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The present work addresses continuous-time approximation of distributed parameter systems governed by linear onedimensional partial differential equations. While approximation is usually realized by lumped systems, that is finite dimensional systems, we propose to approximate the plant by a time-delay system. Within the graph topology, we prove that, if the plant admits a coprime factorization in the algebra of BIBO-stable systems, any linear distributed parameter plant can be approximated by a time-delay system, governed by coupled differential-difference equations. Considerations on stabilization and state-space realization are carried out. A numerical method for constructive approximation is also proposed and illustrated.

Introduction

In the input-output approach, approximating a plant means to find a more tractable model with respect to given specifications for analysis, simulation and control synthesis. For distributed parameter plants governed by linear 1-D partial differential equations [START_REF] Curtain | An introduction to infinitedimensional linear systems theory[END_REF][START_REF] Foias | Robust control of infinite dimensional systems : Frequency domain methods[END_REF][START_REF] Zwart | Transfer functions for infinite-dimensional systems[END_REF][START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF], approximation is, in general, realized by lumped models described by linear ordinary differential equations [START_REF] Myint-U And | Linear partial differential equations for Scientists and Engineers[END_REF]. In feedback and interconnection perspectives, the graph topology of input-output systems, introduced in [START_REF] Vidyasagar | The graph metric for unstable plants and robustness estimates for feedback stability[END_REF][START_REF] Vidyasagar | Control System Synthesis. A Factorization Approach[END_REF] to handle a topology where feedback is a robust property, gives a supporting structure for approximation. See also [START_REF] Zhu | A graph metric for a class of MIMO linear distributed systems[END_REF][START_REF] Partington | Approximation of unstable infinitedimensional systems using coprime factors[END_REF][START_REF] Mäkilä | Robust stabilization-BIBO Stability, Distance Notions and Robustness Optimization[END_REF][START_REF] Bonnet | Bézout factors and L 1optimal controllers for delay systems using a two-parameter compensator scheme[END_REF] for generalizations and metrics of the graph topology for distributed parameter plants. Approximation by lumped models in the graph topology was formalized in [START_REF] Vidyasagar | Approximation and stabilization of distributed systems by lumped systems[END_REF], and studied further in [START_REF] Morris | Design of finite-dimensional controllers for infinite-dimensional systems by approximation[END_REF][START_REF] Morris | H∞ output feedback control of infinitedimensional systems via approximation[END_REF][START_REF] Partington | Robust stabilization of delay systems by approximation of coprime factors[END_REF] for various metrics. A preliminary result in lumped stabilization for time-delay systems, viewed as a subclass of distributed parameter plants, was also obtained in [START_REF] Kamen | Stabilization of time-delay systems using finite-dimensional compensators[END_REF]. These methods are mainly based on algebraic representations of input-output plants, and in particular on coprime factorizations (see [START_REF] Vidyasagar | Control System Synthesis. A Factorization Approach[END_REF][START_REF] Logemann | Stabilization and regulation of infinitedimensional systems using coprime factorizations[END_REF][START_REF] Quadrat | On a generalization of the Youla-Kučera parametrization. Part I : The fractional ideal approach to SISO systems[END_REF] and [START_REF] Loiseau | Algebraic tools for the control and stabilization of time-delay systems[END_REF] for timedelay systems). In [START_REF] Vidyasagar | Approximation and stabilization of distributed systems by lumped systems[END_REF], existence of a lumped approx-imation in the graph topology is studied, and gives a clear interpretation of purely atomic parts in coprime factorizations that cannot be closed to lumped distributions, in the BIBO-stability framework. Instead of relaxing graph topology, we propose in this paper to generalize the approximation class of lumped systems by time-delay systems. While this class is still of infinite dimension and can exactly represent some partial differential equations [START_REF] Rȃsvan | Functional differential equations and onedimensional distortionless propagation[END_REF], state-space realization and advanced tools for analysis and control reach nowadays maturity, and can therefore be of benefit to the study of distributed parameter systems. The main contribution of this paper is to show that, from a quantitative point of view, such a time-delay approximation always exists if a coprime factorization in the Wiener algebra of bounded input bounded output (BIBO) plants exists. This condition appears to be of practical relevance in constructive feedback perspective [START_REF] Vidyasagar | Algebraic and topological aspects of feedback stabilization[END_REF]. The paper is organized as follows. In Section 2, we briefly recall definitions and introduce some notations. Approximation by time-delay systems is developed in Section 3. In Section 4, we discuss on the state-space realization of the approximation class, and propose a numerical method with explicit construction. Two examples are illustrated in Section 5.

