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Lyapunov stability analysis of switching controllers in preserte of
sliding modes and parametric uncertainties with application to
pneumatic systems

Omar Ameur, Paolo Massioni,&Bard Scorletti, Xavier Brun and Mohamed Smaoui

Abstract—This paper concerns the control and the stabil- 3 ,
ity analysis of pneumatic actuators, which are nowadays of position
widespread use in the industry. A problem related to the use of oL desired position |

such actuators is the so-called “stick-slip”, due to the presencefo
dry friction in the system. In this paper we provide an empirical
switching control law which avoids this phenomenon, as well as
a general approach to the stability analysis of nonlinear systems
which will let us prove the stability of the closed-loop system.
The approach is based on casting the closed-loop system into -1r
a piecewise-affine form and finding a Lyapunov function for it.
Such an approach will be able to cope with the special features 0 05 1 15 >
of the controlled pneumatic system model, namely the presence t[s]
of sliding modes, a whole equilibrium set and uncertainties on
the values of a few parameters. Fig. 1. Stick-slip phenomenon on a pneumatic cylinder.

At the end of the paper we will show how such a method can
be successfully applied to our experimental setup under several
different hypotheses.

y [mm]

To avoid this highly undesirable phenomenon, a control law
Index Terms—Piecewise-affine systems, piecewise-polynomialhas heen proposed recently in [28]. This solution consists
Lyapunov functions, switched control, fluid power. in a classic feedback linearization, which compensates for
the nonlinearities in the pneumatic model, together with an
. INTRODUCTION appropriate switching law. The controller switches from a
Electropneumatic systems are widely used in industry, agajectory tracking control to a pressure control after tbe
pecially in the form of pneumatic actuators or cylindershas come to a rest, offsetting the pressure difference leetwe
Their efficient use depends on good control laws, which afige two chambers and avoiding an uncontrolled evolution
often non trivial to synthesize due to nonlinear dynamicghat eventually could make the rod restart. A major problem
In particular, friction is a phenomenon which plays a keyith this solution, which has been otherwise verified as very
role in the dynamic behavior of pneumatic cylinders, as thfective in the practice, was to find a formal proof of its
presence of friction may lead to what is called “stick-slipstability; in fact, such a proof has not been given in theingl
[20], [7]. Such a phenomenon typically occurs in the presengeference [28].
of dry friction combined with an integration effect (either  The difficulty in finding a formal proof of stability lies in
the control law or in the system itself), and it consists, ifhe pressure dynamics of the pneumatic chambers, and in the
pneumatic cylinders, in a displacement of the rod a whileraftpresence of dry friction, which make the electropneumatic
it has come to a rest; this is due to the fact that the forc@@ctiactuator a strongly non-linear system. Typically, feedbac
on the rod initially becomes smaller that the threshold Whec |inearization can be used to cancel the nonlinearities with
necessary for a motion in presence of dry friction, but later feedback control, with the “caveat” that an uncertaintytie t
this threshold is overcome due to a slowly growing integratGnodel can lead to catastrophic effects. In this study we will
For example, Figure 1 features the record of an experime{{alyze a control law, based on the one in [28], which cancels
on a pneumatic cylinder showing an occurrence of stick-sligy| the nonlinear effects through feedback linearizatidtithe
We can see that the rod, following the given reference, comggeption of the most difficult to model quantitatively, relyn
to a rest in the first half second; then it starts moving agaifhe friction. We will then approach the problem of proving
with no changes for the setpoint. the stability of the closed-loop system by casting it into a
In this case, stick-slip is caused by the presence of diyacewise-affine (PWA) form [12], [23], [25], [22]. In order
friction and by the pressure dynamics in the chambers, whigh o that, we will consider two different models for the dry
continue to evolve (integrating the net incoming mass floiction; we will consider both a simplified model, where the
from the servovalves) even after the rod has stopped. friction force is a continuous function of the velocity ofthod

O. Ameur and G. Scorletti are with Laboratoire A&mp, UMR CNRS ('n a SO_'Ca”ed “saturanonj’ ;hape), as well as a more naglis
5005, Ecole Centrale de Lyon, Universitde Lyon, {omar.aneur, discontinuous model of friction. In fact, as indicated bynya

gerard.scorletti}@c-lyon.fr _ o works [3], [11], [29], [9], more accurate models of friction
P. Massioni, X. Brun and M. Smaoui are with Laboratoire Arg UMR f di L hich lead h i
CNRS 5005, INSA de Lyon, Univeréitde Lyon, {paol o. massi oni, eature discontinuities, which can lead to the appeararmce o

xavi er. brun, mohaned. smaoui }@ nsa-1yon. fr sliding modes [14], [13] in the system dynamics.



