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This paper concerns the control and the stability analysis of pneumatic actuators, which are nowadays of widespread use in the industry. A problem related to the use of such actuators is the so-called "stick-slip", due to the presence of dry friction in the system. In this paper we provide an empirical switching control law which avoids this phenomenon, as well as a general approach to the stability analysis of nonlinear systems which will let us prove the stability of the closed-loop system. The approach is based on casting the closed-loop system into a piecewise-affine form and finding a Lyapunov function for it. Such an approach will be able to cope with the special features of the controlled pneumatic system model, namely the presence of sliding modes, a whole equilibrium set and uncertainties on the values of a few parameters.

At the end of the paper we will show how such a method can be successfully applied to our experimental setup under several different hypotheses.

I. INTRODUCTION

Electropneumatic systems are widely used in industry, especially in the form of pneumatic actuators or cylinders. Their efficient use depends on good control laws, which are often non trivial to synthesize due to nonlinear dynamics. In particular, friction is a phenomenon which plays a key role in the dynamic behavior of pneumatic cylinders, as the presence of friction may lead to what is called "stick-slip" [START_REF] Karnopp | Computer simulation of stick-slip friction in mechanical dynamic systems[END_REF], [START_REF] Brun | Study of "sticking and restarting phenomenon" in electropneumatic positioning systems[END_REF]. Such a phenomenon typically occurs in the presence of dry friction combined with an integration effect (either in the control law or in the system itself), and it consists, in pneumatic cylinders, in a displacement of the rod a while after it has come to a rest; this is due to the fact that the force acting on the rod initially becomes smaller that the threshold which is necessary for a motion in presence of dry friction, but later on this threshold is overcome due to a slowly growing integrator. For example, Figure 1 features the record of an experiment on a pneumatic cylinder showing an occurrence of stick-slip. We can see that the rod, following the given reference, comes to a rest in the first half second; then it starts moving again, with no changes for the setpoint.

In this case, stick-slip is caused by the presence of dry friction and by the pressure dynamics in the chambers, which continue to evolve (integrating the net incoming mass flow from the servovalves) even after the rod has stopped.

O. Ameur and G. Scorletti are with Laboratoire Ampère, UMR CNRS 5005, École Centrale de Lyon, Université de Lyon, {omar.ameur, gerard.scorletti}@ec-lyon.fr P. Massioni, X. Brun and M. Smaoui are with Laboratoire Ampère, UMR CNRS 5005, INSA de Lyon, Université de Lyon, {paolo.massioni, xavier.brun, mohamed.smaoui}@insa-lyon.fr To avoid this highly undesirable phenomenon, a control law has been proposed recently in [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF]. This solution consists in a classic feedback linearization, which compensates for the nonlinearities in the pneumatic model, together with an appropriate switching law. The controller switches from a trajectory tracking control to a pressure control after the rod has come to a rest, offsetting the pressure difference between the two chambers and avoiding an uncontrolled evolution that eventually could make the rod restart. A major problem with this solution, which has been otherwise verified as very effective in the practice, was to find a formal proof of its stability; in fact, such a proof has not been given in the original reference [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF].

The difficulty in finding a formal proof of stability lies in the pressure dynamics of the pneumatic chambers, and in the presence of dry friction, which make the electropneumatic actuator a strongly non-linear system. Typically, feedback linearization can be used to cancel the nonlinearities with a feedback control, with the "caveat" that an uncertainty in the model can lead to catastrophic effects. In this study we will analyze a control law, based on the one in [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF], which cancels all the nonlinear effects through feedback linearization with the exception of the most difficult to model quantitatively, namely the friction. We will then approach the problem of proving the stability of the closed-loop system by casting it into a piecewise-affine (PWA) form [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF], [START_REF] Moarref | Asymptotic stability of piecewise affine systems with sampled-data piecewise linear controllers[END_REF], [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF], [START_REF] Krishnamurthy | A computational stability analysis of discrete-time piecewise linear systems[END_REF]. In order to do that, we will consider two different models for the dry friction; we will consider both a simplified model, where the friction force is a continuous function of the velocity of the rod (in a so-called "saturation" shape), as well as a more realistic, discontinuous model of friction. In fact, as indicated by many works [START_REF] Armstrong-Hélouvry | A survey of analysis tools and compensation methods for the control of machines with friction[END_REF], [START_REF] Dahl | Measurement of solid friction parameters of ball bearings[END_REF], [START_REF] Tustin | The effect of backlash and speed-dependent friction on the stability of closed-cycle control systems[END_REF], [START_REF] De Wit | A new model for control of systems with friction[END_REF], more accurate models of friction feature discontinuities, which can lead to the appearance of sliding modes [START_REF] Fridman | Sliding Modes After the First Decade of the 21st Century: State of the Art[END_REF], [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF] in the system dynamics.

In the literature, we can find several approaches for dealing with sliding modes in piecewise-affine systems [START_REF] Johansson | Piecewise linear control systems[END_REF], [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF], [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Hedlund | A toolbox for computational analysis of piecewise linear systems[END_REF], [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF] but unfortunately, none of these approaches are enough to deal with the stability of our pneumatic actuator systems. First of all, we have verified that searching for a piecewise-quadratic Lyapunov functions is too conservative and does not yield any valid solution. Secondly, these former methods are not able to cope with the presence of a whole equilibrium set (not only a point) in a sliding mode. In this work, we propose new sufficient conditions for stability based on piecewise-polynomial Lyapunov functions, which can be given in terms of linear matrix inequalities (LMIs) and linear matrix equalities (LMEs). These conditions are also able to cope with the uncertainties in the friction models, and we have used them successfully for proving the stability of the closed-loop system for all the possible models of friction.

