
HAL Id: hal-01281589
https://hal.science/hal-01281589v1

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Approximation of linear distributed parameter systems
by delay systems

Michaël Di Loreto, Sérine Damak, Damien Eberard, Xavier Brun

To cite this version:
Michaël Di Loreto, Sérine Damak, Damien Eberard, Xavier Brun. Approximation of lin-
ear distributed parameter systems by delay systems. Automatica, 2016, 68, pp.162-168.
�10.1016/j.automatica.2016.01.065�. �hal-01281589�

https://hal.science/hal-01281589v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Approximationof linear distributedparameter systemsby

delay systems ⋆

Michaël Di Loreto a, Sérine Damak a, Damien Eberard a, Xavier Brun a

aUniversité de Lyon, Laboratoire Ampère, INSA-Lyon, 20 Avenue Albert Einstein, Villeurbanne 69621, France

Abstract

The present work addresses continuous-time approximation of distributed parameter systems governed by linear one-
dimensional partial differential equations. While approximation is usually realized by lumped systems, that is finite dimen-
sional systems, we propose to approximate the plant by a time-delay system. Within the graph topology, we prove that, if the
plant admits a coprime factorization in the algebra of BIBO-stable systems, any linear distributed parameter plant can be ap-
proximated by a time-delay system, governed by coupled differential-difference equations. Considerations on stabilization and
state-space realization are carried out. A numerical method for constructive approximation is also proposed and illustrated.
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1 Introduction

In the input-output approach, approximating a plant
means to find a more tractable model with respect to
given specifications for analysis, simulation and control
synthesis. For distributed parameter plants governed by
linear 1-D partial differential equations [5,8,38,4], ap-
proximation is, in general, realized by lumped models
described by linear ordinary differential equations [25].
In feedback and interconnection perspectives, the graph
topology of input-output systems, introduced in [33,34]
to handle a topology where feedback is a robust prop-
erty, gives a supporting structure for approximation. See
also [37,27,22,2] for generalizations and metrics of the
graph topology for distributed parameter plants. Ap-
proximation by lumped models in the graph topology
was formalized in [35], and studied further in [23,24,26]
for various metrics. A preliminary result in lumped sta-
bilization for time-delay systems, viewed as a subclass of
distributed parameter plants, was also obtained in [14].
These methods are mainly based on algebraic represen-
tations of input-output plants, and in particular on co-
prime factorizations (see [34,18,29] and [20] for time-
delay systems). In [35], existence of a lumped approx-
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imation in the graph topology is studied, and gives a
clear interpretation of purely atomic parts in coprime
factorizations that cannot be closed to lumped distribu-
tions, in the BIBO-stability framework. Instead of re-
laxing graph topology, we propose in this paper to gen-
eralize the approximation class of lumped systems by
time-delay systems. While this class is still of infinite di-
mension and can exactly represent some partial differen-
tial equations [30], state-space realization and advanced
tools for analysis and control reach nowadays maturity,
and can therefore be of benefit to the study of distributed
parameter systems. The main contribution of this pa-
per is to show that, from a quantitative point of view,
such a time-delay approximation always exists if a co-
prime factorization in the Wiener algebra of bounded
input bounded output (BIBO) plants exists. This condi-
tion appears to be of practical relevance in constructive
feedback perspective [32].
The paper is organized as follows. In Section 2, we briefly
recall definitions and introduce some notations. Approx-
imation by time-delay systems is developed in Section 3.
In Section 4, we discuss on the state-space realization
of the approximation class, and propose a numerical
method with explicit construction. Two examples are il-
lustrated in Section 5.

2 Preliminaries

In this section, some basic background and notations,
that will be used throughout the paper, are introduced.
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2.1 Input-Output representation

A causal input-output convolution system is a dynamical
system described by an equation of the form

y(t) = (Pu)(t) =̇

∫ t

0

P (τ)u(t− τ) dτ (1)

where y(·), u(·) and P (·) are said to be the output, input
and kernel of the plant, respectively. For our purpose, we
consider the Wiener algebra of BIBO-stable systems [3],
and we denote it by A . We say that P ∈ A if P = Pna+
Ppa for t ≥ 0 and 0 elsewhere, where Pna(·) ∈ L1(0,∞)
(non atomic part), that is Pna is a real-valued function
such that ‖Pna‖L1

