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Lyapunov stability analysis of switching controllers in presence of
sliding modes and parametric uncertainties with application to

pneumatic systems
Omar Ameur, Paolo Massioni, Gérard Scorletti, Xavier Brun and Mohamed Smaoui

Abstract—This paper concerns the control and the stabil-
ity analysis of pneumatic actuators, which are nowadays of
widespread use in the industry. A problem related to the use of
such actuators is the so-called “stick-slip”, due to the presence of
dry friction in the system. In this paper we provide an empirical
switching control law which avoids this phenomenon, as well as
a general approach to the stability analysis of nonlinear systems
which will let us prove the stability of the closed-loop system.
The approach is based on casting the closed-loop system into
a piecewise-affine form and finding a Lyapunov function for it.
Such an approach will be able to cope with the special features
of the controlled pneumatic system model, namely the presence
of sliding modes, a whole equilibrium set and uncertainties on
the values of a few parameters.

At the end of the paper we will show how such a method can
be successfully applied to our experimental setup under several
different hypotheses.

Index Terms—Piecewise-affine systems, piecewise-polynomial
Lyapunov functions, switched control, fluid power.

I. I NTRODUCTION

Electropneumatic systems are widely used in industry, es-
pecially in the form of pneumatic actuators or cylinders.
Their efficient use depends on good control laws, which are
often non trivial to synthesize due to nonlinear dynamics.
In particular, friction is a phenomenon which plays a key
role in the dynamic behavior of pneumatic cylinders, as the
presence of friction may lead to what is called “stick-slip”
[20], [7]. Such a phenomenon typically occurs in the presence
of dry friction combined with an integration effect (eitherin
the control law or in the system itself), and it consists, in
pneumatic cylinders, in a displacement of the rod a while after
it has come to a rest; this is due to the fact that the force acting
on the rod initially becomes smaller that the threshold which is
necessary for a motion in presence of dry friction, but lateron
this threshold is overcome due to a slowly growing integrator.
For example, Figure 1 features the record of an experiment
on a pneumatic cylinder showing an occurrence of stick-slip.
We can see that the rod, following the given reference, comes
to a rest in the first half second; then it starts moving again,
with no changes for the setpoint.

In this case, stick-slip is caused by the presence of dry
friction and by the pressure dynamics in the chambers, which
continue to evolve (integrating the net incoming mass flow
from the servovalves) even after the rod has stopped.
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Fig. 1. Stick-slip phenomenon on a pneumatic cylinder.

To avoid this highly undesirable phenomenon, a control law
has been proposed recently in [28]. This solution consists
in a classic feedback linearization, which compensates for
the nonlinearities in the pneumatic model, together with an
appropriate switching law. The controller switches from a
trajectory tracking control to a pressure control after therod
has come to a rest, offsetting the pressure difference between
the two chambers and avoiding an uncontrolled evolution
that eventually could make the rod restart. A major problem
with this solution, which has been otherwise verified as very
effective in the practice, was to find a formal proof of its
stability; in fact, such a proof has not been given in the original
reference [28].

The difficulty in finding a formal proof of stability lies in
the pressure dynamics of the pneumatic chambers, and in the
presence of dry friction, which make the electropneumatic
actuator a strongly non-linear system. Typically, feedback
linearization can be used to cancel the nonlinearities witha
feedback control, with the “caveat” that an uncertainty in the
model can lead to catastrophic effects. In this study we will
analyze a control law, based on the one in [28], which cancels
all the nonlinear effects through feedback linearization with the
exception of the most difficult to model quantitatively, namely
the friction. We will then approach the problem of proving
the stability of the closed-loop system by casting it into a
piecewise-affine (PWA) form [12], [23], [25], [22]. In order
to do that, we will consider two different models for the dry
friction; we will consider both a simplified model, where the
friction force is a continuous function of the velocity of the rod
(in a so-called “saturation” shape), as well as a more realistic,
discontinuous model of friction. In fact, as indicated by many
works [3], [11], [29], [9], more accurate models of friction
feature discontinuities, which can lead to the appearance of
sliding modes [14], [13] in the system dynamics.
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In the literature, we can find several approaches for dealing
with sliding modes in piecewise-affine systems [18], [12], [5],
[16], [26] but unfortunately, none of these approaches are
enough to deal with the stability of our pneumatic actuator
systems. First of all, we have verified that searching for a
piecewise-quadratic Lyapunov functions is too conservative
and does not yield any valid solution. Secondly, these former
methods are not able to cope with the presence of a whole
equilibrium set (not only a point) in a sliding mode. In this
work, we propose new sufficient conditions for stability based
on piecewise-polynomial Lyapunov functions, which can be
given in terms of linear matrix inequalities (LMIs) and linear
matrix equalities (LMEs). These conditions are also able to
cope with the uncertainties in the friction models, and we
have used them successfully for proving the stability of the
closed-loop system for all the possible models of friction.

Some of the results of this paper have been partially
presented in [1], [2], which contain only two special cases
of the main, more general result introduced here. This paper
analyses all the possible cases and offers a unified point of
view.

The remainder of this paper is organized as follows. Sec-
tion II contains the description of the pneumatic actuator
model with the proposed switching control law avoiding
“stick-slip”. Section III introduces the uncertain PWA class of
systems and the tools that can be used for the robust stability
analysis in the presence of sliding modes and parameters
variations. Section IV contains the main theoretical result,
i.e. a method for proving robust stability, whereas SectionV
shows its different applications to our test bench model. The
conclusions are given in Section VI.