In the literature, we can find several approaches for dealing | ¥ position of the piston rod (m)

. . L . - v velocity (m s1)
with sliding modes in piecewise-affine systems [18], [18], [ PP, DN pressures in the cylinder chambers (Pa)
[16], [26] but unfortunately, none of these approaches are | a acceleration (ms?)
enough to deal with the stability of our pneumatic actuator 59 dry friction force (N)
. e . gas polytropic constant
systems. First of all, we have verified that searching for a ! length of stroke (m)
piecewise-quadratic Lyapunov functions is too consereati M load (carriage and rod mass) (kg)

mass flow rate provided by the servovalves

1 1 1 dmP, 9qmN
and does not yield any valid solution. Secondly, these forme o0 the cylinder chambers (kg3)

methods are not able to cope with the presence of a whole | . perfect gas constant (J kg K1)
equilibrium set (not only a point) in a sliding mode. In this S area of cylinder bore (A)

work, we propose new sufficient conditions for stability dds T temperatr‘:ige (K)

on piecewise-polynomial Lyapunov functions, which can be KD \é?:gq Sofun?e of cylinder chamber {n
given in terms of linear matrix inequalities (LMIs) and lare

matrix equalities (LMEs). These conditions are also able to NT?T%E)L

cope with the uncertainties in the friction models, and we '

have used them successfully for proving the stability of the
closed-loop system for all the possible models of friction.

Some of the results of this paper have been partially
presented in [1], [2], which contain only two special cases Homer wcomer]
of the main, more general result introduced here. This paper t
analyses all the possible cases and offers a unified point of
view. Fig. 2. Electro-pneumatic actuator.

The remainder of this paper is organized as follows. Sec-
tion Il contains the description of the pneumatic actuator
model with the proposed switching control law avoiding
“stick-slip”. Section Ill introduces the uncertain PWA staof
systems and the tools that can be used for the robust sgabilit y=v
analysis in the presence of sliding modes and parameters . )
variations. Section IV contains the main theoretical resul =37 (Sbp —pn) = Fr(v))

guiding rails

12 0 12 y

1
i.e. a method for proving robust stability, whereas Section DN = V’“NT(Z)(%pNU + GmN) @)
shows its different applications to our test bench modek Th . BT -8
conclusions are given in Section VI. PP = vy (77 PPV + gmp)

) where the inputs are the two mass flow rajgs and ¢,
Notation andVp(y) = Vo+Sy, Vn(y) = Vo— Sy with Vo = Vp+S5L.
We denote byR the field of real numbers and B/**™ the F(v) is the dry friction force, whose nonlinear model is given
set of realn x m matrices. LetA” indicate the transpose ofin the literature by several relations [3], [11], [29], [9h
a matrix A, and let] be the identity matrix. We use also theour case, we consider two possible models of the dry friction
notation A = 0 (4 < 0) to indicate that all the eigenvaluesforces, one in a continuous saturation forfiiy) and another

of the symmetric matrix4 are strictly positive (negative). Thein a discontinuous, “relay” formx/;), both shown in Figure 3,

symbol (Z) indicates the binomial coefficient, for which weSUCh as:

h
ave (n) n! A Fr(v) [N] M)

k)T Rk

Il. PNEUMATIC ACTUATOR SYSTEMS

We consider a pneumatic cylinder test bench like the one
shown in Figure 2. The setup is intended for applications in
rectilinear motion [8], [6], [27]. It comprises an actuatior
the form of a pneumatic cylinder (double acting) with a rod
connected to a carriage on rails. The actuator is powered by
compressed air, with two servovalves for controlling thevflo
supplied to both the chambers of the cylinder. Two sensors
measure the pressures in the chambers.

Based on [28], the physical model of the system in open
loop is given by the following equations (see Table | for the
notation): Fig. 3. Dry friction models.




test bench; the system can switch to pressure control (#2) on
= +Fs forv>0 when the trajectory becomes constant.

M, : Fj(w){ €[-Fs,+F] forv=0 @ Rer_nar_k 1:The chosen control law is base_d on a feedback

linearization that cancels out all the nonlinearities oé th

=T for v <0. system but the ones caused by friction. We avoid canceling
and them because there is a high degree of uncertainty on the
F, forv>e friction forces, so exact cancellation is impossible.
‘ The topic of the rest of this paper is the formal proof of
My: Fp(v)=< Lo for —e<v<e (3) stability. One of the issues that we will need to face is that
_F, forv<—¢ the stability of the system has to be proven for a special kind

of convergence of the state, not to the setpoint, but to aavhol

In order to overcome the stick-slip phenomenon, we proposgt in its neighborhood. This is due to the well-known fact
the following control law adapted from [28]. This law is belsethat moving systems subject to dry friction cannot be easily
on a feedback linearization of the model in (l), and it swetch brought to a Stop at a desired point’ but they will rather mP
between the two following modes. its proximity (this can be seen for example in Figure 4, when
o Trajectory tracking law (#1) the rod stops just after= 2 s, as well as in Figure 5, where

v . the error never goes exactly ).
qmp = ,fr(%/) [V’;ﬁ/)vpp +ppa — kpep) g y o

MVn(y) [_SkrT

5%k E i A " S ) LT
InN ="t [5tve(y dmP + 551 (C 7 — vty 025,#1:#2 il * - 5#2 1
—jd + ka€q + kvey + kyey] ch TP ;
which allows the tracking of a given time-varying posi- — %[ = '
tion reference; under the hypothesis of no state or inp E o5t
saturation, it yields the following closed-loop dynamics .5
= 0a1p
ey =¢ & .
’y ! . & o005 i
v = €af — 37 F¢(v) @ : §
or 1 R
Cay = —kaCas — kuey — kyey + 55 Fr(v) i | ety

