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Based on recent work, by the first and third authors, on the distribution of the squarefree kernel of an integer, we present precise refinements of the famous abc conjecture. These rest on the sole heuristic assumption that, whenever a and b are coprime, then the kernels of a, b and c = a + b are statistically independent.

Introduction

For any non-zero integer n let k(n) denote the greatest squarefree factor of n, so that

k(n) = Y p|n p.
k(n) is also called the core, the squarefree kernel and the radical of n. The abc conjecture, proposed by Oesterlé and Masser [START_REF] Masser | Open problems[END_REF], is the conjecture that for each " > 0 there exists a positive number A 0 (") such that for any pair (a, b) of distinct coprime positive integers

(1•1) c < A 0 (")k 1+" ,
where

(1•2) c = a + b and k = k(abc).
The conjecture has a number of profound consequences [START_REF] Bombieri | Heights in Diophantine geometry[END_REF], [START_REF] Granville | It's as easy as abc[END_REF], [START_REF] Nitaj | [END_REF], in particular in the study of Diophantine equations.

An explicit upper bound for c in terms of k was first established by Stewart and Tijdeman [START_REF] Stewart | On the Oesterlé-Masser conjecture[END_REF] in 1986. Subsequently Stewart and Yu [START_REF] Stewart | On the abc conjecture, II[END_REF] proved that there is an e↵ectively computable positive number A 1 such that for all pairs (a, b) of coprime positive integers c < exp � A 1 k 1/3 (log k) 3 .

Several refinements or modifications to the abc conjecture have been put forward [START_REF] Baker | Logarithmic forms and the abc-conjecture[END_REF], [START_REF] Baker | Experiments on the abc-conjecture[END_REF], [START_REF] Pomerance | Computational number theory[END_REF], [START_REF] Van Frankenhuijsen | Hyperbolic spaces and the abc conjecture[END_REF], [START_REF] Van Frankenhuijsen | A lower bound in the abc conjecture[END_REF], [START_REF] Van Frankenhuijsen | About the ABC conjecture and an alternative, Number theory, analysis and geometry[END_REF]. For instance, van Frankenhuijsen, see (1.4) and (1.5) of [START_REF] Van Frankenhuijsen | A lower bound in the abc conjecture[END_REF], proposed that there exist positive numbers A 2 and A 3 so that (1•1) may be replaced by

(1•3) c < k exp � A 2 p log k/ log 2 k �
and that there exist infinitely many pairs (a, b) of distinct coprime positive integers for which

(1•4) c > k exp � A 3 p log k/ log 2 k � .
Here and in the sequel, we let log j denote for j > 2 the jth iterate of the function x 7 ! max(1, log x) (x > 0). The purpose of this article is to provide a refinement which is more precise than those proposed previously. It is based on the recent work of Robert and Tenenbaum [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF] on the function N (x, y) which counts the number of positive integers n up to x whose greatest squarefree divisor is at most y. We shall base our conjecture on the heuristic assumption that whenever a and b are coprime positive integers k(a + b) is statistically independent of k(a) and k(b). This is the only assumption that we require.

Conjecture A. There exists a real number C 1 such that, if a and b are coprime positive integers, then, with c and k as in

(1•2), (1•5) c < k exp 4 s 3 log k log 2 k ✓ 1 + log 3 k 2 log 2 k + C 1 log 2 k ◆ ! .
Furthermore, there exists a real number C 2 and infinitely many pairs of coprime positive integers a and b for which

(1•6) c > k exp 4 s 3 log k log 2 k ✓ 1 + log 3 k 2 log 2 k + C 2 log 2 k ◆ ! .
We remark that it follows from Conjecture A that for each " > 0, we can select A 2 = 4 p 3 + " in (1•3) for large k, and A 3 = 4 p 3 -" in (1•4). There have been several computational studies undertaken in order to test the plausibility of the abc conjecture. The most extensive is Reken mee met ABC [12], [START_REF] Geuze | Reken mee met ABC[END_REF] based at the Universiteit Leiden. It is a distributed computing program involving many individuals. Associated with each triple (a, b, c) of coprime positive integers with a + b = c are two quantities, the quality q defined by q = (log c)/ log k and the merit m defined by m = (q -1) 2 (log k) log 2 k.