Notation

We denote byR the field of real numbers and byRn×m the
set of realn×m matrices. LetAT indicate the transpose of
a matrixA, and letI be the identity matrix. We use also the
notationA ≻ 0 (A ≺ 0) to indicate that all the eigenvalues
of the symmetric matrixA are strictly positive (negative). The

symbol

(
n

k

)

indicates the binomial coefficient, for which we

have (
n

k

)

=
n!

k!(n− k)!
.

II. PNEUMATIC ACTUATOR SYSTEMS

We consider a pneumatic cylinder test bench like the one
shown in Figure 2. The setup is intended for applications in
rectilinear motion [8], [6], [27]. It comprises an actuatorin
the form of a pneumatic cylinder (double acting) with a rod
connected to a carriage on rails. The actuator is powered by
compressed air, with two servovalves for controlling the flow
supplied to both the chambers of the cylinder. Two sensors
measure the pressures in the chambers.

Based on [28], the physical model of the system in open
loop is given by the following equations (see Table I for the
notation):

y position of the piston rod (m)
v velocity (m s−1)
pP , pN pressures in the cylinder chambers (Pa)
a acceleration (m s−2)
Fs dry friction force (N)
k gas polytropic constant
l length of stroke (m)
M load (carriage and rod mass) (kg)
qmP , qmN mass flow rate provided by the servovalves

to the cylinder chambers (kg s−1)
r perfect gas constant (J kg−1 K−1)
S area of cylinder bore (m2)
T temperature (K)
V volume (m3)
VD dead volume of cylinder chamber (m3)

TABLE I
NOTATION.

Fig. 2. Electro-pneumatic actuator.







ẏ = v

v̇ = 1
M
(S(pP − pN )− Ff (v))

ṗN = krT
VN (y) (

S
rT

pNv + qmN )

ṗP = krT
VP (y) (

−S
rT

pP v + qmP )

(1)

where the inputs are the two mass flow ratesqmP and qmN ,
andVP (y) = V0+Sy, VN (y) = V0−Sy with V0 = VD+S l

2 .
Ff (v) is the dry friction force, whose nonlinear model is given
in the literature by several relations [3], [11], [29], [9].In
our case, we consider two possible models of the dry friction
forces, one in a continuous saturation form (M2) and another
in a discontinuous, “relay” form (M1), both shown in Figure 3,
such as:

Fig. 3. Dry friction models.
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M1 : Ff (v)







= +Fs for v > 0

∈ [−Fs,+Fs] for v = 0

= −Fs for v < 0.

(2)

and

M2 : Ff (v) =







Fs for v > ε

Fs

ε
v for − ε ≤ v ≤ ε

−Fs for v < −ε

(3)

In order to overcome the stick-slip phenomenon, we propose
the following control law adapted from [28]. This law is based
on a feedback linearization of the model in (1), and it switches
between the two following modes.

• Trajectory tracking law (#1)






qmP = VP (y)
krT

[ kS
VP (y)vpP + ṗPd − kP eP ]

qmN = MVN (y)
SkrT

[ SkrT
MVP (y)qmP + S2kv

M
(− pP

VP (y) −
pN

VN (y) )

−jd + kaea + kvev + kyey]

which allows the tracking of a given time-varying posi-
tion reference; under the hypothesis of no state or input
saturation, it yields the following closed-loop dynamics:







ėy = ev

ėv = eaf − 1
M
Ff (v)

ėaf = −kaeaf − kvev − kyey +
ka

M
Ff (v)

ėP = −kP eP

(4)

• Pressure control law (#2)






qmP = VP (y)
krT

[ kS
VP (y)vpP + ṗPd − kP eP ]

qmN = VN (y)
krT

[− kS
VN (y)vpN + ṗNd − kNeN ]

which regulates the pressures in the two chambers in
order to avoid stick-slip; this law is active when the
carriage has arrived at the desired position, resulting in
the following closed-loop dynamics:







ėy = ev

ėv = eaf − 1
M
Ff (v)

ėaf = S
M
(kN − kP )eP − kNeaf

ėP = −kP eP

(5)

In all of the equations above,eaf = ea + 1
M
Ff (v).

ey, ev, ea, eP , eN are the errors between states and their
desired values; the constantsky, kv, ka, kP and kN are
the state feedback gains chosen by a pole-placement on the
feedback-linearized model. The switching criterion is

#1→ #2: |ey| ≤ ε1 ∧ |ev| ≤ ε2 ∧ |vd| ≤ ε3
#2→ #1: |ey| > ε1 ∨ |ev| > ε2 ∨ |vd| > ε3

whereε1, ε2 andε3 are small arbitrary constants. The above
switching controller has shown no instability either in simula-
tion or on the test bench and has never caused the occurrence
of stick-slip. Figure 4 and Figure 5 show trajectories obtained
using this control law, respectively in simulation and on the

test bench; the system can switch to pressure control (#2) only
when the trajectory becomes constant.

Remark 1:The chosen control law is based on a feedback
linearization that cancels out all the nonlinearities of the
system but the ones caused by friction. We avoid canceling
them because there is a high degree of uncertainty on the
friction forces, so exact cancellation is impossible.

The topic of the rest of this paper is the formal proof of
stability. One of the issues that we will need to face is that
the stability of the system has to be proven for a special kind
of convergence of the state, not to the setpoint, but to a whole
set in its neighborhood. This is due to the well-known fact
that moving systems subject to dry friction cannot be easily
brought to a stop at a desired point, but they will rather stopin
its proximity (this can be seen for example in Figure 4, when
the rod stops just aftert = 2 s, as well as in Figure 5, where
the error never goes exactly to0).
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Fig. 4. Simulation of position evolution with respect to the desired position.
The background colors are related to the active control mode (#1 or #2).
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Fig. 5. Experimental results: evolution of the rod position and the postion
error with respect to the desired reference. The backgroundcolors are related
to the active control mode (#1 or #2). No stick-slip occurs.