Preliminaries

In this section, some basic background and notations, that will be used throughout the paper, are introduced.

Input-Output representation

A causal input-output convolution system is a dynamical system described by an equation of the form

y(t) = (P u)(t) = t 0 P (τ )u(t -τ ) dτ (1) 
where y(•), u(•) and P (•) are said to be the output, input and kernel of the plant, respectively. For our purpose, we consider the Wiener algebra of BIBO-stable systems [START_REF] Callier | An algebra of transfer functions for distributed linear time-invariant systems[END_REF], and we denote it by A . We say that P ∈ A if P = P na + P pa for t ≥ 0 and 0 elsewhere, where

P na (•) ∈ L 1 (0, ∞) (non atomic part), that is P na is a real-valued function such that P na L1 = ∞ 0 |P na (t)
| dt is finite. The realvalued distribution P pa stands for the purely atomic part

P pa (t) = ∞ n=0 P n δ(t -r n ) = ∞ n=0 P n δ rn (t), (2) 
with elements {P n } n∈N in R, ordered delays 0 = r 0 < r 1 < . . ., δ(t -r n ) = δ rn (t) denoting the Dirac delta distribution centered in r n , and n≥0 |P n | < ∞. The set A is a commutative convolution Banach algebra for the norm defined by

P A = P na L1 + ∞ n=0 |P n |, (3) 
with unit element the Dirac delta distribution δ. Denoting P the Laplace transform of P , Â is the set of Laplace transforms of elements in A . The set A p×m stands for the set of p×m matrices P with entries in A , and the matrix norm P A = max i=1,...,p m j=1 P ij A , where P ij denotes the (i, j) entry of P . Two matrices N ∈ A p×m and D ∈ A m×m are said to be right-coprime if there exist X ∈ A m×p and Y ∈ A m×m such that

XN + Y D = I m δ, (4) 
where I m stands for the m × m identity matrix. A pair (N, D) is a right-coprime factorization (r.c.f.) in A of a given plant A causal convolution system y = P u is said to be BIBO stable if P ∈ A p×m [START_REF] Vidyasagar | Control System Synthesis. A Factorization Approach[END_REF], in the sense that any bounded input yields a bounded output. In control perspective, let C be a controller with a l.c.f. ( D c , N c ) in A m×m × A m×p , interconnected with the plant P as represented in Figure 1. The feedback system in Figure 1 satisfies y = W P,C u, where

P if D is non singular, P = N D -1 ,
W P,C = I p δ -N Λ -1 N c -N Λ -1 D c DΛ -1 N c DΛ -1 D c , (5) 
with

y = y T 1 y T 2 T , u = u T 1 u T 2 T and Λ = N c N + D c D. (6) 
The pair (P, C) is said to be stable, or C stabilizes P , if W P,C ∈ A (p+m)×(p+m) . It is well known that (P, C) is stable if and only if Λ in ( 6) is a unit in A m×m , that is Λ -1 exists and lies in A m×m [START_REF] Vidyasagar | Control System Synthesis. A Factorization Approach[END_REF][START_REF] Quadrat | On a generalization of the Youla-Kučera parametrization. Part I : The fractional ideal approach to SISO systems[END_REF]. As an illustration, an acoustic wave in a duct with Dirichlet boundary conditions and a boundary constant impedance writes [4, Section 3.3 pp. 1106]

✲ ✲ ❄ ✛ ✻ ✛ ✛ u 2 + + e 2 P u 1 + - e 1 y 1 ✲ C y 2
P (s) = 1 + η e -rs 1 -η e -rs ( 7 
)
where η is the reflection coefficient such that |η| < 1. This proper and stable plant admits the coprime factorization in A described by N (s) = 1 + η e -rs , and D(s

) = 1 -η e -rs , (8) 
where D = δ -η δ r is a unit in A . This coprime factorization satisfies (4) with

X(s) = -Q(s) D(s) , Ŷ (s) = D(s) -1 + Q(s) N (s),
for any Q ∈ A . Another example issued from [START_REF] Bonnet | Coprime factorizations and stability of fractional differential systems[END_REF] and the theory of transmission lines is

P (s) = e - √ s s -1 (9) 
with a simple pole at s = 1. A coprime factorization in

A is N (s) = e -√ s s+1 and D(s) = s-1 s+1 , which satisfies (4) for X(s) = - 4e s + 1 and Ŷ (s) = (s + 1) 2 -4ee - √ s (s + 1)(s -1) ,
where it is noted that Ŷ (s) ∈ Â has a removable singularity at s = 1.