B. de Smit maintains a website [14] to keep track of exceptional triples, measured by the sizes of their quality and merit, which have been found by virtue of the above project.The largest known quality of a triple is ⇡ 1.63 and the five triples known with quality larger than 1.55 have c at most 10 16 . It follows from Conjecture A that the limit supremum of m as we range over all pairs (a, b) of distinct coprime positive integers is 48. To date nineteen triples have been found with merit larger than 30, each with c at least 10 20 , and eighty-three with merit larger than 25. The triple with largest known merit was found by Ralf Bonse. It is

a = 2543 4 • 182587 • 2802983 • 85813163, b = 2 15 • 3 77 • 11 • 173, c = 5 56 • 245983,
and has merit ⇡ 38.67.

In [START_REF] Stewart | On the Oesterlé-Masser conjecture[END_REF] Stewart and Tijdeman proved that for each positive real number " there exist infinitely many pairs (a, b) of coprime positive integers for which

(1•7) c > k exp � (4 -") p log k/ log 2 k .
Subsequently, van Frankenhuijsen [START_REF] Van Frankenhuijsen | A lower bound in the abc conjecture[END_REF] improved 4 -" in (1•7) to 6.068.

Further refinements of Conjecture A

Conjecture A is based on our heuristic assumption, recall §1, and a careful analysis of the behaviour of the function N (x, y) which counts the number of positive integers n up to x for which k(n) is at most y. Thus

(2•1) N (x, y) := X n6x k(n)6y 1. Set (2•2) (m) := Y p|m (p + 1) (m > 1), F (t) := 6 ⇡ 2 X m>1 min(1, e t /m) (m) (t > 0).
As stated below (see Proposition 3.1), we have N (x, y) ⇠ yF (v) with v := log(x/y) in a wide range for the pair (x, y). It was announced in Squalli's doctoral dissertation [START_REF] Squalli | Sur la répartition du noyau d'un entier[END_REF] and proved in [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF] that there exists a sequence of polynomials {Q j } 1 j=1 with deg Q j 6 j, such that, for any integer N > 1,

(2•3) F (t) = exp ⇢r 8t log t ✓ 1 + X 16j6N Q j (log 2 t) (log t) j + O N ✓ ⇣ log 2 t log t ⌘ N +1 ◆◆� (t > 3).
In particular,

Q 1 (X) := 1 2 X -1 2 log 2 + 1, Q 2 (X) := 3 8 X 2 + (1 -3 4 log 2)X + 2 + 2 3 ⇡ 2 + 3 8 (log 2) 2 -log 2.
The following version of the conjecture, which is expressed in terms of the function F , is slightly more precise than Conjecture A. Indeed, it corresponds to the extra information that, for large k, we have

(2•4) max(C 1 , C 2 ) < λ := 1 -1 2 log( 4 

).

Conjecture B. There exist positive numbers B 0 and B 1 such that if a and b are coprime positive integers, then, with c and k as in

(1•2), (2•5) c < B 0 kF � 2 3 log k � 3-B 1 / log 2 k .
Furthermore, there exists a positive number B 2 and infinitely many pairs (a, b) of distinct coprime positive integers with

(2•6) c > kF � 2 3 log k � 3-B 2 / log 2 k .
To see that the two conjectures are equivalent provided one assumes (2•4), it suffices to appeal to (2•3) taking the form of Q 1 into account. Condition (2•4) corresponds to the condition that B 1 and B 2 are positive.