III. PROPOSED APPROACH

Let us introduce a partition ofRn into N polyhedral cells
Xi with disjoint interior, withi ∈ I, a set ofN valid indices.
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We partitionI = I0 ∪ I1 (with I0 ∩ I1 = ∅) such as0 ∈ Xi

if i ∈ I0, otherwise0 /∈ Xi if i ∈ I1 (the cells with index in
I0 contain the origin).

Definition 2 (Piece-wise affine with polytopic uncertainties):
A dynamical system is called “piecewise affine” (PWA) with
polytopic uncertainties if it has the following dynamics [1],
[19], [15]:

ẋ(t) =

q
∑

k=1

λk(t)(Ai,kx(t) + ai,k), for x(t) ∈ Xi, i ∈ I

(6)

wherex(t) ∈ R
n denotes the state-space vector andλk(t) are

continuously time-varying parameters which can take values
according to

{
λk(t) ≥ 0 ∀k ∈ {1, . . . , q}
∑q

k=1 λk(t) = 1
(7)

Equivalently, forx(t)T = [x(t)T 1]

ẋ(t) =

q
∑

k=1

λk(t)

[
Ai,k ai,k
0 0

]

︸ ︷︷ ︸

Ai,k

x(t), for x(t) ∈ Xi, i ∈ I

(8)

The domain of each cellXi is described by matricesEi ∈
R

li×(n+1) such as:

x ∈ Xi ⇒ Eix ≥ 0, (9)

and the boundaries between two cellsXi andXj by matrices
F ij ∈ R

rij×(n+1) such as
{

Γ = {(i, j) |Xi ∩Xj 6= ∅}

∀(i, j) ∈ Γ, Xi ∩Xj ⊆
{

x |F ijx = 0
}
.

(10)

We defineλT = [λ1 . . . λq]
T . We then formulate a set of

assumptions which will hold throughout the paper.
Assumption 1:A sliding mode may occur on any boundary

in Γ between two neighboring cellsXi andXj (see Figure 6),
i.e. for x ∈ Xi ∩ Xj , (i, j) ∈ Γ, we have the following
dynamics (according to Filippov [13]):

ẋ(t)=

(

θ(λ)

q
∑

k=1

λk(t)Ai,k+(1−θ(λ))

q
∑

k=1

λk(t)Aj,k

)

x(t),

0 ≤ θ(λ) ≤ 1.

(11)
which means that the matrix describing the system dynamics
at a boundary is a convex combination of the matrices of the
neighboring cells.

Assumption 2:The setEeq ⊇ {0} of the equibrium points
for (8) is a subset of

⋃

i∈I0
Xi (notice that the equilibrium set

might also be on a sliding mode).
Assumption 3:Two cases can be distinguished:
• if the origin is in the interior of a cellXi (for which

we have then thatI0 = {i}):
∑q

k=1 λk(t)Ai,k does not
have any constant terms (ai,k = 0, for k = 1, . . . , q); we
defineA0(λ) =

∑q
k=1 λk(t)Ai,k;

• if the origin is in the boundary between cellsXi and
Xy: there exists aθ(λ), 0 ≤ θ(λ) ≤ 1, for which

θ(λ)
∑q

k=1 λk(t)ai,k + (1 − θ(λ))
∑q

k=1 λk(t)aj,k = 0;
we define A0(λ) = θ(λ)

∑q
k=1 λk(t)Ai,k + (1 −

θ(λ))
∑q

k=1 λk(t)Aj,k.

Moreover,A0(λ) has h̃ eigenvectors not depending fromλ
(shared with

∑q
k=1 λk(t)Ai,k, and with

∑q
k=1 λk(t)Aj,k in

the second case) that have0 as associated eigenvalue. We
call Z ∈ R

(n+1)×h the full-rank matrix of these eigenvectors
(A0(λ)Z =

∑q
k=1 λk(t)Aj,kZ =

∑q
k=1 λk(t)Ai,kZ = 0; this

implies that the equilibrium set can be larger than the origin
alone, i.e.Eeq ⊇ {0}). We then defineΠ ∈ R

(n+1)×((n+1)−h)

the orthogonal complement ofZ, with Π
T
Π = I.

Fig. 6. Sliding modes.

The objective is to find a set of conditions ensuring the
exponential convergence of the system statex(t) to the set
of equilibrium pointsEeq, notwithstanding the presence of
sliding modes on the boundaries and parametric variations in
the model. Basically we have to upgrade the methods in [19],
[15] in order to cope with sliding modes, equilibrium sets
and parametric variations; we will use a Lyapunov function
of degree higher than2 (as done in [2]), i.e. a piecewise-
polynomial Lyapunov function, which is less conservative than
the classical piecewise-quadratic Lyapunov functions. Such
functions are given by the expression

V (x) = Vi(x) for x ∈ Xi, i ∈ I (12)

such thatVi(x) is a polynomial inn variables with degree2m
given by:

Vi(x) = χ(x)TPiχ(x) (13)

wherePi = PT
i ∈ R

ρ×ρ, andχ(x) ∈ R
ρ×1 is the vector of all

the monomials of degree less than or equal tom that can be

made from the elements ofx; ρ =

(
m+ n

m

)

. For example,

χ(x) = [x1, x2, . . . , xn, x1x2, x1x3, . . . , x1xn, x2x3, . . .