=
∫∞
0

|Pna(t)| dt is finite. The real-
valued distribution Ppa stands for the purely atomic part

Ppa(t) =
∞∑

n=0

Pnδ(t− rn) =̇
∞∑

n=0

Pnδrn(t), (2)

with elements {Pn}n∈N in R, ordered delays 0 = r0 <
r1 < . . ., δ(t − rn) = δrn(t) denoting the Dirac delta
distribution centered in rn, and

∑
n≥0 |Pn| < ∞. The

set A is a commutative convolution Banach algebra for
the norm defined by

‖P‖
A

= ‖Pna‖L1
+

∞∑

n=0

|Pn|, (3)

with unit element the Dirac delta distribution δ. Denot-
ing P̂ the Laplace transform of P , Â is the set of Laplace
transforms of elements in A . The set A p×m stands for
the set of p×mmatricesP with entries inA , and thema-
trix norm ‖P‖

A
= maxi=1,...,p

∑m
j=1 ‖Pij‖A

, where Pij

denotes the (i, j) entry of P . Two matrices N ∈ A
p×m

and D ∈ A m×m are said to be right-coprime if there
exist X ∈ A m×p and Y ∈ A m×m such that

XN + Y D = Imδ, (4)

where Im stands for the m×m identity matrix. A pair
(N,D) is a right-coprime factorization (r.c.f.) in A of a
given plant P if D is non singular, P = ND−1, and N ,

D are right-coprime over A . Analogously, (D̃, Ñ) is a

left-coprime factorization (l.c.f.) in A of P if D̃ is non

singular, P = D̃−1Ñ , and D̃ ∈ A p×p, Ñ ∈ A p×m are

left coprime over A , that is there exist X̃ ∈ A m×p and

Ỹ ∈ A p×p such that ÑX̃ + D̃Ỹ = Ipδ.

2.2 Properness, BIBO-stability and stabilization

Elements P inA are causal and proper, in the sense that
supRe(s)≥0, |s|≥r|P̂ (s)| is bounded for some r > 0 [5,4].

Elements Pna in the ideal L1(0,∞) of A are strictly

proper, that is lim
r→∞

supRe(s)≥0, |s|≥r|P̂na(s)| is zero [5,

Property A.6.2 pp. 636]. A matrix of transfer functions

P̂ is said to be proper (strictly proper) if its entries are
proper (stictly proper). Let P be a p×m causal plant,
and assume that P admits a r.c.f. (N,D), with N ∈
A p×m and D ∈ A m×m. Using the Bézout identity (4),
it is readily verified that P is proper if and only if D−1

is causal and proper. For D = Dpa + Dna, with Dpa =∑
i≥0Diδri , this in turn implies that D0 is invertible in

R
m×m.

A causal convolution system y = Pu is said to be BIBO
stable if P ∈ A p×m [34], in the sense that any bounded
input yields a bounded output. In control perspective,

let C be a controller with a l.c.f. (D̃c, Ñc) in A m×m ×
A m×p, interconnected with the plant P as represented
in Figure 1. The feedback system in Figure 1 satisfies
y =WP,Cu, where

WP,C =

[
Ipδ −NΛ−1Ñc −NΛ−1D̃c

DΛ−1Ñc DΛ−1D̃c

]
, (5)

with y =
[
yT1 yT2

]T
, u =

[
uT1 uT2

]T
and

Λ = ÑcN + D̃cD. (6)

The pair (P,C) is said to be stable, or C stabilizes P , if
WP,C ∈ A (p+m)×(p+m). It is well known that (P,C) is
stable if and only if Λ in (6) is a unit in A m×m, that is
Λ−1 exists and lies in A m×m [34,29].

✲© ✲

❄©✛

✻

✛ ✛ u2+
+e2

P

u1
+
−

e1 y1 ✲C

y2

Fig. 1. Interconnection (P,C) by output feedback.