As will be seen in the final section, Conjecture B is itself a consequence of a further refined conjecture, involving the implicit function H(k) defined in (4•6) below in terms of solutions of certain transcendental equations. Using techniques developed in [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF], it may be shown that, for any fixed integer J, we have

(2•7) log H(k) = - s log k log 2 k ( X 16j6J R j (log 3 k) (log 2 k) j + O ✓ log 3 k log 2 k ◆ J+1 !) (k ! 1)
where R j is a polynomial of degree at most j. In particular, R 1 (X) = 8(log 2)/ p 3 is a positive constant.

Conjecture C. Let " > 0. There exists a positive number B 3 = B 3 (") such that, if a and b are coprime positive integers, then, with c and k as in (1•2), we have

(2•8) c 6 B 3 kF ( 2 3 log k) 3 H(k)(log k) 11/2+" .
Furthermore, infinitely many such pairs (a, b) satisfy

(2•9) c > kF ( 2 3 log k) 3 H(k)/(log k) 3/2+"
Remarks. (i) We did not try to optimize the exponents of the log-factors in (2•8) and (2•9).

(ii) It follows from Conjecture C and the value of R 1 given above that, given any " > 0, we may select B 1 = log 4 -", B 2 = log 4 + " in Conjecture B, and

C 1 = β + ", C 2 = β -",
where β := 1 + log 3 - 13 6 log 2, in Conjecture A. Furnishing an estimate for c = a + b which is sharp up to a power of log k, this last formulation has a nice probabilistic interpretation which brings some further insight into the problem: the F -factor takes care of the statistical distribution of the squarefree kernel, and the H-factor corresponds to the condition that a and b should be coprime. Indeed, integers with a small core have a strong tendency to be divisible by many small primes; hence the probability that two such integers should be coprime is very small. Thus the factor H(k) above may be seen as playing the same rôle, for pairs (a, b) with maximal k = k(abc), as the well-known probability 6/⇡ 2 for unconstrained random integers.

Estimates for N (x, y)

Let (3•1) f (σ) := X n>1 1 (n)n σ = Y p ⇣ 1 + 1 (p + 1)(p σ -1) ⌘ (σ > 0),
and put g(σ) = log f (σ).

For v > 6, we let σ v denote the solution of the transcendental equation

(3•2) -g 0 (σ) = X p p σ log p (p σ -1){1 + (p + 1)(p σ -1)} = v
and make the convention that σ v = 1 2 when 0 6 v < 6. Thus, for v > 6, σ = σ v renders the quantity e σv f (σ) minimal. The function σ v has been extensively studied in [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF]. For any given integer K > 1, we have

(3•3) σ v = r 2 v log v ⇢ 1 + X 16k6K P k (log 2 v) (log v) k + O K ✓ (log 2 v) K+1 (log v) K+1 ◆� (v > 3),
where P k is a suitable polynomial of degree at most k. In particular,

(3•4) P 1 (z) = 1 2 (z -log 2), P 2 (z) = 3 8 z 2 -( 3 4 log 2 + 1 2 )z + 1 2 log 2 + 3 8 (log 2) 2 + 2 3 ⇡ 2 .
Here and in the sequel, we put

v = log(x/y), Y x := e 1 4 p 2 log x(log 2 x) 3/2 , E t (x, y) := p vσ v log y y σ v /t + 1 x 1/16 (t > 0).
We recall from [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF] that Y x is an approximation to the threshold of the phase transition of the asymptotic behaviour of N (x, y): given any " > 0, we have

N (x, y) ⇠ yF (v) for y > Y 1+" x and N (x, y) = o � yF (v) � whenever y 6 Y 1-"
x . The following statement, which is a consequence of theorem 3.3 and proposition 10.1 of [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF], provides the e↵ective version we shall need.

