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Flow level behaviour of data networks depends on the allocation of link capacities be-
tween competing flows. It has been recently shown that there exist allocations with the
property that the stationary distribution of the number of flows in progress on different
routes depends only on the traffic loads on these routes and is insensitive to any detailed
traffic characteristics. Balanced fairness refers to the most efficient of such allocations.
In this paper we develop a general recursive algorithm for efficiently calculating the cor-
responding performance metrics like flow throughput. Several examples are worked out
using this algorithm including the practically interesting case of concentration tree net-
works.

1. INTRODUCTION

Most traffic in today’s Internet is elastic in that sending rates are adapted depending
on prevailing network congestion. Typically, this traffic results from the transfer of doc-
uments such as files or web pages using TCP. Each document transfer is referred to here
as a flow. Elastic traffic is not time critical at the packet level, i.e., there are no stringent
deadlines for the delivery of individual packets. Network performance for elastic traffic
is mainly manifested at flow level and can be gauged by measures such as the average
per flow data transfer rate or throughput, i.e., the ratio of mean flow size to mean flow
duration.

To analyze flow level behaviour in a dynamic setting where flows of a certain size
stochastically arrive and are transferred across the network until finished, idealized models
are needed. An appropriate abstraction in this context entails entirely disregarding packet
level phenomena and considering the flow content as a fluid which is transmitted as a
continuous stream through the network. It is assumed in this fluid model that rate
changes occur instantaneously and simultaneously on all links on every flow arrival or
departure. We assume flows occur in sessions consisting of a succession of flows and
separating “think times” and that sessions occur as a Poisson process.

As there are many flows with different routes being transmitted simultaneously, per-
formance depends on how network resources are shared between concurrent flows. Most
work has focussed on so-called utility based allocations, where bandwidth is shared so



as to maximise some utility function of the instantaneous flow rates [1]. Examples of
such allocations are classical max-min fairness [2] and Kelly’s proportional fairness [3].
Crucially, the optimality of utility based allocations is defined for a static composition
of flows. If the true random nature of traffic were taken into account, it would be nec-
essary to define utility in terms of the performance of individual finite duration flows.
In this case, it is not obvious that max-min or proportional fairness are optimal in any
real sense. In random traffic, performance and therefore utility depend in general on the
precise statistics of offered traffic and are virtually impossible to evaluate analytically.

An alternative notion of fairness, called “balanced fairness”, has been introduced by
Bonald and Proutière [4]. When flows share bandwidth with balanced fairness, perfor-
mance is largely insensitive to detailed traffic characteristics and can be expressed in
relatively simple terms. The name derives from the set of detailed balance relations sat-
isfied by the instantaneous rates allocated to individual flows. These relations constitute
necessary and sufficient conditions for insensitivity in the underlying stochastic networks
[5,6]. The insensitivity is such that the distribution of the number of flows in progress, and
consequently the expected throughput, depend only on the average traffic offered on each
route. Balanced fairness thus generalizes to a general network context the insensitivity of
bandwidth sharing of an isolated bottleneck link introduced in [7].

Balanced fairness can be viewed as a bandwidth sharing objective to be realized by
appropriate packet level mechanisms. Alternatively, one might consider the mere exis-
tence of an insensitive allocation as evidence that more readily realized allocations do not
depend significantly on traffic characteristics beyond expected demand. In other words,
the balanced fairness model is a good candidate to approximate the behaviour of elastic
traffic in the Internet.

The main contribution of the present paper is to provide an efficient recursive algo-
rithm to compute these metrics for a certain class of topologies, including the practically
interesting case of concentration tree networks. This algorithm has been implemented
in Mathematica (available from http://netlab.hut.fi/tutkimus/com2/Qlib/) and readily
provides numerical and symbolic evaluations. The results derived are notably useful to
investigate the accuracy of simpler approximations that are more likely to be used for
practical dimensioning purposes.