As an illustration, an acoustic wave in a duct with
Dirichlet boundary conditions and a boundary constant
impedance writes [4, Section 3.3 pp. 1106]

P̂ (s) =
1 + η e−rs

1− η e−rs
(7)

where η is the reflection coefficient such that |η| < 1.
This proper and stable plant admits the coprime factor-
ization in A described by

N̂(s) = 1 + η e−rs, and D̂(s) = 1− η e−rs, (8)
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where D = δ − η δr is a unit in A . This coprime factor-
ization satisfies (4) with

X̂(s) = −Q̂(s)D̂(s) , Ŷ (s) = D̂(s)−1 + Q̂(s)N̂(s),

for any Q ∈ A . Another example issued from [1] and
the theory of transmission lines is

P̂ (s) =
e−

√
s

s− 1
(9)

with a simple pole at s = 1. A coprime factorization in

A is N̂(s) = e−
√

s

s+1 and D̂(s) = s−1
s+1 , which satisfies (4)

for

X̂(s) = − 4e

s+ 1
and Ŷ (s) =

(s+ 1)2 − 4ee−
√
s

(s+ 1)(s− 1)
,

where it is noted that Ŷ (s) ∈ Â has a removable singu-
larity at s = 1.

2.3 Graph topology and approximation

Graph topology gives a suitable framework for approx-
imation in feedback perspective and robustness issues.
We refer to [33,34,37] for details on this topology. For
a causal plant P with a r.c.f. (N,D), N ∈ A p×m, D ∈
A m×m, a neighbourhood of P in the graph topology
can be characterized by convergence of coprime factor-
izations [34, ch. 7 p. 238]. For this, we consider the fol-
lowing definition.

Definition 1 For a subalgebra S in A , we say that the
sequence {Pν}ν∈N, with Pν = NνD

−1
ν , Nν ∈ S p×m and

Dν ∈ S m×m, is an approximation of P = ND−1 (in
the graph topology) if for any ǫ > 0, there exists νǫ such
that Pνǫ ∈ B(P, ǫ), where

B(P, ǫ) = {Pν = NνD
−1
ν ,

∥∥∥∥∥

[
N −Nν

D −Dν

]∥∥∥∥∥
A

< ǫ}. (10)

It is noted that, for the r.c.f. (N,D) in A of P , its ap-
proximation (Nν , Dν) is a r.c.f. in S of Pν , for any suf-
ficiently small ǫ [34, p. 235]. Approximation by lumped
systems in graph topology was studied in [35], and comes
down to define the approximation subset S in Defini-
tion 1 as the set of BIBO-stable lumped systems in the
form

P (t) = P0δ(t) +
∑

i,j

Pijt
je−λit, t ≥ 0, (11)

where P0 and Pij are complex numbers, Re(λi) > 0 for
all i, and the sums are finite. A necessary and sufficient
condition for the existence of a lumped approximation
was established in the following result.

Theorem 2 [35] Let P be a plant with a r.c.f. (N,D),
N ∈ A p×m, D ∈ A m×m. Then P can be approximated
by a lumped plant in the graph topology if and only if there

exists a constant matrix M ∈ R
p×(m+p) of rank p such

that

M

[
Npa

Dpa

]
= 0.

For illustration, consider the plant P in (7) with the co-
prime factorization (8), where N = Npa = δ + η δr and
D = Dpa = δ − η δr. It is trivial to see that Theorem 2
is not fulfilled, or equivalently that P cannot be approx-
imated by a lumped plant in the graph topology.

A direct consequence of Theorem 2 is that any element in
L1(0,∞), which is strictly proper, can be approximated
in the graph topology by a lumped plant. See also [15].

3 Approximation by delay systems

The limits that appear in lumped approximation moti-
vate to consider a larger class of approximation, with the
introduction of a time-delay operator.

3.1 Class of Approximation

Take the class of approximation as systems governed by
continuous-time equations with time-delay in the form

χ(t) =
ς∑

i=1

Aiχ(t− ri) + Ew(t) +Bu(t) (12)

ẇ(t) =Hw(t) +Gχ(t) (13)

yν(t) =
ς∑

i=0

Ciχ(t− ri) + Lw(t) (14)

for t ≥ 0 and ordered delays 0 = r0 < r1 < . . . < rς .
The initial conditions are χ(t) = ϕχ(t) for t ∈ [−rς , 0)
(continuous and bounded) and w(0) = w0. The
equations (12)-(13) are (a particular case of) cou-
pled differential-difference equations in standard
form [11,12]. As a preliminary result which will be used
in the general approximation procedure, let us start
with the particular case of stable plants with only purely
atomic part, which can be approximated in the graph
topology by an input-delay system.