We recall Vinogradov's notations f ⌧ g and f � g, meaning, respectively, that |f | 6 C|g| and |f | > C 0 |g| for suitable positive constants C, C 0 . The symbol f ⇣ g then means that f ⌧ g and f � g hold simultaneously. Proposition 3.1. Let " > 0. We have

N (x, y) = yF (v) � 1 + O � E 1 (x, y) � � x ! 1, Y 1+" x 6 y 6 x � (3•5) N (x, y) ⌧ yF (v) (x > y > 2). (3•6)
We also make use of the following result concerning the size and variation of F . Here again, we state more than necessary for our present purpose, but less than proved in [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF] (Theorem 8.6, Propositions 8.8 and 8.9). Proposition 3.2. We have

F (v) ⇣ ⇣ log v v ⌘ 1/4 e vσ v f (σ v ) = e 2vσ v +O(vσ v / log v) (v > 2), (3•7) F (v + h) ⌧ F (v)e σ v h (v > 0, v + h > 0), (3•8) F (v + h) -F (v) = ( 1 + O log v + |h| p v log v !) hσ v F (v) � v > 2, h ⌧ p v log v � . (3•9)
Finally, we state the following result, where, for a > 1, we employ the notation

N a (x, y) := X n6x (n,a)=1 k(n)6y 1, F a (v) := 6 ⇡ 2 X (m,a)=1 min(1, e v /m) (m) , r(a) := Y p|a ⇣ 1 + 2 p p ⌘ ,
and let ' denote Euler's totient.

Proposition 3.3. We have

F a (v + h) -F a (v) � X m>e v+h (m,a)=1 e v m (m) (a > 1, v > 2, h ⇣ 1), (3•10) N a (x, y) = yk(a)F a (v) (a) n 1 + O ⇣ r(a)E 2 (x, y) ⌘o (Y 2 x 6 y 6 x, a 6 x). (3•11)
Proof. The bound (3•10) immediately follows from the definition of F a (v) by restricting the sum to m > e v+h .

Estimate (3•11) may be proved along the lines of proposition 10.1 in [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF], which corresponds to a = 1. We avoid repeating the details here since they are identical to those of [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF], simply carrying the condition (m, a) = 1 throughout the computations and appealing to the saddle-point estimate for F a (v).

u t To state our next lemma, we introduce some further notation. Let us define

(3•12) H(s, z) := Y p ⇣ 1 + 1 (p + 1)(p s -1) + 1 (p + 1)(p z -1)

⌘

(<e s > 0, <e z > 0).

For v > 0, we denote by # v > 0 the unique solution to the equation

(3•13) X p p σ log p (p σ -1){2 + (p + 1)(p σ -1)} = v, so that (s, z) = (# v , # v
) is a real saddle-point for (s, z) 7 ! e (s+z)v H(s, z). Moreover, it can be checked that

(3•14) # v = σ v {1 + O(1/ log v)} (v > 2).
Finally, we set

(3•15) h(σ) := log H(σ, σ) (σ > 0)
and note that

(3•16) H(σ, σ) = e h(σ) = f (σ) 2 Y p ✓ 1 - 1 {1 + (p σ -1)(p + 1)} 2 ◆ (σ > 0). Proposition 3.4. Let  2 (0, 1 
2 ), µ > 0. For x  6 y 6 x 1- , and suitable B = B(), we have

(3•17) X x<a6e µ x a/e µ <b<a, (a,b)=1 k(a)6y, k(b)6y 1 � y 2 e 2v# v +h(# v ) v 3/2 (log v) 5/2 � y 2 F (v) 2-B/ log v .
Proof. Let D(x, y) denote the double sum to be estimated. By (3•11) and (3•10), we have

D(x, y) > D 1 -R 1 with D 1 � e v y X x<a6e µ x k(a)6y k(a) (a) X m>e v+µ (m,a)=1 1 m (m) � ye v log v X x<a6e µ x k(a)6y X m>e v+µ (m,a)=1 1 m (m) , R 1 ⌧ y 2 F (v) 2- 1 ,
for some positive constant  1 depending only on . Next, we invert summations in our lower bound for D 1 and appeal to (3•11) and (3•10) again. We get