éP — _kPeP 0 0.5 1 15 2 25 3 35 4 4.5 5

o Pressure control law (#2)

_ Ve(y) [ kS + _k ] Fig. 4. Simulation of position evolution with respect to thesited position.
qmP = 71 V() VPP T PPd Pep The background colors are related to the active control mgtleof #2).
Vn (s k .
qmN = ;i\;(jg) [~ VN“(gy) vpN + PNa — knen]

which regulates the pressures in the two chambers
order to avoid stick-slip; this law is active when the
carriage has arrived at the desired position, resulting
the following closed-loop dynamics:

position [m]

€y = €y

€y = eaf — 37 F5(v)

. (5)
baf = 37 (kn —kp)ep — kneay -
ép = —k}pep g
()
In all of the equations aboveg,; = e, + +7F7(v). S
ey, €v, €q, €p, €y are the errors between states and the 8-
desired values; the constanks, k,, k., kp and ky are B T T S R t[;s] o7 T v

the state feedback gains chosen by a pole-placement on

feedback-linearized model. The switching criterion is . _ . 3 .
#s #2: ey | < 1 Aley| < 2 A fva] < &9 Grtor with 165pect 10 he desiod reference. The backgraotats are reated
#2— #1: |ey| > €1V |ey| > €2V |vg| > €3 to the active control mode (#1 or #2). No stick-slip occurs.

whereeq, e, andes are small arbitrary constants. The above

switching controller has shown no instability either in alax

tion or on the test bench and has never caused the occurrence Ill. PROPOSED APPROACH

of stick-slip. Figure 4 and Figure 5 show trajectories aidi Let us introduce a partition dR™ into NV polyhedral cells

using this control law, respectively in simulation and oe thX; with disjoint interior, withi € Z, a set of N valid indices.



We partitionZ = Z, UZ; (with Zo N Z; = 0) such ad) € X; O X p_y Ae(B)aigk + (1 —0(N) iy Ae(t)ajr = 0;

if i € Ty, otherwise0 ¢ X; if i € Z; (the cells with index in we define Ag(\) = 0(A) Y27  Me(t)Air + (1 —

T, contain the origin). O(N) St Me()A; k.
Definiti_on 2 (Piece-yvise affine yvith pplytopi_c uncertaia)te_ Moreover, A, ()\) hash eigenvectors not depending from

A dynam|cal system is g:a]led piecewise gfflne (PWA) Withshared WithS>7_ Ap(t) A, x, and with 337 A (£)A; , in

polytopic uncertainties if it has the following dynamics],[1 {he second case) that haveas associated eigenvalue. We

[19], [15]: call Z € R("*tD*" the full-rank matrix of these eigenvectors
. a . (AN Z =31 M) Aj 6 Z =0 M(t)Ai 1 Z = 0; this
#(t) =Y () (Aig(t) + aig), for x(t) € Xi,i €T implies that the equilibrium set can be larger than the arigi

k=1 alone, i.e.E., D {0}). We then defindl ¢ R(»+1)x((n+1)=h)

© the orthogonal complement &, with =1
wherez(t) € R™ denotes the state-space vector andt) are
continuously time-varying parameters which can take v&alue Sliding surface
according to
{)\k(t)ZOVke{l,...,q} %
ZZ:1 Ak(t) =1

Equivalently, forz(t)” = [z(t)T 1]

AN #

MMM

z(t) = i)\k(t) [ Aige i } Z(t), for o(t) € X;,i € T

A
/)]

I
>

=

+
2

Ak X=AX+a

8

The domain of each celK; is described by matrice&; <
Rlix(n+1) such as:

\
/4 ¥

reX, = Ezxz>0, 9)

. . Fig. 6. Sliding modes.
and the boundaries between two cells and X; by matrices

F;; € Rm>(1) such as The objective is to find a set of conditions ensuring the
{ U= {(i,7)| X; N X; # 0} exponential convergence of the system stafg to the set
. _ (10) of equilibrium points E.,, notwithstanding the presence of
Vi, j) el XinX; C{ «|Fyz= 0 }. sliding modes on the boundaries and parametric variations i
We definex” = [A; ...A,]7. We then formulate a set of the model. Basically we have to upgrade the methods in [19],
assumptions which will hold throughout the paper. [15] in order to cope with sliding modes, equilibrium sets
Assumption 1A sliding mode may occur on any boundaryand parametric variations; we will use a Lyapunov function
in T between two neighboring cells; and X; (see Figure 6), Of degree higher than (as done in [2]), i.e. a piecewise-
ie. forz € X; N X, (i,j) € T, we have the following Polynomial Lyapunov function, which is less conservativart

dynamics (according to Filippov [13]): the classical piecewise-quadratic Lyapunov functionschSu
q q functions are given by the expression
T(t)= (‘9(>\)Z)\k(t)Ai,k+(19(>\)) Zkk(t)Aj,k> z(t),
k=1 k=1 V(z)=Vi(zx)forz e X;,i e (12)
0<6(N) <1