Lemma 3 Let P ∈ A p×m and assume that P = Ppa.
Then P can be approximated in the graph topology by a
coupled differential-difference system in the form (12)–
(14).

PROOF. From assumption P = Ppa, the input-output
plant y = Pu is described by P =

∑
i≥0 Piδri . Since
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{Pi}i∈N is convergent (see (2)-(3)), for any ǫ > 0, there
exists ς in N such that the truncation

∑ς
i=0 Piδri lies

in B(P, ǫ). Such an approximation admits a state-space
realization in the form (12)–(14), with χ = u, w = 0 and
Ci = Pi, for i = 0, . . . , ς . ✷

3.2 Approximation by coupled differential-difference
systems

From this preliminary result, let us consider the general
case.

Theorem 4 Let P be a causal and proper plant with a
r.c.f. (N,D), N ∈ A p×m, D ∈ A m×m. Then P can be
approximated in the graph topology by a model governed
by coupled differential-difference equations.

PROOF. Let y = Pu, and introduce the partial state
ξ(·) in R

m such that u = Dξ and y = Nξ. This proof
aims to construct a coprime factorization (Nν , Dν)
for the approximation such that Pν = NνD

−1
ν lies in

B(P, ǫ), for some fixed arbitrary ǫ > 0. For this, denote
D =

∑
i≥0Diδri + Dna. From Section 2.2, since P is

causal and proper, D0 is nonsingular, so that u = Dξ
can be put in the form

ξ̂(s) =−
∑

i≥1

D−1
0 Di e

−sri ξ̂(s)−D−1
0 D̂na(s)ξ̂(s)

+D−1
0 û(s). (15)

The term D−1
0 D̂na is strictly proper (and BIBO-stable),

and can therefore be approximated by a lumped sys-
tem in the graph topology [35]. It follows that there
exist κD ∈ N and real matrices (EκD

, HκD
, GκD

), re-
spectively in R

m×κD , RκD×κD and R
κD×m, such that

EκD
(sIκD

−HκD
)−1GκD

realizes a lumped approxima-

tion of D−1
0 D̂na in the graph topology. For the approxi-

mation of the purely atomic part
∑

i≥1D
−1
0 Diδri in (15),

we use Lemma 3 with the truncation of the first ςD terms,
for some ςD ∈ N. Hence, an approximation in the graph
topology of u = Dξ writes u = Dνχ, for χ(·) ∈ R

m, and
is realized by the state-space equations

χ(t) =−
ςD∑

i=1

D−1
0 Diχ(t− ri)− EκD

wD(t) +D−1
0 u(t)

ẇD(t) =HκD
wD(t) +GκD

χ(t).

For the relationship y = Nξ, we have N = Npa + Nna.
Similarly, Nna is approximated by a lumped system
realized by (LκN

, HκN
, GκN

), in respectively R
p×κN ,

R
κN×κN and R

κN×m, for some κN ∈ N. Npa is trun-
cated to its first ςN terms, with ςN ∈ N. The approxi-

mation of y = Nξ is therefore yν = Nνχ, governed by

ẇN (t) =HκN
wN (t) +GκN

χ(t)

yν(t) =

ςN∑

i=0

Niχ(t− ri) + LκN
wN (t).

Let wT =
[
wT

D wT
N

]
and ς = max(ςD, ςN ). Combining

the previous identities leads to the state-space equations
in the form (12)–(14), where Ai = −D−1

0 Di, Ci = Ni,

B = D−1
0 , E =

[
−EκD

0
]
, L =

[
0 LκN

]
and

H =

[
HκD

0

0 HκN

]
, G =

[
GκD

GκN

]
. (16)

By convention, the terms Ci and Ai are zero if they are
not defined. ✷

In the proposed approximation, the partial state χ(·) lies
inR

m, while w(·) ∈ R
κD+κN has a dependent dimension

with respect to the desired accuracy of the approxima-
tion for the non atomic parts. Purely atomic parts lead
to ς pointwise (a priori independent) delays in (12)-(14).
The accuracy of the approximation Pν is completely
characterized by the parameters (κN , ςN , κD, ςD), which
define the order of the approximation.