Graph topology and approximation

Graph topology gives a suitable framework for approximation in feedback perspective and robustness issues. We refer to [START_REF] Vidyasagar | The graph metric for unstable plants and robustness estimates for feedback stability[END_REF][START_REF] Vidyasagar | Control System Synthesis. A Factorization Approach[END_REF][START_REF] Zhu | A graph metric for a class of MIMO linear distributed systems[END_REF] for details on this topology. For a causal plant P with a r.c.f. (N, D), N ∈ A p×m , D ∈ A m×m , a neighbourhood of P in the graph topology can be characterized by convergence of coprime factorizations [34, ch. 7 p. 238]. For this, we consider the following definition.

Definition 1 For a subalgebra S in A , we say that the sequence {P ν } ν∈N , with P ν = N ν D -1 ν , N ν ∈ S p×m and D ν ∈ S m×m , is an approximation of P = N D -1 (in the graph topology) if for any ǫ > 0, there exists ν ǫ such that P νǫ ∈ B(P, ǫ), where

B(P, ǫ) = {P ν = N ν D -1 ν , N -N ν D -D ν A < ǫ}. ( 10 
)
It is noted that, for the r.c.f. (N, D) in A of P , its approximation (N ν , D ν ) is a r.c.f. in S of P ν , for any sufficiently small ǫ [34, p. 235]. Approximation by lumped systems in graph topology was studied in [START_REF] Vidyasagar | Approximation and stabilization of distributed systems by lumped systems[END_REF], and comes down to define the approximation subset S in Definition 1 as the set of BIBO-stable lumped systems in the form

P (t) = P 0 δ(t) + i,j P ij t j e -λit , t ≥ 0, (11) 
where P 0 and P ij are complex numbers, Re(λ i ) > 0 for all i, and the sums are finite. A necessary and sufficient condition for the existence of a lumped approximation was established in the following result.

Theorem 2 [START_REF] Vidyasagar | Approximation and stabilization of distributed systems by lumped systems[END_REF] Let P be a plant with a r.c.f. (N, D), N ∈ A p×m , D ∈ A m×m . Then P can be approximated by a lumped plant in the graph topology if and only if there exists a constant matrix M ∈ R p×(m+p) of rank p such that

M N pa D pa = 0.
For illustration, consider the plant P in [START_REF] Eising | Realization and stabilization of 2-D systems[END_REF] with the coprime factorization [START_REF] Foias | Robust control of infinite dimensional systems : Frequency domain methods[END_REF], where N = N pa = δ + η δ r and

D = D pa = δ -η δ r .
It is trivial to see that Theorem 2 is not fulfilled, or equivalently that P cannot be approximated by a lumped plant in the graph topology.

A direct consequence of Theorem 2 is that any element in L 1 (0, ∞), which is strictly proper, can be approximated in the graph topology by a lumped plant. See also [START_REF] Kammler | Approximation with sums of exponentials in Lp[END_REF].

Approximation by delay systems

The limits that appear in lumped approximation motivate to consider a larger class of approximation, with the introduction of a time-delay operator.

Class of Approximation

Take the class of approximation as systems governed by continuous-time equations with time-delay in the form

χ(t) = ς i=1 A i χ(t -r i ) + Ew(t) + Bu(t) (12) 
ẇ(t) = Hw(t) + Gχ(t) (13) 
y ν (t) = ς i=0 C i χ(t -r i ) + Lw(t) (14) 
for t ≥ 0 and ordered delays 0 = r 0 < r 1 < . . . < r ς . The initial conditions are χ(t) = ϕ χ (t) for t ∈ [-r ς , 0) (continuous and bounded) and w(0) = w 0 . The equations ( 12)-( 13) are (a particular case of) coupled differential-difference equations in standard form [START_REF] Gu | Stability problem of systems with multiple delay channels[END_REF][START_REF] Gu | A review of some subtleties of practical relevance for time-delay systems of neutral type[END_REF]. As a preliminary result which will be used in the general approximation procedure, let us start with the particular case of stable plants with only purely atomic part, which can be approximated in the graph topology by an input-delay system.

Lemma 3 Let P ∈ A p×m and assume that P = P pa . Then P can be approximated in the graph topology by a coupled differential-difference system in the form ( 12)-( 14).

PROOF.

From assumption P = P pa , the input-output plant y = P u is described by P = i≥0 P i δ ri . Since 3)), for any ǫ > 0, there exists ς in N such that the truncation ς i=0 P i δ ri lies in B(P, ǫ). Such an approximation admits a state-space realization in the form ( 12)-( 14), with χ = u, w = 0 and C i = P i , for i = 0, . . . , ς. ✷

{P i } i∈N is convergent (see (2)-(

Approximation by coupled differential-difference systems

From this preliminary result, let us consider the general case.