(11) such thatV;(x) is a polynomial inn variables with degregm
which means that the matrix describing the system dynamigien by:
at a boundary is a convex combination of the matrices of the Vi(z) = x(z)T Pyx(z) (13)
neighboring cells. .
Assumption 2The setE,, D {0} of the equibrium points WhereP; = P € R**#, andy(z) € R?*" is the vector of all

for (8) is a subset OUieIo X; (notice that the equilibrium set the monomials of degree less than or equakidhat can be

might also be on a sliding moyle made from the elements af, p = (m + n) For example,
Assumption 3Two cases can be distinguished: m
« if the origin is in the interior of a cellX; (for which X(z) = [x1, %2, ..., Tn, T1T2, X173, . . ., T1Tp, T2T3, . - -
_ S\ q A.
we have then thaly = {i}): > [ ; Ae(t)Aik doe§ not R P P P SOS JR 1
have any constant termas;(; =0, for k =1,...,q); we (14)

defineﬁo(/\) = ZZ:I )\k(t)ZLk;
« if the origin is in the boundary between cells; and As seen in [24], the choice aoFf; is not unique for a given
X, there exists ad(A), 0 < 6(\) < 1, for which polynomial V;(z); there exists a numbaer of linearly inde-



pendent matrices), = QI € RP*» (defined up to a scalar the full-rank matrix of these eigenvectorst((( )Z =

factor), for which i 1)%( ) ]kZ = Y1 1 ®)AikZ = 0); we de-
fine II € R**(»—") as the orthogonal complement &f
T _ —
x(@) Qux(x)=0forv=1,...,. (15) with TI7TI — 7.
with V(x) in (12) and (13) is a candidate Lyapunov function

1 ot m\ 2 m4n n+om for the system in (8). In order to ensure its continuity on
L= = <( ) + ( )) - ( ) (16) the boundary between two cells; and X;, (i,j) € I, the
2 m m 2m following condition has to be satisfied:

This implies thatVi(z) = x(x)" Pix(z) = x(2)"(P + Vi(x) = V;(x) ¥x(z) € X; N X;. (21)

> 1 Qur(v))x(z) for any real scalars(v). This is due to . ,

the fact that some monom|alsm can be obtalned as products As a direct consequence of LaSalle’s theorem ([21], [31]),

of different elements iy, €.9.22 = 2 -y = 1-22 = 22 - 1. the conditions that the candidate time-invariant Lyapunov
Following the procedure of the “power transformation” [Sz]funcnon must satisfy in order to prove the convergence to

[30], we can obtain the dynamics of(z(t)) = x(t), with the equilibrium set are in the following lemma.

which we will be able to compute the time derivative of the Lemma 3For the systemiin (8), the convergencexdd £,

Lyapunov function. Namely, the uncertain dynamics willlsti (Which coincides with the convergence fin (17) to Ee,)

be PWA, i.e. we will have fort > 0, t — +oo is assured under the following conditions.
1) The Lyapunov function is continuous, i.e. it satisfies
Z)\k ), Vke{l, ..., q}, forye XiieT (21); o .
2) The Lyapunov function is positive outside.,,
) o e .
and we can construct a new description of the calls with Vi(x(2)) > 0 for x(2) € Xi/Eeq,i € T (22)
matricesE; € R*? such as 3) The derivative of the Lyapunov function is negative
reEX; = X € X, 8 outsideE,,, i.e. o
X € X;= Eix>0, Vi(x(z)) < 0 for x(z) € X;/Eeq,i € T; (23)
and defining the boundaries, Wimj c R7ii%r, as even in the case of sliding-mode dynamics; R
o B 4) The derivative of the Lyapunov function is null i,
V(i,j) €T, X;nX; C {x | Fiyy = o} (19) ie.
Notice that, counterintuitively, the power transformatleaves Vi(x(z)) =0 for x(z) € EeqN Xii € Iy (24)

zas linear term)s '2 theAdynamltc equitloons iorV\:e de2f|ne d We will also try and evaluate the speed of the exponential
Ai( ) = i stl k Zlk stslijrrnpléons ‘ trssump 1on ; an .convergence of the system trajectories to the equilibrietn s
(1s7s;ump lon 5 are aiso stll_holding for the new system 'Eq For this purpose, we can define the distadcom a

statex to any point inE,, as
1) Sliding modes may occur, with the following dynamics:
d(z, Eeq) = 122 | & —Zeq || -

q q q e
Xx(t)= (0(A)Z)‘k(t)f4i,k+(1_e(/\))z Ak(t)AM) X(): " We can then introduce the following definition.
k=1 0< 6\ < 1k:1 Definition 4 (Decay rate)We call “decay rate” the largest
- - (20) positive numbek such that for any initial condition::