Some of the results of this paper have been partially presented in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], [START_REF] Ameur | A piecewise-polynomial Lyapunov approach for non-linear switching controllers for pneumatic systems in presence of sliding modes[END_REF], which contain only two special cases of the main, more general result introduced here. This paper analyses all the possible cases and offers a unified point of view.

The remainder of this paper is organized as follows. Section II contains the description of the pneumatic actuator model with the proposed switching control law avoiding "stick-slip". Section III introduces the uncertain PWA class of systems and the tools that can be used for the robust stability analysis in the presence of sliding modes and parameters variations. Section IV contains the main theoretical result, i.e. a method for proving robust stability, whereas Section V shows its different applications to our test bench model. The conclusions are given in Section VI.

Notation

We denote by R the field of real numbers and by R n×m the set of real n × m matrices. Let A T indicate the transpose of a matrix A, and let I be the identity matrix. We use also the notation A ≻ 0 (A ≺ 0) to indicate that all the eigenvalues of the symmetric matrix A are strictly positive (negative). The symbol n k indicates the binomial coefficient, for which we

have n k = n! k!(n -k)! .

II. PNEUMATIC ACTUATOR SYSTEMS

We consider a pneumatic cylinder test bench like the one shown in Figure 2. The setup is intended for applications in rectilinear motion [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic field[END_REF], [START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and non-linear control laws[END_REF], [START_REF] Smaoui | High order sliding mode for an electropneumatic system: a differentiator-controllers design[END_REF]. It comprises an actuator in the form of a pneumatic cylinder (double acting) with a rod connected to a carriage on rails. The actuator is powered by compressed air, with two servovalves for controlling the flow supplied to both the chambers of the cylinder. Two sensors measure the pressures in the chambers.

Based on [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF], the physical model of the system in open loop is given by the following equations (see Table I 

             ẏ = v v = 1 M (S(p P -p N ) -F f (v)) ṗN = krT VN (y) ( S rT p N v + q mN ) ṗP = krT VP (y) ( -S rT p P v + q mP ) (1) 
where the inputs are the two mass flow rates q mP and q mN , and

V P (y) = V 0 +Sy, V N (y) = V 0 -Sy with V 0 = V D +S l 2 . F f (v)
is the dry friction force, whose nonlinear model is given in the literature by several relations [START_REF] Armstrong-Hélouvry | A survey of analysis tools and compensation methods for the control of machines with friction[END_REF], [START_REF] Dahl | Measurement of solid friction parameters of ball bearings[END_REF], [START_REF] Tustin | The effect of backlash and speed-dependent friction on the stability of closed-cycle control systems[END_REF], [START_REF] De Wit | A new model for control of systems with friction[END_REF]. In our case, we consider two possible models of the dry friction forces, one in a continuous saturation form (M 2 ) and another in a discontinuous, "relay" form (M 1 ), both shown in Figure 3, such as: 

1 : F f (v)        = +F s for v > 0 ∈ [-F s , +F s ] for v = 0 = -F s for v < 0. (2) 
and

M 2 : F f (v) =        F s for v > ε Fs ε v for -ε ≤ v ≤ ε -F s for v < -ε (3) 
In order to overcome the stick-slip phenomenon, we propose the following control law adapted from [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF]. This law is based on a feedback linearization of the model in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], and it switches between the two following modes.

• Trajectory tracking law (#1)

       q mP = VP (y)
krT [ kS VP (y) vp P + ṗP dk P e P ]

q mN = M VN (y) SkrT [ SkrT M VP (y) q mP + S 2 kv M (-pP VP (y) -pN VN (y) ) -j d + k a e a + k v e v + k y e y ]
which allows the tracking of a given time-varying position reference; under the hypothesis of no state or input saturation, it yields the following closed-loop dynamics: q mN = VN (y) krT [-kS VN (y) vp N + ṗNdk N e N ] which regulates the pressures in the two chambers in order to avoid stick-slip; this law is active when the carriage has arrived at the desired position, resulting in the following closed-loop dynamics:

             ėy = e v ėv = e af -1 M F f (v) ėaf = -k a e af -k v e v -k y e y + ka M F f (v) ėP = -k P e P (4) 
             ėy = e v ėv = e af -1 M F f (v) ėaf = S M (k N -k P )e P -k N e af ėP = -k P e P (5)
In all of the equations above, e af = e a + 1 M F f (v). e y , e v , e a , e P , e N are the errors between states and their desired values; the constants k y , k v , k a , k P and k N are the state feedback gains chosen by a pole-placement on the feedback-linearized model. The switching criterion is #1→ #2:

|e y | ≤ ε 1 ∧ |e v | ≤ ε 2 ∧ |v d | ≤ ε 3 #2→ #1: |e y | > ε 1 ∨ |e v | > ε 2 ∨ |v d | > ε 3
where ε 1 , ε 2 and ε 3 are small arbitrary constants. The above switching controller has shown no instability either in simulation or on the test bench and has never caused the occurrence of stick-slip. Figure 4 and Figure 5 show trajectories obtained using this control law, respectively in simulation and on the test bench; the system can switch to pressure control (#2) only when the trajectory becomes constant.