. . . , x2xn, . . . , xn−1xn, . . . , x
m
1 , xm

2 , . . . , xm
n , 1]T .

(14)

As seen in [24], the choice ofPi is not unique for a given
polynomial Vi(x); there exists a numberι of linearly inde-
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pendent matricesQν = QT
ν ∈ R

ρ×ρ (defined up to a scalar
factor), for which

χ(x)TQνχ(x) = 0 for ν = 1, . . . , ι (15)

with

ι =
1

2

((
m+ n

m

)2

+

(
m+ n

m

))

−

(
n+ 2m

2m

)

. (16)

This implies thatVi(x) = χ(x)TPiχ(x) = χ(x)T (Pi +
∑ι

ν=1 Qντ(ν))χ(x) for any real scalarsτ(ν). This is due to
the fact that some monomials inVi can be obtained as products
of different elements inχ, e.g.x2

1 = x1 · x1 = 1 · x2
1 = x2

1 · 1.
Following the procedure of the “power transformation” [32],

[30], we can obtain the dynamics ofχ(x(t)) = χ(t), with
which we will be able to compute the time derivative of the
Lyapunov function. Namely, the uncertain dynamics will still
be PWA, i.e. we will have

χ̇(t) =

qi∑

k=1

λk(t)Ãi,kχ(t), ∀k ∈ {1, . . . , q}, for χ ∈ X̃i, i ∈ I

(17)
and we can construct a new description of the cellsX̃i, with
matricesẼi ∈ R

l̃i×ρ such as
{

x ∈ Xi ⇒ χ ∈ X̃i

χ ∈ X̃i ⇒ Ẽiχ ≥ 0,
(18)

and defining the boundaries, with̃Fij ∈ R
r̃ij×ρ, as

∀(i, j) ∈ Γ, X̃i ∩ X̃j ⊆
{

χ | F̃ijχ = 0
}

(19)

Notice that, counterintuitively, the power transformation leaves
λ as linear terms in the dynamic equations forχ. We define
Ãi(λ) =

∑q
k=1 λkÃi,k. Assumptions 1, Assumption 2 and

Assumption 3 are also still holding for the new system in
(17):

1) Sliding modes may occur, with the following dynamics:

χ̇(t)=

(

θ(λ)

q
∑

k=1

λk(t)Ãi,k+(1−θ(λ))

q
∑

k=1

λk(t)Ãj,k

)

χ(t),

0 ≤ θ(λ) ≤ 1
(20)

2) There exists an equilibrium set̃Eeq such thatχ ∈ Ẽeq ⇔
χ̇ = 0; χ ∈ Ẽeq ⇔ x ∈ Eeq; Ẽeq ⊂

⋃

i∈I0
X̃i

3) Again we distinguish two cases:

• if the origin is in the interior of a cellX̃i; Ãi,k(λ)
does not have any constant terms for allλ; Ã0(λ) =∑q

k=1 λk(t)Ãi,k = Ãi,k(λ);
• if the origin is in the boundary between cells

X̃i and X̃j : there exists aθ̃(λ), 0 ≤ θ̃(λ) ≤
1, for which the constant terms disappear; we
define Ã0(λ) = θ̃(λ)

∑q
k=1 λk(t)Ãi,k + (1 −

θ̃(λ))
∑q

k=1 λk(t)Ãj,k = θ̃(λ)Ãi(λ) + (1 −
θ̃(λ)) Ãj(λ).

Identically, Ã0(λ) has h̃ eigenvectors not depend-
ing from λ (shared with

∑q
k=1 λk(t)Ãi,k and with

∑q
k=1 λk(t)Ãj,k in the second case) that have0 as

associated eigenvalue. We can also callZ̃ ∈ R
ρ×h̃

the full-rank matrix of these eigenvectors (Ã0(λ)Z̃ =
∑q

k=1 λk(t)Ãj,kZ̃ =
∑q

k=1 λk(t)Ãi,kZ̃ = 0); we de-
fine Π̃ ∈ R

ρ×(ρ−h̃) as the orthogonal complement ofZ̃,
with Π̃T Π̃ = I.

V (χ) in (12) and (13) is a candidate Lyapunov function
for the system in (8). In order to ensure its continuity on
the boundary between two cells̃Xi and X̃j , (i, j) ∈ Γ, the
following condition has to be satisfied:

Vi(χ) = Vj(χ) ∀χ(x) ∈ X̃i ∩ X̃j . (21)

As a direct consequence of LaSalle’s theorem ([21], [31]),
the conditions that the candidate time-invariant Lyapunov
function must satisfy in order to prove the convergence to
the equilibrium set are in the following lemma.

Lemma 3:For the system in (8), the convergence ofx toEeq

(which coincides with the convergence ofχ in (17) to Ẽeq)
for t > 0, t → +∞ is assured under the following conditions.

1) The Lyapunov function is continuous, i.e. it satisfies
(21);

2) The Lyapunov function is positive outsidẽEeq,

Vi(χ(x)) > 0 for χ(x) ∈ X̃i/Ẽeq, i ∈ I; (22)

3) The derivative of the Lyapunov function is negative
outsideẼeq, i.e.

V̇i(χ(x)) < 0 for χ(x) ∈ X̃i/Ẽeq, i ∈ I; (23)

even in the case of sliding-mode dynamics;
4) The derivative of the Lyapunov function is null iñEeq,

i.e.