Theorem 4 Let P be a causal and proper plant with a r.c.f. (N, D), N ∈ A p×m , D ∈ A m×m . Then P can be approximated in the graph topology by a model governed by coupled differential-difference equations.

PROOF. Let y = P u, and introduce the partial state ξ(•) in R m such that u = Dξ and y = N ξ. This proof aims to construct a coprime factorization (N ν , D ν ) for the approximation such that P ν = N ν D -1 ν lies in B(P, ǫ), for some fixed arbitrary ǫ > 0. For this, denote D = i≥0 D i δ ri + D na . From Section 2.2, since P is causal and proper, D 0 is nonsingular, so that u = Dξ can be put in the form

ξ(s) = - i≥1 D -1 0 D i e -sri ξ(s) -D -1 0 Dna (s) ξ(s) +D -1 0 û(s). ( 15 
)
The term D -1 0 Dna is strictly proper (and BIBO-stable), and can therefore be approximated by a lumped system in the graph topology [START_REF] Vidyasagar | Approximation and stabilization of distributed systems by lumped systems[END_REF]. It follows that there exist κ D ∈ N and real matrices (E κD , H κD , G κD ), respectively in R m×κD , R κD ×κD and R κD ×m , such that E κD (sI κD -H κD ) -1 G κD realizes a lumped approximation of D -1 0 Dna in the graph topology. For the approximation of the purely atomic part i≥1 D -1 0 D i δ ri in (15), we use Lemma 3 with the truncation of the first ς D terms, for some ς D ∈ N. Hence, an approximation in the graph topology of u = Dξ writes u = D ν χ, for χ(•) ∈ R m , and is realized by the state-space equations

χ(t) = - ςD i=1 D -1 0 D i χ(t -r i ) -E κD w D (t) + D -1 0 u(t) ẇD (t) = H κD w D (t) + G κD χ(t).
For the relationship y = N ξ, we have

N = N pa + N na .
Similarly, N na is approximated by a lumped system realized by (L κN , H κN , G κN ), in respectively R p×κN , R κN ×κN and R κN ×m , for some κ N ∈ N. N pa is truncated to its first ς N terms, with ς N ∈ N. The approxi-mation of y = N ξ is therefore y ν = N ν χ, governed by

ẇN (t) = H κN w N (t) + G κN χ(t) y ν (t) = ςN i=0 N i χ(t -r i ) + L κN w N (t).
Let w T = w T D w T N and ς = max(ς D , ς N ). Combining the previous identities leads to the state-space equations in the form ( 12)-( 14), where

A i = -D -1 0 D i , C i = N i , B = D -1 0 , E = -E κD 0 , L = 0 L κN and H = H κD 0 0 H κN , G = G κD G κN . ( 16 
)
By convention, the terms C i and A i are zero if they are not defined. ✷

In the proposed approximation, the partial state χ(•) lies in R m , while w(•) ∈ R κD+κN has a dependent dimension with respect to the desired accuracy of the approximation for the non atomic parts. Purely atomic parts lead to ς pointwise (a priori independent) delays in ( 12)-( 14). The accuracy of the approximation P ν is completely characterized by the parameters (κ N , ς N , κ D , ς D ), which define the order of the approximation.

4 Discussion and numerical method

Stabilization and input-output performances

Let P ν be an approximation in the graph topology of P , realized, as explained in Section 3.2, by a time-delay system governed by the coupled differential-difference equations ( 12)-( 14). Following Section 2.2, assume that C, which is causal and proper with a l.c.f. ( D c , N c ), stabilizes P ν , with a r.c.f. (N ν , D ν ). Such synthesis may be obtained by advanced tools in delay systems, see [START_REF] Loiseau | Algebraic tools for the control and stabilization of time-delay systems[END_REF][START_REF] Pepe | On the stability of coupled delay differential and continuous time difference equations[END_REF][START_REF] Kharitonov | Time-delay systems, Lyapunov functionals and matrices[END_REF][START_REF] Fridman | Introduction to time-delay systems[END_REF][START_REF] Damak | Stability of linear continuous-time difference equations with distributed delay: Constructive exponential estimates[END_REF] and references therein. Denote

Λ ν = N c N ν + D c D ν (17) 
the unit matrix in A m×m . For Λ defined in (6), we have