Remark 1: The chosen control law is based on a feedback linearization that cancels out all the nonlinearities of the system but the ones caused by friction. We avoid canceling them because there is a high degree of uncertainty on the friction forces, so exact cancellation is impossible.

The topic of the rest of this paper is the formal proof of stability. One of the issues that we will need to face is that the stability of the system has to be proven for a special kind of convergence of the state, not to the setpoint, but to a whole set in its neighborhood. This is due to the well-known fact that moving systems subject to dry friction cannot be easily brought to a stop at a desired point, but they will rather stop in its proximity (this can be seen for example in Figure 4, when the rod stops just after t = 2 s, as well as in Figure 5, where the error never goes exactly to 0). 

III. PROPOSED APPROACH

Let us introduce a partition of R n into N polyhedral cells X i with disjoint interior, with i ∈ I, a set of N valid indices.

We partition I = I 0 ∪ I 1 (with

I 0 ∩ I 1 = ∅) such as 0 ∈ X i if i ∈ I 0 , otherwise 0 / ∈ X i if i ∈ I 1 (the cells with index in I 0 contain the origin).
Definition 2 (Piece-wise affine with polytopic uncertainties): A dynamical system is called "piecewise affine" (PWA) with polytopic uncertainties if it has the following dynamics [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF], [START_REF] Hassibi | Quadratic stabilization and control of piecewiselinear systems[END_REF]:

ẋ(t) = q k=1 λ k (t)(A i,k x(t) + a i,k ), for x(t) ∈ X i , i ∈ I (6)
where x(t) ∈ R n denotes the state-space vector and λ k (t) are continuously time-varying parameters which can take values according to

λ k (t) ≥ 0 ∀k ∈ {1, . . . , q} q k=1 λ k (t) = 1 (7) Equivalently, for x(t) T = [x(t) T 1] ẋ(t) = q k=1 λ k (t) A i,k a i,k 0 0 A i,k x(t), for x(t) ∈ X i , i ∈ I (8) 
The domain of each cell X i is described by matrices E i ∈ R li×(n+1) such as:

x ∈ X i ⇒ E i x ≥ 0, (9) 
and the boundaries between two cells X i and X j by matrices

F ij ∈ R rij ×(n+1) such as Γ = {(i, j) | X i ∩ X j = ∅} ∀(i, j) ∈ Γ, X i ∩ X j ⊆ x | F ij x = 0 . ( 10 
)
We define λ T = [λ 1 . . . λ q ] T . We then formulate a set of assumptions which will hold throughout the paper.

Assumption 1: A sliding mode may occur on any boundary in Γ between two neighboring cells X i and X j (see Figure 6), i.e. for x ∈ X i ∩ X j , (i, j) ∈ Γ, we have the following dynamics (according to Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]):

ẋ(t) = θ(λ) q k=1 λ k (t)A i,k +(1-θ(λ)) q k=1 λ k (t)A j,k x(t), 0 ≤ θ(λ) ≤ 1.
(11) which means that the matrix describing the system dynamics at a boundary is a convex combination of the matrices of the neighboring cells.

Assumption 2:

The set E eq ⊇ {0} of the equibrium points for ( 8) is a subset of i∈I0 X i (notice that the equilibrium set might also be on a sliding mode).

Assumption 3: Two cases can be distinguished:

• if the origin is in the interior of a cell X i (for which we have then that I 0 = {i}): q k=1 λ k (t)A i,k does not have any constant terms (a i,k = 0, for k = 1, . . . , q); we define A 0 (λ) = q k=1 λ k (t)A i,k ;

• if the origin is in the boundary between cells X i and X y : there exists a θ(λ), 0 ≤ θ(λ) ≤ 1, for which

θ(λ) q k=1 λ k (t)a i,k + (1 -θ(λ)) q k=1 λ k (t)a j,k = 0; we define A 0 (λ) = θ(λ) q k=1 λ k (t)A i,k + (1 - θ(λ)) q k=1 λ k (t)A j,k .
Moreover, A 0 (λ) has h eigenvectors not depending from λ (shared with q k=1 λ k (t)A i,k , and with q k=1 λ k (t)A j,k in the second case) that have 0 as associated eigenvalue. We call Z ∈ R (n+1)×h the full-rank matrix of these eigenvectors (A 0 (λ)Z = q k=1 λ k (t)A j,k Z = q k=1 λ k (t)A i,k Z = 0; this implies that the equilibrium set can be larger than the origin alone, i.e. E eq ⊇ {0}). We then define Π ∈ R (n+1)×((n+1)-h) the orthogonal complement of Z, with Π T Π = I. The objective is to find a set of conditions ensuring the exponential convergence of the system state x(t) to the set of equilibrium points E eq , notwithstanding the presence of sliding modes on the boundaries and parametric variations in the model. Basically we have to upgrade the methods in [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF], [START_REF] Hassibi | Quadratic stabilization and control of piecewiselinear systems[END_REF] in order to cope with sliding modes, equilibrium sets and parametric variations; we will use a Lyapunov function of degree higher than 2 (as done in [START_REF] Ameur | A piecewise-polynomial Lyapunov approach for non-linear switching controllers for pneumatic systems in presence of sliding modes[END_REF]), i.e. a piecewisepolynomial Lyapunov function, which is less conservative than the classical piecewise-quadratic Lyapunov functions. Such functions are given by the expression