V̇i(χ(x)) = 0 for χ(x) ∈ Ẽeq ∩ X̃i, i ∈ I0. (24)

We will also try and evaluate the speed of the exponential
convergence of the system trajectories to the equilibrium set
Eeq. For this purpose, we can define the distanced from a
statex to any point inEeq as

d(x,Eeq) = inf
xeq∈Eeq

‖ x− xeq ‖ .

We can then introduce the following definition.
Definition 4 (Decay rate):We call “decay rate” the largest

positive numberα such that for any initial conditionx0:

lim
t→∞

eαtd(x(t), Eeq) = 0.

Corollary 5: The decay rate of system in (8) is larger then
α if the conditions in (23) are replaced by
{

V̇i(Π̃Π̃
Tχ(x))<−2αVi(Π̃Π̃Tχ(x)) for χ(x)∈X̃i/Ẽeq, i∈I0

V̇i(χ(x)) < −2αVi(χ(x)) for χ(x) ∈ X̃i i ∈ I1.
(25)

IV. M AIN RESULT

Given the previous considerations and using the S-procedure
[4], we can arrive at our main theoretical result, which reveals
that a Lyapunov function can be computed through an LMI
optimization.

Theorem 6:Let us assume that the system in (8) satisfies
Assumption 1, Assumption 2 and Assumption 3. LetÃi,k,
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∀k ∈ {1, · · · , q} be the uncertain matrices describing the
dynamics of the vectorχ of degreem deriving fromx, as in
(17), with X̃i, Ẽi, F̃ij , Z̃i, etc. as previously defined.

If there exist

• Pi = PT
i ∈ R

ρ×ρ for i ∈ I;
• Ui,k = UT

i,k,Wi = WT
i ∈ R

l̃i×l̃i andTi,k, T
′
i ,∈ R

l̃i ; all
with non-negative entries fori ∈ I, k = 1, . . . , q;

• Uij,k, U
′
ij,k ∈ R

l̃i×l̃i , Tij,k, T
′
ij,k ∈ R

l̃i , all with non-
negative entries fori, j | (i, j) ∈ Γ, k = 1, . . . , q;

• Lij ∈ R
ρ×r̃ij for i, j | (i, j) ∈ Γ;

• τi(ν), τ
′
i(ν), τ

′′
i,k(ν), τij,k(ν), τij(ν) ∈ R, for i, j ∈ I,

ν = 1, . . . , ι, k = 1, . . . , q

such that

Pj = Pi + F̃T
ijL

T
ij + LijF̃ij +H(τij) for (i, j) ∈ Γ (26)

{
Π̃T ÃT

i,kPiZ̃ = 0

ẼiZ̃ = 0
for i ∈ I0, k = 1, . . . , q (27)

and it holds that






Π̃T (Pi +H(τ ′i)−Ni(T
′
i )− ẼT

i WiẼi)Π̃ ≻ 0

Π̃T (ÃT
i,kPi + PiÃi,k +H(τ ′′i,k) +Ni(Ti,k) + ẼT

i Ui,kẼi)Π̃

+2αΠ̃TPiΠ̃ ≺ 0
for i ∈ I0, k = 1, . . . , q

(28)






Pi +H(τ ′i)−Ni(T
′
i )− ẼT

i WiẼi ≻ 0

ÃT
i,kPi + PiÃi,k +H(τ ′′i,k) +Ni(Ti,k) + ẼT

i Ui,kẼi

+2αPi ≺ 0
for i ∈ I1, k = 1, . . . , q

(29)






Π̃T (ÃT
i,kPj + PjÃi,k +H(τij,k) +Ni(Tij,k) +Nj(T

′
ij,k)

+ẼT
i Uij,kẼi + ẼT

j U
′
ij,kẼj)Π̃ + 2αΠ̃TPjΠ̃ ≺ 0

Π̃T (ÃT
j,kPi + PiÃj,k +H(τji,k) +Ni(Tji,k) +Nj(T

′
ji,k)

+ẼT
j Uji,kẼj + ẼT

i U
′
ji,kẼi)Π̃ + 2αΠ̃TPiΠ̃ ≺ 0

Π̃T ÃT
i,kPjZ̃ = 0, Π̃T ÃT

j,kPiZ̃ = 0

for (i, j) ∈ Γ, i, j,∈ I0, k = 1, . . . , q
(30)







ÃT
i,kPj + PjÃi,k +H(τij,k) +Ni(Tij,k) +Nj(T

′
ij,k)

+ẼT
i Uij,kẼi + ẼT

j U
′
ij,kẼj + 2αPj ≺ 0

ÃT
j,kPi + PiÃj,k +H(τji,k) +Ni(Tji,k) +Nj(T

′
ji,k)

+ẼT
j Uji,kẼj + ẼT

i U
′
ji,kẼi + 2αPi ≺ 0

for (i, j) ∈ Γ, i /∈ I0
∨
j /∈ I0, k = 1, . . . , q

(31)
with

Ni(T ) =

[
0

T T Ẽi

]

+
[

0 ẼT
i T
]

and

H(τ) =

ι∑

ν=1

τ(ν)Qν

then the trajectoriesx(t) of the system (8) converge exponen-
tially to the equilibrium setEeq, with a decay rate larger than
α, with the Lyapunov function (12).

Proof: Consider the Lyapunov function candidate
V (χ(x)) defined by (12).