4 Discussion and numerical method

4.1 Stabilization and input-output performances

Let Pν be an approximation in the graph topology of
P , realized, as explained in Section 3.2, by a time-delay
system governed by the coupled differential-difference
equations (12)–(14). Following Section 2.2, assume that

C, which is causal and proper with a l.c.f. (D̃c, Ñc),
stabilizes Pν , with a r.c.f. (Nν , Dν). Such synthesis
may be obtained by advanced tools in delay systems,
see [20,28,16,9,6] and references therein. Denote

Λν = ÑcNν + D̃cDν (17)

the unit matrix in A m×m. For Λ defined in (6), we have

Λ = Λν

(
Imδ + Λ−1

ν

[
Ñc D̃c

] [N −Nν

D −Dν

])
. (18)

It follows that (P,C) is stable if and only if Λ is a unit
in A m×m. Hence, a sufficient condition for stabilization
is that

∥∥∥∥∥

[
N −Nν

D −Dν

]∥∥∥∥∥
A

<
1∥∥∥Λ−1

ν

[
Ñc D̃c

]∥∥∥
A

, (19)
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which always admits a solution for Pν ∈ B(P, ǫ) and
a sufficiently small ǫ > 0. In other words, if a coprime
factorization (N,D) exists in A , stabilization may be
achieved using an approximation (Nν , Dν) as in Theo-
rem 4 and a controller synthesized by time-delay tools.
Remark also that, for input-output performance, the re-
alized approximation leads to the input-output norm of
the closed-loop plants ‖WP,C −WPν ,C‖A

that can be
arbitrarily reduced as far as the approximation is closed,
where WP,C is defined in (5). The norm in A being an
upper bound for L2-induced norm, this shows in partic-
ular that gain and phase approximations in frequency
domain hold.

4.2 State-space realization

Few comments on the state-space realization (12)–(13)
are in order. For notations convenience, we only consider
the single delay case (ς = 1 and r = r1). While (12)–
(13) appear in the standard form of coupled differential-
difference equations (see [11] and references therein) for
analysis, it may be preferred the canonical formwhere all
terms in the right-hand side of (12) are delayed. For this,
the realization of coupled differential-difference equa-
tions (12)–(13) is equivalent to the realization

φ(t) =A1φ(t− r) +A1Ew(t− r) +A1Bu(t− r)

ẇ(t) = (H +GE)w(t) +Gφ(t) +GBu(t) (20)

using the combination of variables

φ(t) = χ(t)− Ew(t) −Bu(t),

for any t ≥ 0. This form is the so-called Roesser canoni-
cal form for 2-D systems [7,19]. It is well known that such
a realization using a finite bank of operators is equiv-
alent to neutral time-delay systems [19]. Note that the
initial conditions for (20) are φ(t) = ϕφ(t) for t ∈ [−r, 0),
w(t) = ϕw(t) for t ∈ [−r, 0], where ϕφ = ϕχ − Eϕw (by
convention u(t) = 0 for t ∈ [−r, 0)) and

ϕw(t) = eHtw0 +

∫ t

0

eH(t−τ)Gϕχ(τ) dτ . (21)

The differential equation (13) can also be transformed
into a difference equation with distributed delay. For
this, the constant variation formula applied to (13)
writes as

w(t) = eHrw(t− r) +

∫ t

t−r

eH(t−τ)Gχ(τ) dτ (22)

for t ≥ 0 and the initial condition ϕw(·) in (21). Combin-
ing (12) and (22) leads to the difference equation with
distributed delay

x(t) = Adx(t−r)+Bdu(t)+

∫ t

t−r

Gd(t− τ)x(τ)dτ (23)

for t ≥ 0, where xT =
[
χT wT

]
, BT

d =
[
BT 0

]
,

Ad =

[
A1 E eHr

0 eHr

]
, Gd(t) =

[
E eHtG 0

eHtG 0

]
.