Λ = Λ ν I m δ + Λ -1 ν N c D c N -N ν D -D ν . ( 18 
)
It follows that (P, C) is stable if and only if Λ is a unit in A m×m . Hence, a sufficient condition for stabilization is that

N -N ν D -D ν A < 1 Λ -1 ν N c D c A , (19) 
which always admits a solution for P ν ∈ B(P, ǫ) and a sufficiently small ǫ > 0. In other words, if a coprime factorization (N, D) exists in A , stabilization may be achieved using an approximation (N ν , D ν ) as in Theorem 4 and a controller synthesized by time-delay tools. Remark also that, for input-output performance, the realized approximation leads to the input-output norm of the closed-loop plants W P,C -W Pν ,C A that can be arbitrarily reduced as far as the approximation is closed, where W P,C is defined in [START_REF] Curtain | An introduction to infinitedimensional linear systems theory[END_REF]. The norm in A being an upper bound for L 2 -induced norm, this shows in particular that gain and phase approximations in frequency domain hold.

State-space realization

Few comments on the state-space realization ( 12)-( 13) are in order. For notations convenience, we only consider the single delay case (ς = 1 and r = r 1 ). While ( 12)-( 13) appear in the standard form of coupled differentialdifference equations (see [START_REF] Gu | Stability problem of systems with multiple delay channels[END_REF] and references therein) for analysis, it may be preferred the canonical form where all terms in the right-hand side of ( 12) are delayed. For this, the realization of coupled differential-difference equations ( 12)-( 13) is equivalent to the realization

φ(t) = A 1 φ(t -r) + A 1 Ew(t -r) + A 1 Bu(t -r) ẇ(t) = (H + GE)w(t) + Gφ(t) + GBu(t) (20) 
using the combination of variables

φ(t) = χ(t) -Ew(t) -Bu(t),
for any t ≥ 0. This form is the so-called Roesser canonical form for 2-D systems [START_REF] Eising | Realization and stabilization of 2-D systems[END_REF][START_REF] Loiseau | The use of 2-D systems theory for the control of time-delay systems[END_REF]. It is well known that such a realization using a finite bank of operators is equivalent to neutral time-delay systems [START_REF] Loiseau | The use of 2-D systems theory for the control of time-delay systems[END_REF]. Note that the initial conditions for (20) are φ(t) = ϕ φ (t) for t ∈ [-r, 0), w(t) = ϕ w (t) for t ∈ [-r, 0], where ϕ φ = ϕ χ -Eϕ w (by convention u(t) = 0 for t ∈ [-r, 0)) and

ϕ w (t) = e Ht w 0 + t 0 e H(t-τ ) Gϕ χ (τ ) dτ . ( 21 
)
The differential equation ( 13) can also be transformed into a difference equation with distributed delay. For this, the constant variation formula applied to [START_REF] Gu | Approximation of infinite-dimensional systems[END_REF] writes as

w(t) = e Hr w(t -r) + t t-r
e H(t-τ ) Gχ(τ ) dτ [START_REF] Mäkilä | Robust stabilization-BIBO Stability, Distance Notions and Robustness Optimization[END_REF] for t ≥ 0 and the initial condition ϕ w (•) in [START_REF] Mäkilä | Laguerre series approximation of infinite dimensional systems[END_REF]. Combining ( 12) and ( 22) leads to the difference equation with distributed delay [START_REF] Morris | Design of finite-dimensional controllers for infinite-dimensional systems by approximation[END_REF] for t ≥ 0, where

x(t) = A d x(t-r)+B d u(t)+ t t-r G d (t -τ )x(τ )dτ
x T = χ T w T , B T d = B T 0 , A d = A 1 E e Hr 0 e Hr , G d (t) = E e Ht G 0
e Ht G 0 .

In reformulating the coupled differential-difference equations ( 12)-( 13) in difference equations with distributed delay [START_REF] Morris | Design of finite-dimensional controllers for infinite-dimensional systems by approximation[END_REF], additional dynamics appear. Indeed, the characteristic polynomial associated to the initial formulation ( 12)-( 13) is (in the single delay case)

π c (λ) = det(λI m -H -G(I m -A 1 e -λr ) -1 E), ( 24 
)
while for the difference formulation ( 23), the characteristic equation writes

π d (λ) = π c (λ)π dd (λ), (25) 
with

π dd (λ) = det((I m -e -(λIm-H)r )(λI m -H) -1 ). ( 26 
)
π dd (λ) is actually a strictly proper pseudo-polynomial in λ [START_REF] Loiseau | Algebraic tools for the control and stabilization of time-delay systems[END_REF], and more precisely it is an entire function and has no pole. Additional zeros of π dd (λ) with respect to [START_REF] Morris | H∞ output feedback control of infinitedimensional systems via approximation[END_REF] are obtained in [START_REF] Partington | Robust stabilization of delay systems by approximation of coprime factors[END_REF], and lie in the set