To prove (26), we use the same approach as in [15]. So,
for χ(x) ∈ X̃i ∩ X̃j , we haveF̃ijχ(x) = 0; replacing this
into (26), multiplying on the right byχ(x) and on the left by
χ(x)T , and remembering thatχ(x)TH(τ)χ(x) = 0 for anyτ ,
we getχ(x)TPjχ(x) = χ(x)TPiχ(x), that is (21), i.e. (26)
implies continuity of the Lyapunov function on the boundaries.
Let us now consider the inequalites; all of the inequalities
involving Ãi,k are present for all the values ofk, assuring that
such equalities will also hold for̃Ai(λ) for any validλ. For
example, ifÃT

i,kPi+PiÃi,k+H(τ ′′i,k)+Ni(Ti,k)+ẼT
i Ui,kẼi+

2αPi ≺ 0 holds for allk, thenÃi(λ)
TPi+PiÃi(λ)+H(τ ′′i )+

Ni(Ti)+ ẼT
i UiẼi +2αPi ≺ 0 holds for allλ, with τ ′′i , Ti, Ui

appropriately chosen. We will consider this as granted for the
follow-up of the proof, for all of the inequalites.

Let us now consider (27) and (28). Based on Assump-
tion 3, we can always write a decomposition forχ(x), of
the kind χ(x) = Z̃ξ + Π̃ζ, with χ(x) ∈ X̃i, i ∈ I0. As
Ã0(λ)Z̃ = 0 for χ(x) ∈ Ẽeq (i.e. χ(x) = Z̃ξ), then
the first in (27) implies (24). Forχ(x) /∈ Ẽeq instead,
when the active dynamics is̃Ai(λ), with i ∈ I0, we have
V̇ (χ(x)) = (Z̃ξ + Π̃ζ)T (Ãi(λ)

TPi + PiÃi(λ))(Z̃ξ + Π̃ζ) =
ζT Π̃T (Ãi(λ)

TPi + PiÃi(λ)
T )Π̃ζ thanks to (27) (notice that:

Π̃T Ãi(λ)
TPiZ̃ = 0). Notice also that the second in (27)

implies that Ẽiχ ≥ 0 ⇒ ẼiΠ̃ζ ≥ 0. Then, thanks
to the S-procedure, the second inequality in (28) implies
V̇i(Π̃Π̃Tχ(x)) < −2αVi(Π̃Π̃

Tχ(x)) for χ(x) /∈ Ẽeq, which
is the first in (25), as we haveζT Π̃T ẼT

i Ui,kẼiΠ̃ζ ≥ 0 (true
thanks to (18)) and (27)),ζT Π̃TNi(T

′
i,k)Π̃ζ ≥ 0 (true thanks

to (18) and (27)) andχ(x)TH(τ ′i,k)χ(x) = 0 (true thanks to
(15)). In a similar way, the first inequality in (28) naturally
implies the inequality (22) for the cells withi ∈ I0.

Subsequently, again thanks to the S-procedure, the
first inequality in (29) implies thatχ(x)TPiχ(x) > 0
when χ(x)T ẼT

i WiẼiχ(x) ≥ 0 (true thanks to (18) if
χ(x) ∈ X̃i), χ(x)TNi(T

′
i )χ(x) ≥ 0 (true thanks to (18))

χ(x)TH(τ ′i)χ(x) = 0 (true thanks to (15)), which in turn
implies thatVi(χ(x)) > 0 for χ(x) ∈ X̃i i.e. the inequality
(22) for the cells withi ∈ I1. Similarly, the second inequality
in (29) ensures the second inequality in (25).

The conditions (30) and (31) concern possible sliding modes
on the boundary between two cells. Indeed, multiplying the
second inequality in (31) byθ (omitting the dependency on
λ) and the second in (28) by1 − θ and summing, we get
(thanks to the S-procedure, as seen above)

χ(x)T ((θÃj(λ)
T + (1− θ)Ãi(λ)

T )Pi + Pi(θÃj(λ)+

(1− θ)Ãi(λ)) + 2αPi)χ(x) < 0

for any χ ∈ X̃i ∩ X̃j , which ensures that the derivative of
Vi is sufficiently negative for the given decay rate for any
possible sliding mode dynamics. Similarly, one can get the
complementary inequality

χ(x)T ((θÃj(λ)
T + (1− θ)Ãi(λ)

T )Pj + Pj(θÃj(λ)+

(1− θ)Ãi(λ)) + 2αPj)χ(x) < 0

from the first in (31). Condition (30) concerns a sliding mode
containing the equilibrium set, the inequalities can be proven
with the same reasoning as for (31) and (28).
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So we have shown that the conditions required by the theo-
rem imply (21), (22), (24) and (25), satisfying the hypotheses
of Lemma 3, which proves the theorem statement.

The theorem involves a feasibility problem under linear
matrix inequalities (LMIs) in (28), (29), (30) and (31), as
well as linear matrix equalities (LMEs), (26) and (27), and
the last in (30). Such LMEs can be resolved by an appropriate
parameterization of the unknowns. In the case ofα = 0, the
theorem proves the simple asymptotic stability of the system in
(8) with respect toEeq. An interesting problem is then to find
the largestα such that Theorem 6 is satisfied. This problem
can be solved through a dichotomic search with respect toα.

Remark 7:The first conditions in (28) and (29) can be
interpreted as a “sum of squares” property (SOS) [17], [24],
[10]. In fact we look for a positive definite polynomialVi(χ)
as a square product of a positive definite matrix times a vector
of monomialsχ. The terms inH(τ) reduce the conservatism
of the inequality.

Remark 8:Theorem 6 includes several previous results as
special cases.

• In the case of no sliding modes, no uncertain parameters,
for m = 1, Eeq = {0}, T• = 0 and α = 0, we have
Theorem 1 in [19].