V (x) = V i (x) for x ∈ X i , i ∈ I ( 12 
)
such that V i (x) is a polynomial in n variables with degree 2m given by:

V i (x) = χ(x) T P i χ(x) (13) 
where P i = P T i ∈ R ρ×ρ , and χ(x) ∈ R ρ×1 is the vector of all the monomials of degree less than or equal to m that can be made from the elements of x; ρ = m + n m . For example,

χ(x) = [x 1 , x 2 , . . . , x n , x 1 x 2 , x 1 x 3 , . . . , x 1 x n , x 2 x 3 , . . . . . . , x 2 x n , . . . , x n-1 x n , . . . , x m 1 , x m 2 , . . . , x m n , 1] T . ( 14 
)
As seen in [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF], the choice of P i is not unique for a given polynomial V i (x); there exists a number ι of linearly inde-

pendent matrices Q ν = Q T ν ∈ R ρ×ρ (
defined up to a scalar factor), for which

χ(x) T Q ν χ(x) = 0 for ν = 1, . . . , ι (15) 
with

ι = 1 2 m + n m 2 + m + n m - n + 2m 2m . ( 16 
)
This implies that

V i (x) = χ(x) T P i χ(x) = χ(x) T (P i + ι ν=1 Q ν τ (ν))χ(x)
for any real scalars τ (ν). This is due to the fact that some monomials in V i can be obtained as products of different elements in χ, e.g.

x 2 1 = x 1 • x 1 = 1 • x 2 1 = x 2 1 • 1.
Following the procedure of the "power transformation" [START_REF] Zelentsovsky | Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems[END_REF], [START_REF] Xu | Homogeneous polynomial Lyapunov functions for piecewise affine systems[END_REF], we can obtain the dynamics of χ(x(t)) = χ(t), with which we will be able to compute the time derivative of the Lyapunov function. Namely, the uncertain dynamics will still be PWA, i.e. we will have

χ(t) = qi k=1 λ k (t) Ãi,k χ(t), ∀k ∈ {1, . . . , q}, for χ ∈ Xi , i ∈ I (17)
and we can construct a new description of the cells Xi , with matrices Ẽi ∈ R li×ρ such as

x ∈ X i ⇒ χ ∈ Xi χ ∈ Xi ⇒ Ẽi χ ≥ 0, (18) 
and defining the boundaries, with Fij ∈ R rij ×ρ , as

∀(i, j) ∈ Γ, Xi ∩ Xj ⊆ χ | Fij χ = 0 (19) 
Notice that, counterintuitively, the power transformation leaves λ as linear terms in the dynamic equations for χ. We define Ãi (λ) = q k=1 λ k Ãi,k . Assumptions 1, Assumption 2 and Assumption 3 are also still holding for the new system in (17):

1) Sliding modes may occur, with the following dynamics:

χ(t) = θ(λ) q k=1 λ k (t) Ãi,k +(1-θ(λ)) q k=1 λ k (t) Ãj,k χ(t), 0 ≤ θ(λ) ≤ 1 (20) 2) There exists an equilibrium set Ẽeq such that χ ∈ Ẽeq ⇔ χ = 0; χ ∈ Ẽeq ⇔ x ∈ E eq ; Ẽeq ⊂ i∈I0 Xi 
3) Again we distinguish two cases:

• if the origin is in the interior a cell Xi ; Ãi,k (λ) does not have any constant terms for all λ; Ã0 (λ) = q k=1 λ k (t) Ãi,k = Ãi,k (λ); • if the origin is in the boundary between cells Xi and Xj : there exists a θ(λ), 0 ≤ θ(λ) ≤ 1, for which the constant terms disappear; we define Ã0 (λ) = θ(λ)

q k=1 λ k (t) Ãi,k + (1 - θ(λ)) q k=1 λ k (t) Ãj,k = θ(λ) Ãi (λ) + (1 - θ(λ)) Ãj (λ).
Identically, Ã0 (λ) has h eigenvectors not depending from λ (shared with q k=1 λ k (t) Ãi,k and with q k=1 λ k (t) Ãj,k in the second case) that have 0 as associated eigenvalue. We can also call Z ∈ R ρ× h the full-rank matrix of these eigenvectors ( Ã0 (λ) Z = q k=1 λ k (t) Ãj,k Z = q k=1 λ k (t) Ãi,k Z = 0); we define Π ∈ R ρ×(ρ-h) as the orthogonal complement of Z, with ΠT Π = I. V (χ) in ( 12) and ( 13) is a candidate Lyapunov function for the system in [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic field[END_REF]. In order to ensure its continuity on the boundary between two cells Xi and Xj , (i, j) ∈ Γ, the following condition has to be satisfied:

V i (χ) = V j (χ) ∀χ(x) ∈ Xi ∩ Xj . ( 21 
)
As a direct consequence of LaSalle's theorem ( [START_REF] Khalil | Non Linear Systems, Third Edition[END_REF], [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF]), the conditions that the candidate time-invariant Lyapunov function must satisfy in order to prove the convergence to the equilibrium set are in the following lemma.

Lemma 3: For the system in ( 8), the convergence of x to E eq (which coincides with the convergence of χ in [START_REF] Jarvis-Wloszek | Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization[END_REF] to Ẽeq ) for t > 0, t → +∞ is assured under the following conditions.

