ωj)-planes. The associated dynamics can contain limit cycles (Fig. 2), universes with
several fluids in equilibrium, and even chaos which has been conjectured for more than four fluids in
interaction. The dynamical behaviours in this so-called Jungle Universe could answer some questions
such as the coincidence problem.
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Figure 2: Evolution of the three coupled relative abundances, in the 3D phase space, with coupling
constants : ε12 = ε13 = ε23 = e. The beginning of the orbits are marked by a bold red line. Initial
conditions are indicated by I.C. and a black dot. Relevant equilibria are indicated by stars.

Further dynamical properties are explained in [7]. In the last section, we will employ the time
evolution of the dynamical behaviour of interacting cosmological fluids to look for the possibility of
an effective dark energy.
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3 Camouflage in the jungle : could dark energy emerge from the
jungle coupling ?

The observed accelerated expansion of the universe suggests the existence of a cosmological constant
or at least dark energy of unknown nature. Could a coupling among cosmic fluids lead to a similar
behaviour instead ?

Using the formalism of Jungle Universes, we suggest hereafter that the acceleration of the expansion
could result from a special interaction between fluids of known properties. The interaction term in
the continuity equation of a fluid i reads

ρ̇i = −3H(ρi +
pi
c2

) +
n∑
j=1

εijH Ωj ρi.

It actually modifies its equation of state which then describes a barotropic fluid with an effective
time-dependent barotropic index

ωeff
i = ωi −

n∑
j=1

εij
3

Ωj .

Consequently a dominant negative term can appear in the second member of (1), which is equivalent
to an acceleration ä > 0.

As an illustration, consider three dark matter fluids with the first two and last two interacting with
each other. Indexing them from 1 to 3, with ε12 = −2 and ε23 = −3, the mutual interactions make
the third fluid asymptotically dominate the others in terms of density with an effective barotropic
index close to −1, see Fig. 3. Thus fluid 3 dynamically behaves nearly as a cosmological constant. In
the same way, the first fluid looks like a perfect gas while the second one still behaves as a dark matter.
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Figure 3: Interaction between three dark matter fluids : evolution of their density and effective
barotropic index. Coupling constants : ε12 = −2 and ε23 = −3.

Couplings between barotropic cosmological fluids change their observed behaviour and can influ-
ence the global dynamics of the universe. The acceleration of the universe could then be explained in
a natural way without introducing unknown types of energy.

Conclusion

The natural generalised Lotka-Volterra structure of the evolution of the universe constituent densities
has enabled us to describe the isotropic and homogenous universe as a generalised predator-prey sys-
tem. The effective barotropic indices that emerge from the natural quadratic jungle coupling between
cosmological fluids induce various dynamics of the evolution of the scale factor and fluid densities,
from limit cycles to possible chaos. We have made a simulation of an effective cosmological constant
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from a coupling between three dark matter fluids. Similar interactions could explain the observed ac-
celeration of the universe. Comparisons with cosmological data are therefore planned to be processed.
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