• In the case of no sliding modes, no uncertain parameters,
for m = 1, Eeq = {0}, U• = 0 andα = 0, we have the
theorem in Section 5 of [15].

• In the case of no sliding modes, no uncertain parameters,
for m = 1, we have Theorem 9 in [1].

• With sliding modes allowed, no uncertain parameters, for
m ≥ 1 andα = 0, we have Theorem 3 in [2].

In this sense, Theorem 6 is an extension of these previous
results; it is less conservative as it features a more general
condition, and at the same times it allows the analysis of
the convergence to equilibrium sets other than the origin
alone even in the presence of sliding modes and parametric
uncertainties.

V. A PPLICATION TO THE PNEUMATIC ACTUATOR

As shown in [1], and according to (4) and (5), the
dynamical behavior of the pneumatic system described
in Section II can then be cast into the form of a PWA
system as in (8). Concerning the parameters of the test
bench, we havel = 0.5 m, M = 17 kg, Fs = 38 N,
S = 7.27 · 10−4 m2, ε = 0.1 m/s, ε1 = 0.005 m (which
implies that the final positioning error is smaller in modulus
than this value),ε2 = 0.01 m/s andε3 = 10−4 m/s. Through
a pole placement, according to the system specifications,
we have setky = 50 s−3, kv = 71 s−2, ka = 51.4 s−1,
kP = 10 s−1 andkN = 10 s−1.

Theorem 6 can be applied in several different cases, ac-
cording to the friction model chosen (saturation form or relay
form), the type of problem under consideration (stability or
performance study), and the value ofm. We will present
the results of the possible cases comparing the outcome of
using piecewise-quadratic Lyapunov functions (m = 1) and
piecewise-quartic ones (m = 2). We study the asymptotic

and the exponential stability of the equilibrium setEeq =

[xe
1 0 0 0]

T , where xe
1 represents a steady position error

between−ε1 and ε1. Finding a valid Lyapunov function is
equivalent to proving the closed-loop stability of the pneumatic
actuator (for any possible initial condition, including any
possible switching sequence).

A. Friction in saturation form

We begin our study choosing friction in saturation form as
in (3), which presents no sliding modes on the boundaries.
For this model, the results of the theorem applications are
presented as follows.

• Stability study
As we study the convergence of the state toEeq, we
consider a static setpoint, i.e.yd constant andvd = 0,
ad = 0 (which impliesev = v, ea = a).
The switching criteria divide the state-space into seven
cells (see Figure 7): a central cellX0, for which 0 ∈
X0, and six external cellsX1, X2, X3, X4, X5 andX6.
Certain couples of cells are symmetric to each other with
respect to the origin:X1 andX2, X3 andX4, andX5

andX6. We can use this property by imposing conditions
only for a single cell of each couple, and by symmetry
these conditions will necessarily be verified for the other
ones. So, we need to impose the conditions of Theorem 6
only for the central cell (i = 0) and for i = 1, 3, 5.
First we consider that there is no variation on friction; so
k = 1, λ1 = 1.

X3X4

X1

X2

X0

ey

ev

X6 X5

Fig. 7. The cellsXi in the case of friction in saturation form, intersection
with (ev , ey) plane.

1) Piecewise quadratic Lyapunov function (m = 1)
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By applying Theorem 6 form = 1, the lower bound
value on the decay rate found is:α = 0.0897.
Figure 8 presents the 2-dimensional level curves
of the obtained Lyapunov function in the(ev, ey)
plane. We can clearly see that the level curves do
not have a simple ellipsoidal shape; this suggests
that a simple common quadratic Lyapunov function
(i.e., the same matrixP for all the cells) could be not
sufficient to obtain such shapes. In fact, we have run
our test also in order to look for a common quadratic
Lyapunov function, and the test failed to find any.
This justifies the effort in finding less conservative
conditions as the ones of Theorem 6.

ev[ms
−1]

e
y
[m

]

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 8. Lyapunov function level curves, stability study, friction in saturation
form, m = 1.

2) Piecewise polynomial Lyapunov function (m = 2)
By applying Theorem 6 form = 2, the lower bound
value on the decay rate found is:α = 0.4751;
which is larger than the one obtained in the case of
m = 1. This result shows the effectiveness of using
a piecewise-polynomial Lyapunov function (m = 2)
compared to the piecewise-quadratic one (m = 1).
Figure 9 presents the 2-dimensional level curves of
the obtained Lyapunov function in the(ev, ey) plane

ev[ms
−1]

e
y
[m

]

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 9. Lyapunov function level curves, stability study, friction in saturation
form, m = 2.

On the other hand, we have also verified that for
m = 2 it is possible to find a common polynomial
Lyapunov function, thanks to the lower conser-
vatism with respect to a common quadratic one.

• Robust stability
For the robust stability study, we have modified the
chosen model of friction by inserting a range of variation
of the parameterFs (see for example Figure 10).

-

ɛ 

- Fsmin

Fsmin

- Fsmax

Fsmax

v

Ff (v)

ɛ 

Fig. 10. Friction variation for the saturation case.

In our case study, we took a variation betweenFsmax
=

40 N and Fsmin
= 20 N . In this case, the friction

model is polytopic withk = 1, 2, and can be presented
according to (7) as:

{
Fs(λ) = λ1Fsmax

+ λ2Fsmin

λ1 + λ2 = 1
(32)

In this way, the model of the system is PWA with
polytopic uncertainties.

1) Piecewise quadratic Lyapunov function (m = 1)
By applying Theorem 6 form = 1, the lower bound
value on the decay rate found is:α = 0.0671. The
level curves of the obtained Lyapunov function are
presented in the Figure 11.