In reformulating the coupled differential-difference
equations (12)–(13) in difference equations with dis-
tributed delay (23), additional dynamics appear. In-
deed, the characteristic polynomial associated to the
initial formulation (12)-(13) is (in the single delay case)

πc(λ) = det(λIm −H −G(Im −A1e
−λr)−1E), (24)

while for the difference formulation (23), the character-
istic equation writes

πd(λ) = πc(λ)πdd(λ), (25)

with

πdd(λ) = det((Im − e−(λIm−H)r)(λIm −H)−1). (26)

πdd(λ) is actually a strictly proper pseudo–polynomial in
λ [20], and more precisely it is an entire function and has
no pole. Additional zeros of πdd(λ) with respect to (24)
are obtained in (26), and lie in the set

λ ∈
{
σ(H) + i 2πkr , k = ±1,±2, . . .

}
, (27)

where λ ∈/ σ(H), σ(H) denoting the eigenvalues of H .
Additional dynamics are, in the complex plane, along
vertical chains with real parts located at Re(σ(H)). It
follows that, since H is Hurwitz (see (16) and (31)), sta-
bility of the realizations (12)-(13) and (23) are equiva-
lent.

4.3 Numerical approximation

The numerical computation of the time-delay system
that approximates P in the graph topology requires,
from a coprime factorization (N,D), to truncate the
atomic parts (Npa, Dpa), and to realize a L1(0,∞) ap-
proximation of the non atomic parts (Nna, Dna). This
last part may be realized by any convergent method in
L1(0,∞), as for instance in [10,13]. For direct computa-
tions in the Laplace domain, Laguerre polynomials are
applied. See [31] and [21] for Laguerre approximation
techniques of distributed parameter systems. Let us de-
note the Laguerre polynomials

pκ(t) =
et

κ!

dκ

dtκ
(e−ttκ) =

κ∑

k=0

(
κ

k

)
(−t)k
k!

, κ ∈ N.

The elements gκ(t) = pκ(t)e
−t/2, for κ ≥ 0, form an

orthonormal basis of L2(0,∞), and any function P ∈
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L2(0,∞) can be expanded as P (t) =
∑∞

κ=0 cκ(P )gκ(t),

where cκ(P ) = 〈P, gκ〉 =
∫∞
0 P (t)gκ(t) dt are the La-

guerre coefficients of P relative to gκ [31]. Assume that
there exists α0 > 0 such that eα0tP (t) ∈ L2(0,∞). For
any α ∈ (0, α0), it has been shown in [17] that the func-
tion

Pν,α(t) =

ν∑

κ=0

cκ,α(P )gκ(t)e
−αt, (28)

with cκ,α(P ) = 〈eαtP (t), gκ(t)〉, lies in L1(0,∞) ∩
L2(0,∞), and converges to P in L1(0,∞), that is

lim
ν→∞

‖P − Pν,α‖L1
= 0. (29)

The computation of the coefficients cκ,α(P ) is made di-
rectly in the Laplace domain, by the formula

cκ,α(P ) =
κ∑

k=0

(
κ

k

)
1

k!
P̂ (k)(12 − α), (30)

where P̂ (k) stands for the kth derivative of P̂ , and the
approximation (28) leads to (see [31, p. 379])

P̂ν,α(s) =

ν∑

κ=0

cκ,α(P )
(s+ α− 1

2 )
κ

(s+ α+ 1
2 )

κ+1
. (31)

Particularizing this method for Nna and D−1
0 Dna and

using a state-space realization for (31) leads to a con-
structive approximation of the quadruple (H,E,L,G)
in (16) and (12)-(14) for the non atomic parts, whileNpa

and D−1
0 Dpa are truncated, as proposed in Lemma 3.

5 Illustrations

5.1 Coupled heat-transport equation

Consider the coupled partial differential equations with
boundary conditions

ξt(z, t) = ϑ2ξzz(z, t) , z ∈ (0, ℓ), t ≥ 0, (32)

ξ(0, t) = 0, ξ(ℓ, t) = u(t)− y(t), (33)

for ϑ > 0, zero initial conditions and the transport equa-
tion

wt(z, t) + wz(z, t) = 0 , z ∈ (0, ℓ), t ≥ 0, (34)

with the boundary condition w(0, t) = 1
2y(t). The out-

put signal is defined by y(t) = ξ(z0, t) + w(z0, t), for
a fixed z0 ∈ (0, ℓ). The input-output transfer function

for (32)-(34) is ŷ(s) = P̂ (s)û(s), where

P̂ (s) =

sinh(
z0

√

s

ϑ
)

sinh( ℓ
√

s

ϑ
)

1− 1
2e

−z0s +
sinh(

z0
√

s

ϑ
)

sinh( ℓ
√

s

ϑ
)

. (35)
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Fig. 2. Approximation error |P̂ (jω)− P̂1(jω)| frequency di-
agram in (35)-(37) for the coupled heat-transport system.