D 1 > D 2 -R 2 with D 2 � y 2 e 2v log v S, S := X m,n>e v+µ (m,n)=1 k(m) mn (m) 2 (n) , R 2 ⌧ y 2 F (v) 2- 1 .
It remains to bound S from below. To this end, we restrict the sum to pairs (m, n) in (e v+µ , e v+2µ ] 2 to get e 2v S � T / log v with

T := X e v+µ <m,n6e v+2µ (m,n)=1 1 (m) (n) = 1 (2⇡i) 2 Z (σ v +iR) 2
H(s, z)e (v+µ)(s+z) (e µs -1)(e µz -1) sz ds dz where H(s, z) is defined by (3•12). We estimate the last integral by two-dimensional saddle-point method. Since similar calculations have been extensively described in [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF], we only sketch the proof.

Writing s = # v + i⌧ , z = # v + it, we deduce from lemma 5.13 and formula (7.7) of [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF] that, for a suitable absolute constant ⌘, we have

|H(s, z)| 6 e -⌘(log v) 2 H(# v , # v ) provided (log v) 5/4 /v 3/4 ⌧ max(|⌧ |, |t|) 6 exp{(log v) 38/37 }.
Truncating the larger values by standard e↵ective Perron formula (see, for instance, [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF], theorem II.2.3), we may evaluate the double integral on the remaining small domain by saddle-point analysis, taking advantage of the fact that

(3•18) h(s, z) := X p log ⇣ 1 + 1 (p + 1)(p s -1) + 1 (p + 1)(p z -1) ⌘ ,
where the complex logarithms are understood in principal branch, defines a holomorphic continuation of h(s, z) in a poly-disc of centre (# v , # v ) and radii1 2 # v . (1) We thus arrive at

T ⇠ µ 2 e 2v# v H(# v , # v ) 2⇡j(# v ) (v ! 1), with j(σ) := X p p σ (log p) 2 {(p + 1)(p 2σ -1) + p σ + 2} (p σ -1) 2 {2 + (p σ -1)(p + 1)} 2 ⇣ 1 σ 3 log(1/σ) (σ ! 0+).
This plainly yields the first lower bound in (3•17).

To prove the second lower bound, we appeal to (3•16), note that the estimate

(3•14) implies 2v# v + h(# v ) = 2vσ v + h(σ v ) + O � vσ v / log v �
, and insert the lower bound

Y p ✓ 1 - 1 {1 + (p σ v -1)(p + 1)} 2 ◆ � F (v) -c 0 / log v ,
for a suitable absolute constant c 0 > 0. u t

Justification for Conjectures B and C

We shall establish Conjectures B and C under the heuristic assumption that, whenever a and b are coprime integers, the kernel k(a + b) is distributed as if a + b was a typical integer of the same size. Albeit conjecture B formally follows from Conjecture C and (2•7), we shall provide a direct, simple proof. Notice that if (a, b) = 1 and a

+ b = c, then k(abc) = k(a)k(b)k(c).
We start with the upper bounds. Under the above assumption, we may write

P(x, z) := X x<a62x b<a, (a,b)=1 k(abc)6z 1 6 X x<a62x b<a, (a,b)=1 1 x n N ⇣ 4x, z k(a)k(b) ⌘ -N ⇣ x, z k(a)k(b) ⌘o .
To prove (2•5), it suffices to show that, for z = Z x := x/F ( 2 3 log x) 3-B 4 / log 2 x and suitable B 4 > 0,we have (4•1)

X r>1 P(2 r , Z 2 r ) < 1.
Indeed, this plainly implies that the conditions k(abc) 6 z for some pair (a, b) with x < a 6 2x, b < a, are realized only for a bounded number of integers x. This argument is similar to that of the Borel-Cantelli lemma.