2) Piecewise polynomial Lyapunov function (m = 2)
By applying Theorem 6 form = 2, the lower bound
value on the decay rate found is:α = 0.4750. For
this case, the level curves of the Lyapunov function
are pretty much the same compared to the case
without variations.

For both cases, the stability was proven despite variations
in friction, with a slight reduction of the decay rate.

• Performance study
We study the trajectory tracking by taking specified
desired trajectories (see Figure 12), i.e in this caseyd
variable andvd 6= 0, ad 6= 0.
The cells are divided with respect to desired velocity
switching criteria resulting into9 cells (not shown for
brevity).

1) Piecewise quadratic Lyapunov function (m = 1)
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v[ms
−1]

e
y
[m

]

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 11. Lyapunov function level curves, robust stability study, friction in
saturation form,m = 1.

Fig. 12. Desired positionyd

By applying Theorem 6 form = 1 andα = 0, the
asymptotic stability has been verified with a level
curve of the obtained Lyapunov function presented
in Figure 13 in the (ey, v, vd) space. Again, we
can point out that the shape is quite different from
a simple ellipsoid, which makes it impossible to
obtain by means of a common quadratic Lyapunov
function.

2) Piecewise polynomial Lyapunov function (m = 2)
The asymptotic stability has been also verified for
m = 2 and a level curve of the obtained Lyapunov
function is presented in Figure 14 in the (ey, v, vd)
space.

B. Friction in relay form

The second friction model chosen for our study is in the
relay form, as in (2), for which we study all the possible cases
as done for the other friction model.

The switching of the system (due to the friction model and
due to the control law) divides the state-space into a set of
several cells;8 cells considering only two switching criteria
(see Figure 15), or12 cells with respect to desired velocity
switching criteria (not shown for brevity; more details on the
PWA formulation of the model can be found in [2]).

The discontinuity of the friction model onv = 0 can
generate a sliding mode on the corresponding boundary, which

Fig. 13. A Lyapunov function level curve, performance study,friction in
saturation form,m = 1.

Fig. 14. A Lyapunov function level curve, performance study,friction in
saturation form,m = 2.

we need to take into account while proving stability. All
the results of the theorem application concerning this friction
model are presented in Table II.

To suggest an idea of the computations involved, we provide
a brief discussion only for the performance study (trajectory
tracking). In this case, the piecewise-polynomial function is of
degree2m = 4, which yields a vectorχ(x) of the extended
state, according to (14), in the following form (remember
that x = [x1, x2, x3, x4, x5, x6]

T , where x5, x6 are states
associated to the reference trajectory):χ(x) = [x1, x2, x3,
x4, x5, x6, x1x2, x1x3, x1x4, x1x5, x1x6, x2x3, x2x4, x2x5,
x2x6, x3x4, x3x5, x3x6, x4x5, x4x6, x5x6, x

2
1, x

2
2, x

2
3, x

2
4,

x2
5, x2

6, 1]T . The level curves of the piecewise-polynomial
Lyapunov function found have been plotted in Figure 16 in the
(v, ey) plane and in Figure 17 in the (ey, v, vd) space. We can
see that the level curves do not have a simple ellipsoidal shape;
this implies again that a simple common quadratic Lyapunov
function is not sufficient to obtain such shapes. Moreover, we
have verified that the test fails for the case ofm = 1, which
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sliding surface

X3X3s

X1s X2s

X01X02

ey

ev

X1X2

Fig. 15. The cellsXi in the case of friction in relay form, intersection with
(ev , ey) plane.

justifies the need of a piecewise-polynomial function instead
of a piecewise-quadratic one.

Fig. 16. Lyapunov function level curves, friction in relay form, performance
study,m = 2.

C. Summary

Table II contains the results for all cases of the theorem
application to our electropneumatic system; namely stability,
robust stability, performance and robust performance under the
two models of friction and two forms of Lyapunov function
are considered.

We can notice the effectiveness of the piecewise-polynomial
Lyapunov function approach for proving stability even in the
presence of sliding modes and parametric uncertainties, finding
a more reliable upper bound on the decay rate compared to
piecewise-quadratic Lyapunov functions.

Fig. 17. A Lyapunov function level curve on the(ey , v, vd) space, friction
in relay form, performance study,m = 2.

Stability

infeasible

m = 1

Tracking

with α = 0.4751

feasible

with α = 0.0897

feasible

with α = 0.0671

feasible

with α = 0.4750

infeasible

infeasible

infeasible

with α ≈ 0

feasible

feasible

feasible

feasible

feasible

feasible

with α ≈ 0

feasible
feasible

feasible

m = 2

m = 1

m = 2

m = 1

m = 2

m = 1

m = 2

Lyapunov
function degree

TABLE II
ALL STUDY CASES ON ELECTROPNEUMATIC ACTUATOR

VI. CONCLUSIONS

In this paper, we have investigated the problem of proving
the stability of an electropneumatic system in closed-loopwith
a switching control law modeled as a PWA system with sliding
modes due to presence of friction. Some sufficient condi-
tions have been presented for finding piecewise-polynomial
Lyapunov functions for PWA systems with sliding modes,
uncertainties on parameters and equilibrium sets greater than
the mere origin, and potentially on a sliding mode. The
new extended conditions successfully found a4-th degree
piecewise-polynomial Lyapunov function through a convex
optimization problem in terms of linear matrix inequalities.
We have shown that this method is able to prove stability for
a model of a real pneumatic test bench.
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