Define N̂(s) =
sinh(

z0
√

s

ϑ
)

sinh( ℓ
√

s

ϑ
)
, D̂(s) = 1 − 1

2e
−z0s + N̂(s).

The poles of N̂(s) are −(kπϑℓ )2, for k = 1, 2, . . .. This
implies that N(·) ∈ A and is strictly proper [4], and
also that D(·) ∈ A . Furthermore, (N,D) is a coprime

factorization of P̂ (s), since X̂(s)N̂(s) + Ŷ (s)D̂(s) = 1,

with X̂(s) = −Ŷ (s) = − 1
1− 1

2 e
−z0s

elements in Â . The

Laguerre approximation in L1(0,∞) is realized for N =
Nna and Dna = N , since assumptions before (28) hold

and α0 can be taken in (0, π
2ϑ2

ℓ2 ). Simulations are ob-
tained in Figures 2-3, for ℓ = 1, z0 = ℓ/2, ϑ = 1 and

α = π2ϑ2

ℓ2 − 1
2 . The approximation of N̂(s) with ν = 1

in (28), and then of D̂na(s), is realized by N̂1(s) =
E(sI2 −H)−1G, where

H =

[
−19.74 −97.41

1 0

]
, G =

[
1

0

]
, E =

[
5.97 59.1

]
.

The state-space realization of P̂1(s) is

χ(t) =
1

2
χ(t− z0)− Ew(t) +Bu(t) (36)

ẇ(t) =Hw(t) +Gχ(t) (37)

with B = 0.912 and the output of the approximation
plant satisfies y1(t) = Ew(t). The frequency diagram of

the error |P̂ (jω)− P̂1(jω)| between the exact plant (35)

and P̂1(s) is reported in Figure 2. This gives an illus-
tration of the approximated magnitude in the frequency
domain (see below (19) in Section 4.1), related to the
convergence of coprime factors in the A -norm, where
P1 ∈ B(P, 0.05). While the approximation is of first or-
der ν = 1 (corresponding to the Laguerre polynomial
degree), its realization is obtained by a coupled scalar
one-delay difference equation with a second order (ν+1)

differential equation only. Using [35, Th. 4.1], P̂ (s) can
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actually be approximated in the graph topology by a
lumped system. However, lumped approximation may
involve large-scale realization for a similar level of per-
formance. This can be seen in Figure 3 where the unit
step response for (36)-(37) reproduces with fidelity the
transport-heat phenomenon considered in (32)-(34).

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t (s)

y
1
(t
)

Fig. 3. Unit step response y1(t) of P̂1(s) in (36)-(37) for the
coupled heat-transport system.

5.2 Damped wave equation

As a second illustration, consider the dampedwave equa-
tion

ξzz(z, t) =
1

c2
ξtt(z, t) + γξt(z, t) + µξ(z, t), (38)

for z ∈ (0, ℓ), t ≥ 0, with positive reals c, γ and µ, the
boundary conditions

ξ(0, t) = 0 , ξ(ℓ, t) = u(t), (39)

and zero initial condition. Let

̟(s) = s2 + c2γs+ c2µ = (s+ c2γ
2 )2 + η, (40)

with η = c2µ− c4γ2

4 . From (38)-(39), the transfer func-

tion ξ̂(z, s) = P̂ (s)û(s) is, for any z ∈ (0, ℓ),

P̂ (s) =
sinh( zc

√
̟(s))

sinh( ℓc
√
̟(s))

. (41)

The poles of P̂ (s) are, for k = 1, 2, . . . ,

sk =





− c2γ
2 ± i

√
η + (kπcℓ )

2
,− ηℓ2

π2c2 ≤ k2

− c2γ
2 ±

√
−η − (kπcℓ )