Applying (3•6) and (3•8) taking (2•3) and (3•3) into account, we obtain

P(x, z) ⌧ z x X x<a62x b<a, (a,b)=1 F � log(xk(a)k(b)/z) � k(a)k(b) ⌧ zF (v) x X x<a62x b<a, (a,b)=1 x -2σ v /3 k(a) 1-σ v k(b) 1-σ v
with v := 2 3 log x. By Rankin's method, we thus infer, writing P (n) for the largest prime factor of an integer n with the convention that P (1) = 1,

P(x, z) ⌧ zF (v) x X P (a)6x x 2σ v /3 a σ v k(a) 1-σ v X P (b)6x (b,a)=1 x 2σ v /3 b σ v k(b) 1-σ v ⌧ zF (v)e 2vσ v x X P (a)6x 1 a σ v k(a) 1-σ v Y p6x p -a ⇣ 1 + 1 p(1 -p -σ v ) ⌘ .
Since a standard computation yields, taking (3•7) into account,

e vσ v Y p6x ⇣ 1 + 1 p(1 -p -σ v ) ⌘ ⌧ F (v)v 5/4 (log v) 1/4 ,
we get

P(x, z) ⌧ zF (v) 2 e vσ v v 5/4 x(log v) 1/4 X P (a)6x 1 a σ v k(a) 1-σ v Y p|a ✓ 1 - 1 1 + p(1 -p -σ v ) ◆ ⌧ zF (v) 2 e vσ v v 5/4 x(log v) 1/4 Y p6x ✓ 1 + 1 p(1 -p -σ v ) ◆✓ 1 - 1 {1 + p(1 -p -σ v )} 2 ◆ ⌧ zF (v) 3-K 0 / log v x ,
where K 0 is a suitable positive constant. This establishes the upper bound for c in Conjecture B.

We now embark on proving (2•8) and first define the quantity H(k), noticing that we shall now select in (4•1)

z = Z x := x F ( 2 3 log x) 3 H(x)(log x) 11/2+" • Given x > 2, we let u = u x be the solution to the equation (4•2) σ u = # w (w := log x -1 2 u). It is easy to see that u = 2 3 log x + O ⇣ log x log 2 x ⌘ , w = 2 3 log x + O ⇣ log x log 2 x
⌘ and a further computation actually yields u -2 3 log x ⇠ 8(log 2)(log x)/9 log 2 x. Recalling notation (3•15) and introducing g(σ) := log f (σ) (σ > 0), we then put

(4•3) H 1 (k) := e 2σ u (w-u) Y p ✓ 1 - 1 {1 + (p # w -1)(p + 1)} 2 ◆ = e 2σ u (w-u)+h(σ u )-2g(σ u ) , with u := u k , w := log k -1 2 u k .
We shall set out to prove

(4•4) c 6 B 3 kF (u k ) 3 H 1 (k)(log k) 11/2+" ,
and

(4•5) c > kF (u k ) 3 H 1 (k)/(log k) 3/2+"
instead of (2•8) and (2•9) respectively. However, it can be shown that F (u k )/F ( 2 3 log k) satisfies a relation of type (2•7) with a di↵erent sequence of polynomials R j . From this observation, the required result will follow with

(4•6) H(k) := F (u k ) 3 H 1 (k)/F ( 2 3 log k) 3 .
Applying (2•3), (3•3), (3•6) and (3•8) again, we get

P(x, z) ⌧ z x X x<a62x b<a, (a,b)=1 k(ab)6x F � log{xk(ab)/z} � k(a)k(b) ⌧ z x X m+n6log x F (m + n) + F ( 1 3 log x) e m+n S(m, n), with S(m, n) := X a62x, b62x (a,b)=1 e m-1 <k(a)6e m+1 , e n-1 <k(b)6e n+1 1 (m > 1, n > 1).
Now, for all m, n and any # 2]0, 1[, we may write