λ ∈ σ(H) + i 2πk r , k = ±1, ±2, . . . , (27) 
where λ ∈ / σ(H), σ(H) denoting the eigenvalues of H. Additional dynamics are, in the complex plane, along vertical chains with real parts located at Re(σ(H)). It follows that, since H is Hurwitz (see ( 16) and ( 31)), stability of the realizations ( 12)-( 13) and ( 23) are equivalent.

Numerical approximation

The numerical computation of the time-delay system that approximates P in the graph topology requires, from a coprime factorization (N, D), to truncate the atomic parts (N pa , D pa ), and to realize a L 1 (0, ∞) approximation of the non atomic parts (N na , D na ). This last part may be realized by any convergent method in L 1 (0, ∞), as for instance in [START_REF] Glover | Realisation and approximation of linear infinite-dimensional systems with error bounds[END_REF][START_REF] Gu | Approximation of infinite-dimensional systems[END_REF]. For direct computations in the Laplace domain, Laguerre polynomials are applied. See [START_REF] Szegö | Orthogonal polynomials[END_REF] and [START_REF] Mäkilä | Laguerre series approximation of infinite dimensional systems[END_REF] for Laguerre approximation techniques of distributed parameter systems. Let us denote the Laguerre polynomials

p κ (t) = e t κ! d κ dt κ (e -t t κ ) = κ k=0 κ k (-t) k k! , κ ∈ N.
The elements g κ (t) = p κ (t)e -t/2 , for κ ≥ 0, form an orthonormal basis of L 2 (0, ∞), and any function P ∈ L 2 (0, ∞) can be expanded as P (t) = ∞ κ=0 c κ (P )g κ (t), where c κ (P ) = P, g κ = ∞ 0 P (t)g κ (t) dt are the Laguerre coefficients of P relative to g κ [START_REF] Szegö | Orthogonal polynomials[END_REF]. Assume that there exists α 0 > 0 such that e α0t P (t) ∈ L 2 (0, ∞). For any α ∈ (0, α 0 ), it has been shown in [START_REF] Li | L 1 Approximation of a certain class of infinite dimensional systems in time-domain[END_REF] that the function

P ν,α (t) = ν κ=0 c κ,α (P )g κ (t)e -αt , (28) 
with c κ,α (P ) = e αt P (t), g κ (t) , lies in L 1 (0, ∞) ∩ L 2 (0, ∞), and converges to P in L 1 (0, ∞), that is

lim ν→∞ P -P ν,α L1 = 0. ( 29 
)
The computation of the coefficients c κ,α (P ) is made directly in the Laplace domain, by the formula

c κ,α (P ) = κ k=0 κ k 1 k! P (k) ( 1 2 -α), (30) 
where P (k) stands for the kth derivative of P , and the approximation (28) leads to (see [31, p. 379

= ν κ=0 c κ,α (P ) (s + α -1 2 ) κ (s + α + 1 2 ) κ+1 . ]) Pν,α (s) 
Particularizing this method for N na and D -1 0 D na and using a state-space realization for (31) leads to a constructive approximation of the quadruple (H, E, L, G) in ( 16) and ( 12)-( 14) for the non atomic parts, while N pa and D -1 0 D pa are truncated, as proposed in Lemma 3.

Illustrations

Coupled heat-transport equation

Consider the coupled partial differential equations with boundary conditions

ξ t (z, t) = ϑ 2 ξ zz (z, t) , z ∈ (0, ℓ), t ≥ 0, (32) ξ 
(0, t) = 0, ξ(ℓ, t) = u(t) -y(t), (33) 
for ϑ > 0, zero initial conditions and the transport equation

w t (z, t) + w z (z, t) = 0 , z ∈ (0, ℓ), t ≥ 0, (34) 
with the boundary condition w(0, t) = 1 2 y(t). The output signal is defined by y(t) = ξ(z 0 , t) + w(z 0 , t), for a fixed z 0 ∈ (0, ℓ). The input-output transfer function for (32)-( 34) is ŷ(s) = P (s)û(s), where Define N (s) = sinh(