The rest of this paper is organized as follows. In Section 2 a brief review is given of the
notion of balanced fairness and some of its basic properties. The recursive algorithm is
developed in Section 3. In Section 4 several examples of the application of the recursion on
specific network topologies are provided. Section 5 presents an extension of the algorithm
to cases where flows are subject to external rate limits. The results are summarized in
Section 6.

2. BALANCED FAIRNESS

The following is a short summary of the notion of balanced fairness and the network
model to which it pertains; for a full account readers are referred to [4,8].

The network consists of a set of links L = {1, . . . , L} where link l has a capacity Cl. A
random number of flows compete for the bandwidth of these links. There are N classes
of flows where each class i is characterized by a route ri consisting of a set of links. The



mean volume of information offered by flows in class i per unit time, i.e., the load of class
i, is denoted ρi. The network state is defined by the vector x = (x1, . . . , xN ), where xi is
the number of class-i flows in progress.

The total capacity φi(x) allocated to class-i flows is assumed to be shared equally
between these flows and to depend on the network state x only. The capacity allocation
must satisfy the capacity constraints,
∑

i: l∈ri

φi(x) ≤ Cl, ∀ l ∈ L. (1)

The allocation is said to be balanced if

φi(x − ej)

φi(x)
=

φj(x − ei)

φj(x)
, ∀ i, j, xi > 0, xj > 0,

where ei is an N -vector with 1 in component i and 0 elsewhere. The balance property
implies that there is a balance function Φ(x) such that

φi(x) =
Φ(x − ei)

Φ(x)
, ∀ i, xi > 0.

Basically any positive function Φ(x) defines a balanced allocation. As shown in [4] there is
a unique balanced allocation such that for any network state x all the capacity constraints
(1) are satisfied and at least one of them is satisfied as an equality, i.e., at least one network
link is saturated. For this allocation, the balance function is obtained recursively from

Φ(x) = max
l

⎧
⎨

⎩
1

Cl

∑

i: l∈ri

Φ(x − ei)

⎫
⎬

⎭ . (2)

This allocation is referred to as balanced fairness. Any link l that realizes the maximum
in (2) is said to be saturated in state x.

Assuming Poisson flow arrivals and exponential flow size distributions, it may readily
be verified from the balance property that the invariant measure is given by

π(x1, . . . , xN) = Φ(x1, . . . , xN)ρx1
1 · · · ρxN

N . (3)

This result, however, has a much wider validity. As shown in [4], the bandwidth sharing
network can be identified with a so-called Whittle network of processor sharing servers
(cf. [5]). The insensitivity properties of Whittle networks allow us to conclude that the
invariant measure (3) is valid for much more general traffic characteristics. Flow sizes and
think time durations can have quite general distributions and need not be independent.
The number of flows per session can be generally distributed. The only requirement is
that sessions arrive as a Poisson process [4,8].

An important role is played by the normalization constant,

G(ρ) = G(ρ1, . . . , ρN ) =
∞∑

x1=0

· · ·
∞∑

xN=0

Φ(x1, . . . , xN)ρx1
1 · · ·ρxN

N ,

where the traffic load vector is denoted ρ = (ρ1, . . . , ρN ). G(ρ) may be identified as the
generating function of the balance function Φ(x) and thus contains the same information.



In particular, Φ(x) itself and the performance measures can be derived from G(ρ). A key
performance measure for class-i flows is the flow throughput, γi = E [Si] /E [Ti], where
E [Si] and E [Ti] are the mean flow size and sojourn time, respectively. Expanding by the
flow arrival rate λi and applying Little’s result we have γi = ρi/E [xi]. The denominator
can be obtained by derivation yielding

γi =
ρi

E [xi]
=

G(ρ)
∂

∂ρi
G(ρ)

. (4)

In the rest of the paper we concentrate on an efficient recursive method for calculating
the normalization constant and flow throughputs for particular network configurations.

3. RECURSIVE ALGORITHM

Expression (2) suggests an efficient recursive method can indeed be applied to those
network topologies for which it is possible to identify the saturated links.

3.1. Recursion for the normalization constant
Let Ik = {i1, . . . , ik} be a k-tuple, k ≤ N , of unequal indices, 1 ≤ i1 < . . . < ik ≤ N .