2
, k2 ≤ − ηℓ2

π2c2

, (42)

and satisfy Re(sk) ≤ max(−µ
γ ,−

c2γ
2 ). With the Bessel

function

J1(t) =
1

π

∫ π

0

cos(τ − t sin τ) dτ , (43)

we remark that the following decomposition holds [36,
p. 164]

e−
β(z)
c

√
̟(s) = e−

cγβ(z)
2 e−

β(z)
c

s − ψ̂β(z)(s), (44)

where β(z) = ℓ+ z, ̺(t, β(z)) =

√
t2 −

(
β(z)
c

)2
,

ψβ(z)(t) =

β(z)
√
η

c e−
c2γ

2 t

̺(t, β(z))
J1 (

√
η̺(t, β(z))) h(t− β(z)

c )

and h(·) stands for the Heaviside function. The function
ψβ(z)(·) lies in L1(0,∞), so that, using (42), a coprime

factorization in Â for P̂ (s) in (41) is

N̂(s) = e−
ℓ−z
c

√
̟(s) − e−

ℓ+z
c

√
̟(s), (45)

D̂(s) = 1− e−
2ℓ
c

√
̟(s), (46)

or equivalently

N(t) = e−
γcβ(−z)

2 δ(t− β(−z)
c )− e−

γcβ(z)
2 δ(t− β(z)

c )

+ψβ(z)(t)− ψβ(−z)(t),

D(t) = δ(t)− e−
γcβ(ℓ)

2 δ(t− β(ℓ)
c ) + ψβ(ℓ)(t).

The non atomic parts of (45)-(46)

Nna(t) = ψβ(z)(t)− ψβ(−z)(t) (47)

Dna(t) = ψβ(ℓ)(t) (48)

are approximated in L1(0,∞) by lumped plants, as pro-
posed in Section 4.3, while purely atomic parts

Npa(t) = e−
γcβ(−z)

2 δ(t− β(−z)
c )− e−

γcβ(z)
2 δ(t− β(z)

c )

Dpa(t) = δ(t)− e−
γcβ(ℓ)

2 δ(t− β(ℓ)
c )

are conserved in the approximation. Simulations are car-
ried out for c = 1, γ = 1, µ = 0.5, ℓ = 1 and z =
0.3, and the approximation technique proposed in Sec-

tion 4.3 applies with α = c2γ
2 . Two approximationsPν(t)

of order ν = 1 and ν = 8 are reported in Figure 4,
where the frequency diagram of the approximation er-

ror |P̂ (jω)−P̂ν(jω)| is reported. Approximations satisfy
P1 ∈ B(P, 0.14) and P8 ∈ B(P, 0.07). In the first order
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Fig. 4. Approximation error |P̂ (jω)−P̂ν(jω)| diagram in (41)
and (47)-(48), with ν = 1 (cont. line, blue) and ν = 8 (dot
line, red), for the wave equation (38)-(39).

case ν = 1, the approximation P1 is realized by

χ(t) = e−
γcβ(ℓ)

2 χ(t− β(ℓ)
c )− Ew(t) + u(t)

ẇ(t) =Hw(t) +Gχ(t)

y1(t) = e−
γcβ(−z)

2 χ(t− β(−z)
c )− e−

γcβ(z)
2 χ(t− β(z)

c )

+Lw(t),

where L =
[
−0.06 0.03

]
, E =

[
−0.14 0.12

]
and

H =

[
−2 −1

1 0

]
, G =

[
1

0

]
.

Again, it is remarkable to verify that the first order ap-
proximation (corresponding to a second order differen-
tial equation coupled with a difference equation with one
delay) can approximate the exact plant for all frequen-
cies, which guarantees its pertinence in control perspec-
tives.

6 Conclusion

In this paper, we define an approximation in the graph
topology using norm convergence of a coprime factor-
ization in the Wiener algebra. Such an approximation
is governed by coupled continuous-time differential-
difference equations. A constructive state-space realiza-
tion is established, and a numerical method based on
Laguerre polynomials is proposed and illustrated. Prop-
erties of this approximation appear to be of practical
interest for control and simulation. While the content
of this paper is not related to advances in quantitative
aspects in topology, its interest is mainly in the exis-
tence result of the time-delay approximation and its
perspective seen as a trade-off for analysis and synthesis

between distributed parameter systems and time-delay
systems.
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