1) The Lyapunov function is continuous, i.e. it satisfies (21); 2) The Lyapunov function is positive outside Ẽeq ,

V i (χ(x)) > 0 for χ(x) ∈ Xi / Ẽeq , i ∈ I; (22) 
3) The derivative of the Lyapunov function is negative outside Ẽeq , i.e.

Vi (χ(x)) < 0 for χ(x) ∈ Xi / Ẽeq , i ∈ I; (23) 
even in the case of sliding-mode dynamics; 4) The derivative of the Lyapunov function is null in Ẽeq , i.e.

Vi (χ(x)) = 0 for χ(x) ∈ Ẽeq ∩ Xi , i ∈ I 0 .

We will also try and evaluate the speed of the exponential convergence of the system trajectories to the equilibrium set E eq . For this purpose, we can define the distance d from a state x to any point in E eq as d(x, E eq ) = inf xeq∈Eeq xx eq .

We can then introduce the following definition.

Definition 4 (Decay rate): We call "decay rate" the largest positive number α such that for any initial condition x 0 : lim t→∞ e αt d(x(t), E eq ) = 0.

Corollary 5:

The decay rate of system in ( 8) is larger then α if the conditions in [START_REF] Moarref | Asymptotic stability of piecewise affine systems with sampled-data piecewise linear controllers[END_REF] are replaced by

Vi ( Π ΠT χ(x)) < -2αV i ( Π ΠT χ(x)) for χ(x) ∈ Xi / Ẽeq , i ∈ I 0 Vi (χ(x)) < -2αV i (χ(x)) for χ(x) ∈ Xi i ∈ I 1 . (25) 
IV. MAIN RESULT Given the previous considerations and using the S-procedure [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], we can arrive at our main theoretical result, which reveals that a Lyapunov function can be computed through an LMI optimization.

Theorem 6: Let us assume that the system in (8) satisfies Assumption 1, Assumption 2 and Assumption 3. Let Ãi,k , ∀k ∈ {1, • • • , q} be the uncertain matrices describing the dynamics of the vector χ of degree m deriving from x, as in [START_REF] Jarvis-Wloszek | Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization[END_REF], with Xi , Ẽi , Fij , Zi , etc. as previously defined.

If there exist

• P i = P T i ∈ R ρ×ρ for i ∈ I; • U i,k = U T i,k , W i = W T i ∈ R li× li and T i,k , T ′ i , ∈ R li ; all with non-negative entries for i ∈ I, k = 1, . . . , q; • U ij,k , U ′ ij,k ∈ R li× li , T ij,k , T ′ ij,k ∈ R li , all with non- negative entries for i, j | (i, j) ∈ Γ, k = 1, . . . , q; • L ij ∈ R ρ×rij for i, j | (i, j) ∈ Γ; • τ i (ν), τ ′ i (ν), τ ′′ i,k (ν), τ ij,k (ν), τ ij (ν) ∈ R, for i, j ∈ I, ν = 1, . . . , ι, k = 1, . . . , q such that P j = P i + F T ij L T ij + L ij Fij + H(τ ij ) for (i, j) ∈ Γ (26) ΠT ÃT i,k P i Z = 0 Ẽi Z = 0 for i ∈ I 0 , k = 1, . . . , q (27) 
and it holds that

     ΠT (P i + H(τ ′ i ) -N i (T ′ i ) -ẼT i W i Ẽi ) Π ≻ 0 ΠT ( ÃT i,k P i + P i Ãi,k + H(τ ′′ i,k ) + N i (T i,k ) + ẼT i U i,k Ẽi ) Π +2α ΠT P i Π ≺ 0 for i ∈ I 0 , k = 1, . . . , q (28)   
 P i + H(τ ′ i ) -N i (T ′ i ) -ẼT i W i Ẽi ≻ 0 ÃT i,k P i + P i Ãi,k + H(τ ′′ i,k ) + N i (T i,k ) + ẼT i U i,k Ẽi +2αP i ≺ 0 for i ∈ I 1 , k = 1, . . . , q (29) 
               ΠT ( ÃT i,k P j + P j Ãi,k + H(τ ij,k ) + N i (T ij,k ) + N j (T ′ ij,k ) + ẼT i U ij,k Ẽi + ẼT j U ′ ij,k Ẽj ) Π + 2α ΠT P j Π ≺ 0 ΠT ( ÃT j,k P i + P i Ãj,k + H(τ ji,k ) + N i (T ji,k ) + N j (T ′ ji,k ) + ẼT j U ji,k Ẽj + ẼT i U ′ ji,k Ẽi ) Π + 2α ΠT P i Π ≺ 0 ΠT ÃT i,k P j Z = 0, ΠT ÃT j,k P i Z = 0 for (i, j) ∈ Γ, i, j, ∈ I 0 , k = 1, . . . , q (30) 
           ÃT i,k P j + P j Ãi,k + H(τ ij,k ) + N i (T ij,k ) + N j (T ′ ij,k ) + ẼT i U ij,k Ẽi + ẼT j U ′ ij,k Ẽj + 2αP j ≺ 0 ÃT j,k P i + P i Ãj,k + H(τ ji,k ) + N i (T ji,k ) + N j (T ′ ji,k ) + ẼT j U ji,k Ẽj + ẼT i U ′ ji,k Ẽi + 2αP i ≺ 0 for (i, j) ∈ Γ, i / ∈ I 0 j / ∈ I 0 , k = 1, . . . , q (31 
) with

N i (T ) = 0 T T Ẽi + 0 ẼT i T and 
H(τ ) = ι ν=1 τ (ν)Q ν
then the trajectories x(t) of the system (8) converge exponentially to the equilibrium set E eq , with a decay rate larger than α, with the Lyapunov function [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF]. Proof: Consider the Lyapunov function candidate V (χ(x)) defined by [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF].