S(m, n) 6 X a62x, b62x (a,b)=1 ⇣ 2x a ⌘ # ⇣ 2x b ⌘ # ⇣ e m+1 k(a) ⌘ 1-# ⇣ e n+1 k(b) ⌘ 1-# ⌧ x 2# e (1-#)(m+n) Y p62x ⇣ 1 + 2 p 1-# (p # -1) ⌘ ⌧ x 2# e (1-#)(m+n) H(#, #)(log x) 2 .
Writing s := m + n, t := log x - 1 2 s, we infer that

F (m + n)S(m, n) e m+n ⌧ ⇣ log s s ⌘ 1/4 e sσ s +g(σ s )+2t# t +h(# t ) (log x) 2 .
By (4•2) and the definition of # v , the argument of the exponential is maximal when s = u := u x , t = w := log x -1 2 u x . For this choice, the last upper bound is equally valid when F (m + n) is replaced by F ( 1 3 log x) ⌧ F (u)x -σ u /4 . Selecting the above values for s, t and carrying back our estimates in the upper bound for P(x, z), we thus obtain that

(4•7) P(x, z) ⌧ zF (u)e 2w# w +h(# w ) u 4 x ⇣ zF (u) 3 H 1 (x)u 9/2 x p log u •
The bound (4•7) is sufficient to ensure the convergence of the series (4•1) provided " > 0. This completes our argument in favour of the upper bound in conjecture C.

In order to justify the lower bounds, we show that, still under the assumption that k(c) behaves independently of k(a) and k(b), we have P(x, z) ! 1 for an appropriate value z = z x .

Let us start with Conjecture B. According to the above hypothesis, we may write, for x 2/3+" < z 6 x � ze 2w# w +h(# w )+uσ u +g(σ u ) xu 9/4 (log u) 11/4 ⇣ ze 3uσ u +3g(σ u )+2(w-u)σ u +h(σ u )-2g(σ u ) xu 9/4 (log u) 11/4 ⇣ zF (u) 3 

P(x, z) > X x<a62x a/2<b<a, (a,b)=1 k(a)6x 1/3 , k(b)6x 1/3 2 3x n N ⇣ 3x, z k(a)k(b) ⌘ -N ⇣ 3x

� 3 -

 3 (B+1)/ log 2 x , where we successively appealed to(3•5),(3•9) and(3•17). Selectingz = x/F ( 2 3 log x) 3-(B+2)/ log 2 x, we obtain the required estimate.Finally, we establish the lower bound in Conjecture C. For x 2/3+" < z 6 x, u := u x , y := e u/2 , w := log xu/2, we haveP(x, z) > X x<a62x a/2<b<a, (a,b)=1 k(a)6y, k(b)6y , (a,b)=1 k(a)6y, k(b)6y F (log{xk(a)k(b)/z}) k(a)k(b) •At this stage, we observe that, for sufficiently large x, we have(4•8) F (u) 6 F � log(xe u /z) � ⌧ F � log{xk(a)k(b)/z} � e u/2 p k(a)k(b) uniformly for all a, b in the last range of summation. Indeed, the first inequality readily follows from the fact that z 6 x, and the second bound is obtained by applying (3•8) with v = v(a, b, x, z) := log(xk(a)k(b)/z) and h = h(a, b, x, z) := log � e u /k(a)k(b) � : since h > 0 and v ! 1 uniformly in a, b as x ! 1, we plainly have σ v 6 1/2 for large x, which implies (4•8). Inserting (4•8) in our previous lower bound for P(x, z) yields P(x, z) � zσ u F (u) x X x<a62x a/2<b<a, (a,b)=1 k(a)6y, k(b)6y 1 p k(a)k(b)e u/2 � ze 2w# w +h(# w ) F (u) xu 2 (log u) 3

  H 1 (x) xu 3/2 (log u) 7/2 , where we successively appealed to (3•5), (3•9), (3•8), (3•17) and (3•7). Selecting z = x(log x) 3/2+" /F (u) 3 H 1 (x), completes the proof.

See[START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF], lemma 8.4 for the details, in a similar situation, of the continuation, and theorem 8.6, for those of the saddle-point analysis.
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