2) There exists an equilibrium sELq such thatx € Eoy & lim e®td(x(t), Eeq) = 0.
=0; x € Eeq S 1 € Feg Eeg C Ujer, Xi t—00

3) Again we distinguish two cases:
+ if the origin is in the interior of a cellX;; A; ()
does not have any constant terms for)alldo(\) =

Corollary 5: The decay rate of system in (8) is larger then
« if the conditions in (23) are replaced by

S M)A = Ak (V) V; (I Ty (x)) < —2aV; (I (z)) for x(z) € X;/Eeq,i €Ly
« if the origin is in the boundary between cells V(x(x)) < —2aVi(x(z)) for x(z) € X, iel.

X; and X;: there exists @(\), 0 < O(\) < (25)

1, for WhICh the constant terms disappear; we

define Ao( ) = H(A) _ At )Aqk + (1 - IV. MAIN RESULT

o(\) VAR(A e = H(A)Az-(A) + (1 -

~ ~ Given the previous considerations and using the S-proeedur
0(N) A; E)\)- [4], we can arrive at our main theoretical result, which edse

dentically, Ay()\) has £ e|genvectors not depend-that a Lyapunov function can be computed through an LMI

ing from A\ (shared with )} _ A\e(t)A; , and with optimization.

St M(t)Aj ) in the second case) that haeeas Theorem 6:Let us assume that the system in (8) satisfies

associated eigenvalue. We can also céll e RPxh Assumption 1, Assumption 2 and Assumption 3. L&Ltk,



vk e {1,-

-, q} be the uncertain matrices describing the To prove (26), we use the same approach as in [15]. So,

dynamics of the vectog of degreem deriving fromz, as in  for x(z) € X N Xj, we haveFUX( ) = 0; replacing this

(17), with X;, Ei, FU, Z;, etc. as previously defined.

If there exist

e P,=PrI cRr*r foriel;

« U= UL W = WT e REE and Tip, T/, € R all
with non-negative entries fare Z, k=1,...,q;

o Uiji, Ul € RV T, T € RY, all with non-
negative entries fot,j| (i,j) €T, k=1,...,q;

e Lj; € RPX7ii for i, j | (i,5) € T;

o (V)T (v), T/ (v), Tijk(V), Tij(v) € R, for i,j € I,
v=1,...,1, kzl,...,q

such that
Pj =P+ FELz; + LijFij + H(Tij) for (Z,]) el (26)
n’AT, P,Z =0
L LR foricZy, k=1,... 27
{E1Z -0 1€ 0> ) ,q ( )

and it holds that
07 (AT, P, + P Ay + H(1)),
+2al:[TPifI <0
forieZy, k=1,...,q

(28)
P+ H(7]) — Ni(T;) — ETW,E; = 0
{ AT, P+ PiA; + H(r") + Ni(Ti ) + ETU; +F;
+2aP; <0
forieZ;, k=1,...,q
(29)

T (AT, Py + PjA; ik + H(7i5) + Ni(Tijk) + Nj(T}; 1)
+ETU; 1By + ETUY, BT+ 2017 PIT < 0
HT(A P+ P A + H(7jir) + Ni(Tjix) + N; (T}ix)
+ETU By + ETU, BT+ 20117 BIT < 0
n7AT, P Z =0, HTAMRZ =0
for (i,j) €T, i,j,€Ty, k=1,...,q
R } (30)
ATRP + Py A + H(7ijn) + NilTigr) + Nj (T 1)
+ETUi]‘ kE =+ ETUZ/j k:El + 20éP =<0
AT\ P+ PiAjj + H(7jik) + Ni(Tiik) + Ni(T}; 1)
+ETU i kB + ETUS, (B +20P; < 0
for (i,j)eTl, i¢ o\ j¢To, k=1,...,q
(31)
with

Ni(T) = {T})E] +[0 EIT]

and

v=1

then the trajectories(t) of the system (8) converge exponen-
tially to the equilibrium setE,,, with a decay rate larger than

«, with the Lyapunov function (12).
Proof:
V(x(z)) defined by (12).

)+ Ni(Tix) + ETU o BT

into (26), multiplying on the right byy(x) and on the left by
x(z)T, and remembering that(z)T H(7)x(z) = 0 for any T,
we getx(z)T Pjx(z) = x(z)T Px(z), that is (21), i.e. (26)
implies continuity of the Lyapunov function on the bounéari
Let us now consider the inequalites; all of the inequalities
involving A; ;. are present for all the values bf assuring that
such equalities will also hold for;()\) for any valid \. For
example, ifAT, P+ P A; p+H (7], )+ Ni(Tir)+ EL U o Ei+
20.P; < 0 holds for allk, then4;(A\)T P+ P A;(\)+H (r!') +
Ni(T;) + ETU,E; 4+ 2a.P; < 0 holds for all\, with 7/, 7;, U;
appropriately chosen. We will consider this as grantedter t
follow-up of the proof, for all of the inequalites.