To prove [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF], we use the same approach as in [START_REF] Hassibi | Quadratic stabilization and control of piecewiselinear systems[END_REF]. So, for χ(x) ∈ Xi ∩ Xj , we have Fij χ(x) = 0; replacing this into [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF], multiplying on the right by χ(x) and on the left by χ(x) T , and remembering that χ(x) T H(τ )χ(x) = 0 for any τ , we get χ(x) T P j χ(x) = χ(x) T P i χ(x), that is [START_REF] Khalil | Non Linear Systems, Third Edition[END_REF], i.e. [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF] implies continuity of the Lyapunov function on the boundaries. Let us now consider the inequalites; all of the inequalities involving Ãi,k are present for all the values of k, assuring that such equalities will also hold for Ãi (λ) for any valid λ. For example, if

ÃT i,k P i +P i Ãi,k +H(τ ′′ i,k )+N i (T i,k )+ ẼT i U i,k Ẽi + 2αP i ≺ 0 holds for all k, then Ãi (λ) T P i +P i Ãi (λ)+H(τ ′′ i )+ N i (T i ) + ẼT i U i Ẽi + 2αP i ≺ 0
holds for all λ, with τ ′′ i , T i , U i appropriately chosen. We will consider this as granted for the follow-up of the proof, for all of the inequalites.

Let us now consider ( 27) and [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF]. Based on Assumption 3, we can always write a decomposition for χ(x), of the kind χ(x) = Zξ + Πζ, with χ(x) ∈ Xi , i ∈ I 0 . As Ã0 (λ) Z = 0 for χ(x) ∈ Ẽeq (i.e. χ(x) = Zξ), then the first in ( 27) implies [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. For χ(x) / ∈ Ẽeq instead, when the active dynamics is Ãi (λ), with i ∈ I 0 , we have V (χ(x)) = ( Zξ + Πζ) T ( Ãi (λ) T P i + P i Ãi (λ))( Zξ + Πζ) = ζ T ΠT ( Ãi (λ) T P i + P i Ãi (λ) T ) Πζ thanks to [START_REF] Smaoui | High order sliding mode for an electropneumatic system: a differentiator-controllers design[END_REF] (notice that: ΠT Ãi (λ) T P i Z = 0). Notice also that the second in [START_REF] Smaoui | High order sliding mode for an electropneumatic system: a differentiator-controllers design[END_REF] implies that Ẽi χ ≥ 0 ⇒ Ẽi Πζ ≥ 0. Then, thanks to the S-procedure, the second inequality in [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF] implies Vi ( Π ΠT χ(x)) < -2αV i ( Π ΠT χ(x)) for χ(x) / ∈ Ẽeq , which is the first in ( 25), as we have ζ T ΠT ẼT i U i,k Ẽi Πζ ≥ 0 (true thanks to [START_REF] Johansson | Piecewise linear control systems[END_REF]) and ( 27)), ζ T ΠT N i (T ′ i,k ) Πζ ≥ 0 (true thanks to ( 18) and ( 27)) and χ(x) T H(τ ′ i,k )χ(x) = 0 (true thanks to (15)). In a similar way, the first inequality in [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF] naturally implies the inequality [START_REF] Krishnamurthy | A computational stability analysis of discrete-time piecewise linear systems[END_REF] for the cells with i ∈ I 0 .

Subsequently, again thanks to the S-procedure, the first inequality in [START_REF] Tustin | The effect of backlash and speed-dependent friction on the stability of closed-cycle control systems[END_REF] implies that χ(x) T P i χ(x) > 0 when χ(x) T ẼT i W i Ẽi χ(x) ≥ 0 (true thanks to (18) if χ(x) ∈ Xi ), χ(x) T N i (T ′ i )χ(x) ≥ 0 (true thanks to (18)) χ(x) T H(τ ′ i )χ(x) = 0 (true thanks to ( 15)), which in turn implies that V i (χ(x)) > 0 for χ(x) ∈ Xi i.e. the inequality [START_REF] Krishnamurthy | A computational stability analysis of discrete-time piecewise linear systems[END_REF] for the cells with i ∈ I 1 . Similarly, the second inequality in [START_REF] Tustin | The effect of backlash and speed-dependent friction on the stability of closed-cycle control systems[END_REF] ensures the second inequality in [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF].

The conditions ( 30) and ( 31) concern possible sliding modes on the boundary between two cells. Indeed, multiplying the second inequality in [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF] by θ (omitting the dependency on λ) and the second in ( 28) by 1θ and summing, we get (thanks to the S-procedure, as seen above)

χ(x) T ((θ Ãj (λ) T + (1 -θ) Ãi (λ) T )P i + P i (θ Ãj (λ)+ (1 -θ) Ãi (λ)) + 2αP i )χ(x) < 0
for any χ ∈ Xi ∩ Xj , which ensures that the derivative of V i is sufficiently negative for the given decay rate for any possible sliding mode dynamics. Similarly, one can get the complementary inequality

χ(x) T ((θ Ãj (λ) T + (1 -θ) Ãi (λ) T )P j + P j (θ Ãj (λ)+ (1 -θ) Ãi (λ)) + 2αP j )χ(x) < 0
from the first in [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF]. Condition (30) concerns a sliding mode containing the equilibrium set, the inequalities can be proven with the same reasoning as for ( 31) and ( 28).