P (s) = sinh( z 0 √ s ϑ ) sinh( ℓ √ s ϑ ) 1 -1 2 e -z0s + sinh( z 0 √ s ϑ ) sinh( ℓ √ s ϑ ) . (35) 
z 0 √ s ϑ ) sinh( ℓ √ s ϑ )
, D(s) = 1 -1 2 e -z0s + N (s). The poles of N (s) are -( kπϑ ℓ ) 2 , for k = 1, 2, . . .. This implies that N (•) ∈ A and is strictly proper [START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF], and also that D(•) ∈ A . Furthermore, (N, D) is a coprime factorization of P (s), since X(s) N (s) + Ŷ (s) D(s) = 1, with X(s) = -Ŷ (s) = - The state-space realization of P1 (s) is

χ(t) = 1 2 χ(t -z 0 ) -Ew(t) + Bu(t) (36) 
ẇ(t) = Hw(t) + Gχ(t) (37) 
with B = 0.912 and the output of the approximation plant satisfies y 1 (t) = Ew(t). The frequency diagram of the error | P (jω) -P1 (jω)| between the exact plant (35) and P1 (s) is reported in Figure 2. This gives an illustration of the approximated magnitude in the frequency domain (see below [START_REF] Loiseau | The use of 2-D systems theory for the control of time-delay systems[END_REF] in Section 4.1), related to the convergence of coprime factors in the A -norm, where P 1 ∈ B(P, 0.05). While the approximation is of first order ν = 1 (corresponding to the Laguerre polynomial degree), its realization is obtained by a coupled scalar one-delay difference equation with a second order (ν +1) differential equation only. Using [START_REF] Vidyasagar | Approximation and stabilization of distributed systems by lumped systems[END_REF]Th. 4.1], P (s) can actually be approximated in the graph topology by a lumped system. However, lumped approximation may involve large-scale realization for a similar level of performance. This can be seen in Figure 3 where the unit step response for ( 36)-( 37) reproduces with fidelity the transport-heat phenomenon considered in ( 32)-(34). 36)-( 37) for the coupled heat-transport system.

Damped wave equation

As a second illustration, consider the damped wave equation

ξ zz (z, t) = 1 c 2 ξ tt (z, t) + γξ t (z, t) + µξ(z, t), (38) 
for z ∈ (0, ℓ), t ≥ 0, with positive reals c, γ and µ, the boundary conditions

ξ(0, t) = 0 , ξ(ℓ, t) = u(t), (39) 
and zero initial condition. Let

̟(s) = s 2 + c 2 γs + c 2 µ = (s + c 2 γ 2 ) 2 + η, (40) 
with η = c 2 µ -c 4 γ 2 4 . From ( 38)-(39), the transfer function ξ(z, s) = P (s)û(s) is, for any z ∈ (0, ℓ),

P (s) = sinh( z c ̟(s)) sinh( ℓ c ̟(s)) . (41) 
The poles of P (s) are, for k = 1, 2, . . . ,

s k =    -c 2 γ 2 ± i η + ( kπc ℓ ) 2 , -ηℓ 2 π 2 c 2 ≤ k 2 -c 2 γ 2 ± -η -( kπc ℓ ) 2 , k 2 ≤ -ηℓ 2 π 2 c 2 , (42) 
and satisfy Re(s k ) ≤ max(-µ γ , -c 2 γ 2 ). With the Bessel function

J 1 (t) = 1 π π 0 cos(τ -t sin τ ) dτ , (43) 
we remark that the following decomposition holds [36, p. 164]

e -β(z) c √ ̟(s) = e -cγβ(z) 2 e -β(z) c s -ψβ(z) (s), (44) 
where

β(z) = ℓ + z, ̺(t, β(z)) = t 2 -β(z) c 2 , ψ β(z) (t) = β(z) √ η c e -c 2 γ 2 t ̺(t, β(z)) J 1 ( √ η̺(t, β(z))) h(t -β(z) c )
and h(•) stands for the Heaviside function. The function ψ β(z) (•) lies in L 1 (0, ∞), so that, using (42), a coprime factorization in  for P (s) in ( 41) is

N (s) = e -ℓ-z c √ ̟(s) -e -ℓ+z c √ ̟(s) , (45) 
D(s) = 1 -e -2ℓ c √ ̟(s) , (46) 
or equivalently

N (t) = e -γcβ(-z) 2 δ(t -β(-z) c ) -e -γcβ(z) 2 δ(t -β(z) c ) +ψ β(z) (t) -ψ β(-z) (t), D(t) = δ(t) -e -γcβ(ℓ) 2 δ(t -β(ℓ) c ) + ψ β(ℓ) (t).
The non atomic parts of (45)-( 46) 2 . Two approximations P ν (t) of order ν = 1 and ν = 8 are reported in Figure 4, where the frequency diagram of the approximation error | P (jω)-Pν (jω)| is reported. Approximations satisfy P 1 ∈ B(P, 0.14) and P 8 ∈ B(P, 0.07). In the first order Again, it is remarkable to verify that the first order approximation (corresponding to a second order differential equation coupled with a difference equation with one delay) can approximate the exact plant for all frequencies, which guarantees its pertinence in control perspectives.