Let us now consider (27) and (28). Based on Assump—
tion 3, we can always write a decomposition fg(z), o
the kind x(z) = Z¢ + TI¢, with x(z) € X;,i € Zo. As
Ay(N)Z = 0 for x(z) € E. (i.e. x(z) = Z¢), then
the first in (27) implies (24). Fory(x) ¢ E., instead,
when the active dynamlcs ig;(\), with i € Ty, we have
V(x(2) = (Z€ + TOT (AN P + PA(N)(Z€ + TIC) =
CTTIT (A;(\)T Py + P A;(\)T)IIC thanks to (27) (notice that:
7 A; (A )TPZ 0). Notice also that the second in (27)
implies that E;xy > 0 = E;II¢ > 0. Then, thanks
to the S-procedure, the second inequality in (28) implies
V(M7 x(x)) < —2aV;(IIIT x(x)) for x(z) ¢ Eeq, which
is the first in (25), as we haveTHTETU7 WEIIC > 0 (true
thanks to (18)) and (27))"TI7 N;(7;,)IIC > 0 (true thanks
to (18) and (27)) and(z)" H(7],)x(z) = 0 (true thanks to
(15)). In a similar way, the first inequality in (28) natusall
implies the inequality (22) for the cells withe 7.

Subsequently, again thanks to the S-procedure,
first inequality in (29) implies thaty(z)"Pix(z) > 0
when x(z)TETW;E;x(z) > 0 (true thanks to (18) if
x(z) € Xi), x(@)TN;(T/)x(x) > 0 (true thanks to (18))
x(@)TH(t))x(z) = 0 (true thanks to (15)), which in turn
implies thatV;(x(z)) > 0 for x(z) € X; i.e. the inequality
(22) for the cells withi € Z;. Similarly, the second inequality
in (29) ensures the second inequality in (25).

The conditions (30) and (31) concern possible sliding modes
on the boundary between two cells. Indeed, multiplying the
second inequality in (31) by (omitting the dependency on
A) and the second in (28) by — # and summing, we get
(thanks to the S-procedure, as seen above)

X(@)T((0A;(N)T + (1= 0) A, (NP + Pi(0A;(\)+

the

for any x € X, N X;, which ensures that the derivative of

V; is sufficiently negative for the given decay rate for any
possible sliding mode dynamics. Similarly, one can get the
complementary inequality

X(@)T(0A;(NT + (1= 0)Ai(N)T)P; + Pi(0A;(\)+
(1- 0)A (A) +2aP;)x(z) <0

from the first in (31). Condition (30) concerns a sliding mode

Consider the Lyapunov function candidateontaining the equilibrium set, the inequalities can bevgno

with the same reasoning as for (31) and (28).



So we have shown that the conditions required by the thesmd the exponential stability of the equilibrium sBt, =
rem imply (21), (22), (24) and (25), satisfying the hypotes [z$ 0 0 O]T, where z§ represents a steady position error
of Lemma 3, which proves the theorem statement. B between—¢; ande;. Finding a valid Lyapunov function is

The theorem involves a feasibility problem under lineagquivalent to proving the closed-loop stability of the pmeitic
matrix inequalities (LMIs) in (28), (29), (30) and (31), asactuator (for any possible initial condition, includingyan
well as linear matrix equalities (LMEs), (26) and (27), an@ossible switching sequence).
the last in (30). Such LMEs can be resolved by an appropriate
parameterization of the unknowns. In the casexcf 0, the
theorem proves the simple asymptotic stability of the syste A. Friction in saturation form

(8) with respect tak.,. An interesting problem is then to find e begin our study choosing friction in saturation form as

can be solved through a dichotomic search with respeot t0 For this model, the results of the theorem applications are
Remark 7:The first conditions in (28) and (29) can beyresented as follows.

interpreted as a “sum of squares” property (SOS) [17], [24],
[10]. In fact we look for a positive definite polynomi&f ()
as a square product of a positive definite matrix times a vecto
of monomialsy. The terms inH (7) reduce the conservatism
of the inequality.

Remark 8:Theorem 6 includes several previous results as
special cases.

« Stability study
As we study the convergence of the stateHg,, we
consider a static setpoint, i.g4 constant andy; = 0,
aq = 0 (which impliese, = v, e, = a).
The switching criteria divide the state-space into seven
cells (see Figure 7): a central ceX,, for which 0 €

o ] Xp, and six external cell;, X», X3, X4, X5 and Xg.