So we have shown that the conditions required by the theorem imply ( 21), ( 22), ( 24) and ( 25), satisfying the hypotheses of Lemma 3, which proves the theorem statement.

The theorem involves a feasibility problem under linear matrix inequalities (LMIs) in ( 28), ( 29), [START_REF] Xu | Homogeneous polynomial Lyapunov functions for piecewise affine systems[END_REF] and [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF], as well as linear matrix equalities (LMEs), ( 26) and ( 27), and the last in [START_REF] Xu | Homogeneous polynomial Lyapunov functions for piecewise affine systems[END_REF]. Such LMEs can be resolved by an appropriate parameterization of the unknowns. In the case of α = 0, the theorem proves the simple asymptotic stability of the system in (8) with respect to E eq . An interesting problem is then to find the largest α such that Theorem 6 is satisfied. This problem can be solved through a dichotomic search with respect to α.

Remark 7: The first conditions in ( 28) and ( 29) can be interpreted as a "sum of squares" property (SOS) [START_REF] Jarvis-Wloszek | Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization[END_REF], [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF], [START_REF] Choi | Sums of squares of real polynomials[END_REF]. In fact we look for a positive definite polynomial V i (χ) as a square product of a positive definite matrix times a vector of monomials χ. The terms in H(τ ) reduce the conservatism of the inequality.

Remark 8: Theorem 6 includes several previous results as special cases.

• In the case of no sliding modes, no uncertain parameters, for m = 1, E eq = {0}, T • = 0 and α = 0, we have Theorem 1 in [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF]. • In the case of no sliding modes, no uncertain parameters, for m = 1, E eq = {0}, U • = 0 and α = 0, we have the theorem in Section 5 of [START_REF] Hassibi | Quadratic stabilization and control of piecewiselinear systems[END_REF]. • In the case of no sliding modes, no uncertain parameters, for m = 1, we have Theorem 9 in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF]. • With sliding modes allowed, no uncertain parameters, for m ≥ 1 and α = 0, we have Theorem 3 in [START_REF] Ameur | A piecewise-polynomial Lyapunov approach for non-linear switching controllers for pneumatic systems in presence of sliding modes[END_REF]. In this sense, Theorem 6 is an extension of these previous results; it is less conservative as it features a more general condition, and at the same times it allows the analysis of the convergence to equilibrium sets other than the origin alone even in the presence of sliding modes and parametric uncertainties.

V. APPLICATION TO THE PNEUMATIC ACTUATOR

As shown in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], and according to (4) and ( 5), the dynamical behavior of the pneumatic system described in Section II can then be cast into the form of a PWA system as in [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic field[END_REF]. Concerning the parameters of the test bench, we have l = 0.5 m, M = 17 kg, F s = 38 N, S = 7.27 • 10 -4 m 2 , ε = 0.1 m/s, ε 1 = 0.005 m (which implies that the final positioning error is smaller in modulus than this value), ε 2 = 0.01 m/s and ε 3 = 10 -4 m/s. Through a pole placement, according to the system specifications, we have set k y = 50 s -3 , k v = 71 s -2 , k a = 51.4 s -1 , k P = 10 s -1 and k N = 10 s -1 . Theorem 6 can be applied in several different cases, according to the friction model chosen (saturation form or relay form), the type of problem under consideration (stability or performance study), and the value of m. We will present the results of the possible cases comparing the outcome of using piecewise-quadratic Lyapunov functions (m = 1) and piecewise-quartic ones (m = 2). We study the asymptotic and the exponential stability of the equilibrium set E eq = [x e 1 0 0 0] T , where x e 1 represents a steady position error between -ε 1 and ε 1 . Finding a valid Lyapunov function is equivalent to proving the closed-loop stability of the pneumatic actuator (for any possible initial condition, including any possible switching sequence).

A. Friction in saturation form

We begin our study choosing friction in saturation form as in [START_REF] Armstrong-Hélouvry | A survey of analysis tools and compensation methods for the control of machines with friction[END_REF], which presents no sliding modes on the boundaries. For this model, the results of the theorem applications are presented as follows.

•

Stability study

As we study the convergence of the state to E eq , we consider a static setpoint, i.e. y d constant and v d = 0, a d = 0 (which implies e v = v, e a = a).

The switching criteria divide the state-space into seven cells (see Figure 7): a central cell X 0 , for which 0 ∈ X 0 , and six external cells X 1 , X 2 , X 3 , X 4 , X 5 and X 6 .

Certain couples of cells are symmetric to each other with respect to the origin: X 1 and X 2 , X 3 and X 4 , and X 5 and X 6 . We can use this property by imposing conditions only for a single cell of each couple, and by symmetry these conditions will necessarily be verified for the other ones. So, we need to impose the conditions of Theorem 6 only for the central cell (i = 0) and for i = 1, 3, 5.