N na (t) = ψ β(z) (t) -ψ β(-z) (t) (47) D na (t) = ψ β(ℓ) (t) (48 

Conclusion

In this paper, we define an approximation in the graph topology using norm convergence of a coprime factorization in the Wiener algebra. Such an approximation is governed by coupled continuous-time differentialdifference equations. A constructive state-space realization is established, and a numerical method based on Laguerre polynomials is proposed and illustrated. Properties of this approximation appear to be of practical interest for control and simulation. While the content of this paper is not related to advances in quantitative aspects in topology, its interest is mainly in the existence result of the time-delay approximation and its perspective seen as a trade-off for analysis and synthesis between distributed parameter systems and time-delay systems.
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 2 Fig. 2. Approximation error | P (jω) -P1(jω)| frequency diagram in (35)-(37) for the coupled heat-transport system.
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 122 e -z 0 s elements in  . The Laguerre approximation in L 1 (0, ∞) is realized for N = N na and D na = N , since assumptions before (28) hold and α 0 can be taken in (0, π 2 ϑ 2 ℓ 2 ). Simulations are obtained in Figures2-3, for ℓ = 1, z 0 = ℓ/2, ϑ = 1 and α = π 2 ϑ 2 ℓ The approximation of N (s) with ν = 1 in[START_REF] Pepe | On the stability of coupled delay differential and continuous time difference equations[END_REF], and then of Dna (s), is realized by N1 (s) = E(sI 2 -H) -1 G, where
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 3 Fig. 3. Unit step response y1(t) of P1(s) in (36)-(37) for the coupled heat-transport system.

) are approximated in L 1 2 δ 2 δ

 122 (0, ∞) by lumped plants, as proposed in Section 4.3, while purely atomic partsN pa (t) = e -γcβ(-z) (t -β(-z) c ) -e -γcβ(z) (t -β(z) c ) D pa (t) = δ(t) -e -γcβ(ℓ) 2 δ(t -β(ℓ) c )are conserved in the approximation. Simulations are carried out for c = 1, γ = 1, µ = 0.5, ℓ = 1 and z = 0.3, and the approximation technique proposed in Section 4.3 applies with α = c 2 γ
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 4 Fig. 4. Approximation error | P (jω)-Pν (jω)| diagram in (41) and (47)-(48), with ν = 1 (cont. line, blue) and ν = 8 (dot line, red), for the wave equation (38)-(39).
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 2 case ν = 1, the approximation P 1 is realized byχ(t) = e -γcβ(ℓ) 2 χ(t -β(ℓ) c ) -Ew(t) + u(t) ẇ(t) = Hw(t) + Gχ(t) y 1 (t) = e -γcβ(-z) 2 χ(t -β(-z) c ) -e -γcβ(z) (t -β(z) c ) +Lw(t),where L = -0.06 0.03 , E = -0.14 0.12 and

  A p×p , N ∈ A p×m are left coprime over A , that is there exist X ∈ A m×p and Y ∈ A p×p such that N X + D Y = I p δ.

	proper, that is lim r→∞ Property A.6.2 pp. 636]. A matrix of transfer functions sup Re(s)≥0, |s|≥r | Pna (s)| is zero [5,
	P is said to be proper (strictly proper) if its entries are
	proper (stictly proper). Let P be a p × m causal plant, and assume that P admits a r.c.f. (N, D), with N ∈ A p×m and D ∈ A m×m . Using the Bézout identity (4), it is readily verified that P is proper if and only if D -1
	is causal and proper. For D = D pa + D na , with D pa =
	i≥0 D i δ ri , this in turn implies that D 0 is invertible in R m×m .
	2.2 Properness, BIBO-stability and stabilization
	Elements P in A are causal and proper, in the sense that sup Re(s)≥0, |s|≥r | P (s)| is bounded for some r > 0 [5,4]. Elements P na in the ideal L 1 (0, ∞) of A are strictly

and N , D are right-coprime over A . Analogously, ( D, N ) is a left-coprime factorization (l.c.f.) in A of P if D is non singular, P = D -1 N , and D ∈
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