« In the case of no sliding modes, no uncertain parameters, certain couples of cells are symmetric to each other with

form =1, E, = {0}, 7o = 0 anda = 0, we have respect to the originX; and X,, X3 and X,, and X;

Theorem 1in [19]. . and X. We can use this property by imposing conditions
« In the case of no sliding modes, no uncertain parameters, only for a single cell of each couple, and by symmetry

for m =1, Eoq = {0}, Us = 0 anda = 0, we have the these conditions will necessarily be verified for the other

theorem in Section 5 of [15]. . ones. So, we need to impose the conditions of Theorem 6
« In the case of no sliding modes, no uncertain parameters, only for the central cell i = 0) and fori = 1,3,5.

for m = 1, we have Theorem 9 in [1]. First we consider that there is no variation on friction; so

« With sliding modes allowed, no uncertain parameters, for . _ A = 1.
m > 1 anda = 0, we have Theorem 3 in [2]. ’

In this sense, Theorem 6 is an extension of these previous A
results; it is less conservative as it features a more gkenera €y
condition, and at the same times it allows the analysis of
the convergence to equilibrium sets other than the origin
alone even in the presence of sliding modes and parametric
uncertainties.

X1
V. APPLICATION TO THE PNEUMATIC ACTUATOR X4
As shown in [1], and according to (4) and (5), the
dynamical behavior of the pneumatic system described
in Section 1l can then be cast into the form of a PWA
system as in (8). Concerning the parameters of the test

bench, we havd = 0.5 m, M = 17 kg, Fs; = 38 N,

S =727-107* m?, ¢ = 0.1 m/s,e; = 0.005 m (which
implies that the final positioning error is smaller in modulu
than this value)s, = 0.01 m/s andez = 10~* m/s. Through X,
a pole placement, according to the system specifications,
we have setk, = 50 s73, k, = 71 s72, ko, = 514 s71,

kp =10 st andky =10 s~L

€y

Xo

Theorem 6 can be applied in several different cases, ac-
cording to the friction model chosen (saturation form oayel
form), the type of problem under consideration (stability o
performance study), and the value of. We will present Fig. 7. The cellsX; in the case of friction in saturation form, intersection
the results of the possible cases comparing the outcome“s (cv,ey) plane.
using piecewise-quadratic Lyapunov functions & 1) and
piecewise-quartic onesn{ = 2). We study the asymptotic 1) Piecewise quadratic Lyapunov function fn = 1)




ey[m]

Fig. 8.
form, m = 1.

By applying Theorem 6 fom = 1, the lower bound
value on the decay rate found is:= 0.0897.

Figure 8 presents the 2-dimensional level curves
of the obtained Lyapunov function in the,,e,)
plane. We can clearly see that the level curves do,
not have a simple ellipsoidal shape; this suggests
that a simple common quadratic Lyapunov function
(i.e., the same matri® for all the cells) could be not
sufficient to obtain such shapes. In fact, we have run
our test also in order to look for a common quadratic
Lyapunov function, and the test failed to find any.
This justifies the effort in finding less conservative
conditions as the ones of Theorem 6.

On the other hand, we have also verified that for
m = 2 it is possible to find a common polynomial
Lyapunov function, thanks to the lower conser-
vatism with respect to a common quadratic one.

Robust stability

For the robust stability study, we have modified the
chosen model of friction by inserting a range of variation
of the parametef’; (see for example Figure 10).

e AT

Smax

Smin

<Y

Smin

Smax

Fig. 10. Friction variation for the saturation case.

Lyapunov function level curves, stability studyicfion in saturation

2) Piecewise polynomial Lyapunov function {n = 2)
By applying Theorem 6 fom = 2, the lower bound
value on the decay rate found is: = 0.4751;
which is larger than the one obtained in the case of
m = 1. This result shows the effectiveness of using
a piecewise-polynomial Lyapunov functiom (= 2)
compared to the piecewise-quadratic one=£ 1).
Figure 9 presents the 2-dimensional level curves of
the obtained Lyapunov function in ttie,, e, ) plane

Fig. 9. Lyapunov function level curves, stability studyicfion in saturation
form, m = 2.

In our case study, we took a variation betweén ==
40 N and F,,,, = 20 N. In this case, the friction
model is polytopic withk = 1,2, and can be presented

according to (7) as:

FSO‘) = >\1Fs”m,a:c
A+ =1

+ A F,, (32)

In this way, the model of the system is PWA with
polytopic uncertainties.

1) Piecewise quadratic Lyapunov function n = 1)
By applying Theorem 6 fom = 1, the lower bound
value on the decay rate found is:= 0.0671. The
level curves of the obtained Lyapunov function are
presented in the Figure 11.

2) Piecewise polynomial Lyapunov function {n = 2)

By applying Theorem 6 fom = 2, the lower bound
value on the decay rate found is:= 0.4750. For

this case, the level curves of the Lyapunov function
are pretty much the same compared to the case

without variations.

For both cases, the stability was proven despite variations
in friction, with a slight reduction of the decay rate.
Performance study

We study the trajectory tracking by taking specified
desired trajectories (see Figure 12), i.e in this cage
variable andvy # 0, ag # 0.

The cells are divided with respect to desired velocity
switching criteria resulting int® cells (not shown for
brevity).