First we consider that there is no variation on friction; so k = 1, λ 1 = 1. By applying Theorem 6 for m = 1, the lower bound value on the decay rate found is: α = 0.0897. Figure 8 presents the 2-dimensional level curves of the obtained Lyapunov function in the (e v , e y ) plane. We can clearly see that the level curves do not have a simple ellipsoidal shape; this suggests that a simple common quadratic Lyapunov function (i.e., the same matrix P for all the cells) could be not sufficient to obtain such shapes. In fact, we have run our test also in order to look for a common quadratic Lyapunov function, and the test failed to find any. This justifies the effort in finding less conservative conditions as the ones of Theorem 6. On the other hand, we have also verified that for m = 2 it is possible to find a common polynomial Lyapunov function, thanks to the lower conservatism with respect to a common quadratic one.
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• Robust stability

For the robust stability study, we have modified the chosen model of friction by inserting a range of variation of the parameter F s (see for example Figure 10). In our case study, we took a variation between F smax = 40 N and F smin = 20 N . In this case, the friction model is polytopic with k = 1, 2, and can be presented according to (7) as:

F s (λ) = λ 1 F smax + λ 2 F smin λ 1 + λ 2 = 1 (32) 
In this way, the model of the system is PWA with polytopic uncertainties. 1) Piecewise quadratic Lyapunov function (m = 1) By applying Theorem 6 for m = 1, the lower bound value on the decay rate found is: α = 0.0671. The level curves of the obtained Lyapunov function are presented in the Figure 11.

2) Piecewise polynomial Lyapunov function (m = 2)

By applying Theorem 6 for m = 2, the lower bound value on the decay rate found is: α = 0.4750. For this case, the level curves of the Lyapunov function are pretty much the same compared to the case without variations. For both cases, the stability was proven despite variations in friction, with a slight reduction of the decay rate.

• Performance study

We study the trajectory tracking by taking specified desired trajectories (see Figure 12 The asymptotic stability has been also verified for m = 2 and a level curve of the obtained Lyapunov function is presented in Figure 14 in the (e y , v, v d ) space.

B. Friction in relay form

The second friction model chosen for our study is in the relay form, as in [START_REF] Ameur | A piecewise-polynomial Lyapunov approach for non-linear switching controllers for pneumatic systems in presence of sliding modes[END_REF], for which we study all the possible cases as done for the other friction model.

The switching of the system (due to the friction model and due to the control law) divides the state-space into a set of several cells; 8 cells considering only two switching criteria (see Figure 15), or 12 cells with respect to desired velocity switching criteria (not shown for brevity; more details on the PWA formulation of the model can be found in [START_REF] Ameur | A piecewise-polynomial Lyapunov approach for non-linear switching controllers for pneumatic systems in presence of sliding modes[END_REF]).

The discontinuity of the friction model on v = 0 can generate a sliding mode on the corresponding boundary, which we need to take into account while proving stability. All the results of the theorem application concerning this friction model are presented in Table II.

To suggest an idea of the computations involved, we provide a brief discussion only for the performance study (trajectory tracking). In this case, the piecewise-polynomial function is of degree 2m = 4, which yields a vector χ(x) of the extended state, according to [START_REF] Fridman | Sliding Modes After the First Decade of the 21st Century: State of the Art[END_REF], in the following form (remember that x = [x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ] T , where x 5 , x 6 are states associated to the reference trajectory): χ(x) = [x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 1 x 2 , x 1 x 3 , x 1 x 4 , x 1 x 5 , x 1 x 6 , x 2 x 3 , x 2 x 4 , x 2 x 5 , x 2 x 6 , x 3 x 4 , x 3 x 5 , x 3 x 6 , x 4 x 5 , x 4 x 6 , x 5 x 6 , x 2 1 , x 2 2 , x 2 3 , x 2 4 , x 2 5 , x 2 6 , 1] T . The level curves of the piecewise-polynomial Lyapunov function found have been plotted in Figure 16 in the (v, e y ) plane and in Figure 17 in the (e y , v, v d ) space. We can see that the level curves do not have a simple ellipsoidal shape; this implies again that a simple common quadratic Lyapunov function is not sufficient to obtain such shapes. Moreover, we have verified that the test fails for the case of m = 1, which sliding surface justifies the need of a piecewise-polynomial function instead of a piecewise-quadratic one. 
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C. Summary

Table II contains the results for all cases of the theorem application to our electropneumatic system; namely stability, robust stability, performance and robust performance under the two models of friction and two forms of Lyapunov function are considered.

We can notice the effectiveness of the piecewise-polynomial Lyapunov function approach for proving stability even in the presence of sliding modes and parametric uncertainties, finding a more reliable upper bound on the decay rate compared to piecewise-quadratic Lyapunov functions. 

VI. CONCLUSIONS

In this paper, we have investigated the problem of proving the stability of an electropneumatic system in closed-loop with a switching control law modeled as a PWA system with sliding modes due to presence of friction. Some sufficient conditions have been presented for finding piecewise-polynomial Lyapunov functions for PWA systems with sliding modes, uncertainties on parameters and equilibrium sets greater than the mere origin, and potentially on a sliding mode. The new extended conditions successfully found a 4-th degree piecewise-polynomial Lyapunov function through a convex optimization problem in terms of linear matrix inequalities. We have shown that this method is able to prove stability for a model of a real pneumatic test bench.
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 215 Fig.[START_REF] Hassibi | Quadratic stabilization and control of piecewiselinear systems[END_REF]. The cells X i in the case of friction in relay form, intersection with (ev, ey) plane.
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 16 Fig. 16. Lyapunov function level curves, friction in relay form, performance study, m = 2.
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 17 Fig. 17. A Lyapunov function level curve on the (ey, v, v d ) space, friction in relay form, performance study, m = 2.
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