1) Piecewise quadratic Lyapunov function fn = 1)



H

\ : \
-0.1 0 0.1 0.2 03 0.4
v[ms™1]

Fig. 11. Lyapunov function level curves, robust stabilitydy, friction in
saturation formm = 1. Fig. 13. A Lyapunov function level curve, performance stufiigtion in
saturation formm = 1.

o
6 8 9 0 é [
s
® 01 /o2
Fig. 12. Desired positiomgy £
By applying Theorem 6 forn = 1 anda = 0, the e
asymptotic stability has been verified with a leve ool e ey[m]

- . 1 71
curve of the obtained Lyapunov function presente v [ms]

in Figure 13 in the ¢,,v,vq) space. Again, we _ S
can point out that the shape is quite different frorﬁ|g. 14. A Lyapunov function level curve, performance stufiiction in
. . . . L. . saturation formm = 2.

a simple ellipsoid, which makes it impossible to

obtain by means of a common quadratic Lyapunov

function. we need to take into account while proving stability. All
2) Piecewise polynomial Lyapunov function {» = 2) the results of the theorem application concerning thigiénic

The asymptotic stability has been also verified fomodel are presented in Table II.

m = 2 and a level curve of the obtained Lyapunov To suggest an idea of the computations involved, we provide

function is presented in Figure 14 in the,(v,vq4) a brief discussion only for the performance study (trajscto

space. tracking). In this case, the piecewise-polynomial funtti® of
S degree2m = 4, which yields a vector(z) of the extended
B. Friction in relay form state, according to (14), in the following form (remember

The second friction model chosen for our study is in théat x = [z1, 22, 23,74, 75, 76]7, Where zs, z¢ are states
relay form, as in (2), for which we study all the possible sas@ssociated to the reference trajectoryjz) = [z, 2, 3,
as done for the other friction model. T4, T5, Ty, T1T2, T1T3, T1T4, T1T5, T1Le, LT2XL3, T2L4, T2T5,

The switching of the system (due to the friction model andhzs, x374, 2375, T3T6, TaTs, TaTs, TsTe, T3, T3, T3, T3,
due to the control law) divides the state-space into a set o, =2, 1]7. The level curves of the piecewise-polynomial
several cellsg cells considering only two switching criteriaLyapunov function found have been plotted in Figure 16 in the
(see Figure 15), ot2 cells with respect to desired velocity(v, e,) plane and in Figure 17 in the,(, v, v4) space. We can
switching criteria (not shown for brevity; more details dret see that the level curves do not have a simple ellipsoidglesha
PWA formulation of the model can be found in [2]). this implies again that a simple common quadratic Lyapunov

The discontinuity of the friction model om = 0 can function is not sufficient to obtain such shapes. Moreover, w
generate a sliding mode on the corresponding boundaryhwhitave verified that the test fails for the casenof= 1, which
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e A sliding surface
Y /
7.
X, | Xy .
X3s X3 =- ’
X02 XOl €y ° ;‘f e /\/’ o008
> v[ms—Y - ol eym]
Fig. 17. A Lyapunov function level curve on the,, v, v4) space, friction
in relay form, performance studyp = 2.
X1s Lyapunov
h ili Trackin
function degree Stability 9
feasible
A m =1 feasible
_/‘ with a = 0.0897
- - - - -
: m=2 feasible feasible
with o = 0.4751
feasible
. . L . . . . A m =1 feasible
Fig. 15. The cellsX; in the case of friction in relay form, intersection with i with & = 0.0671
(e'm ey) p|ane. f
1 feasible
1 m=2 feasible

with a = 0.4750

justifies the need of a piecewise-polynomial function iadte

of a piecewise-quadratic one. A
— m=1 infeasible infeasible
————— - -
feasible
e m=2 feasible
with a = 0
m=1 infeasible infeasible
_—— - - -
— feasible
B— m=2 feasible
witha = 0
TABLE Il
ALL STUDY CASES ON ELECTROPNEUMATIC ACTUATOR

L i
.02 0,015 001 0,005 0,005 001 0015 002

v [mos’ B

Fig. 16. Lyapunov function level curves, friction in relagrin, performance VI. CONCLUSIONS
study,m = 2.
In this paper, we have investigated the problem of proving
the stability of an electropneumatic system in closed-ith
C. Summary a switching control law modeled as a PWA system with sliding
Table Il contains the results for all cases of the theoremodes due to presence of friction. Some sufficient condi-
application to our electropneumatic system; namely stgbil tions have been presented for finding piecewise-polynomial
robust stability, performance and robust performance utide Lyapunov functions for PWA systems with sliding modes,
two models of friction and two forms of Lyapunov functionuncertainties on parameters and equilibrium sets grelser t
are considered. the mere origin, and potentially on a sliding mode. The
We can notice the effectiveness of the piecewise-polynbomizew extended conditions successfully foundd#h degree
Lyapunov function approach for proving stability even i thpiecewise-polynomial Lyapunov function through a convex
presence of sliding modes and parametric uncertaintieinfin optimization problem in terms of linear matrix inequalitie
a more reliable upper bound on the decay rate comparedwe have shown that this method is able to prove stability for
piecewise-quadratic Lyapunov functions. a model of a real pneumatic test bench.
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