Define a k-dimensional set of states ΩIk
as follows,

ΩIk
= {x : xi > 0 if and only if i ∈ Ik},

i.e., the set of states where there are active flows in each of the classes represented by the
index set Ik, and only in those. Specifically, we define I0 to mean the empty set ∅ and
Ω∅ to mean the set consisting solely of the zero state, Ω∅ = {(0, . . . , 0)}. The whole state
space is decomposed as

Ω =
N∑

k=0

∑

Ik

ΩIk
.

The decomposition Ω for a 3-dimensional case, Ω = Ω∅ + Ω1 + Ω2 + Ω3 + Ω1,2 + Ω1,3 +
Ω2,3 + Ω1,2,3, is illustrated in Figure 1 (the set Ω1,2,3 not shown).

Defining partial sums over the sets ΩIk
,

GIk
=

∑

x∈ΩIk

Φ(x1, . . . , xN)ρx1
1 · · · ρxN

N ,

the normalization constant G(ρ) can be decomposed accordingly,

G(ρ) =
N∑

k=0

∑

Ik

GIk
(ρ). (5)

Now we introduce the central assumption that for each Ik it is possible to identify at
least one link that is saturated in all the states of ΩIk

(the links that are saturated are
always uniquely defined by (2)). Note that this assumption is not valid for any network
topology so that the algorithms described below do not have general applicability. The
assumption allows us to derive a recursion expressing GIk

(ρ) in terms of the GIk−1
(ρ),

where Ik−1 ⊂ Ik (one index in the set Ik dropped). The number of the different GIk
is
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Figure 1. Decomposition of the state space (left) and illustration of the recursion for the
normalization constant (right).

2N , which leads to a manageable recursion up to N = 10, . . . , 15. The number is anyhow
far less than the number of states, nN , to be evaluated by the basic recursion (2) when
the state space is truncated in each direction at n (typically n is of the order 10, . . . , 100).

The recursion is best illustrated by an example. Consider a 2-dimensional set Ωi,j, see
Figure 1. By our assumption, in all states of this set a given link is saturated. Let the
capacity of this link be C. One or both of flow classes i and j must go through the link.
For the sake of discussion, we assume that both classes do so. In view of (2) and (3), we
deduce:

π(x) =
ρi

C
π(x − ei) +

ρj

C
π(x − ej), ∀x ∈ Ωi,j.

Each state x in set Ωi contributes as a “source of recursion” to the state sum Gi,j(ρ) an
amount equal to its own measure π(x) times the expression

ρj

C
· 1

1 − (ρi

C + ρj

C )
.

The first factor comes from the “bridge” and the second factor represents the infinite sum,
Si,j, over the area indicated in dark grey in Figure 1, when the value the lower left corner
of the dark area is fixed to 1. Then the values of the neighbouring points are ρi/C and
ρj/C and we see that Si,j is obtained as the solution of the equation

Si,j = 1 +
ρi

C
Si,j +

ρj

C
Si,j.

Thus the overall contribution of the set Ωi to Gi,j(ρ) is

ρj

C
· 1

1 − (ρi

C + ρj

C )
· Gi(ρ).

A similar contribution comes from the set Ωj and the sought for recursion is

Gi,j(ρ) =
ρjGi(ρ) + ρiGj(ρ)

C − (ρi + ρj)
.



In general, we have the recursion

GI(ρ) =

∑

i∈I′
ρiGI\{i}(ρ)

Cσ(I) −
∑

i∈I′
ρi

, (6)

where for any set of classes I, σ(I) denotes the link which is saturated in any state x ∈ ΩI ,
I ′ ⊂ I stands for those classes i ∈ I for which σ(I) ∈ ri. If σ(I) is not unique any of the
saturated links can be used as the basis for the recursion.

3.2. Recursion for the throughput
As noted before the throughput can be derived from the normalization constant, eq. (4).

One possibility then is to use the recursion (6) to find an explicit expression for the
normalization constant, as in the examples presented later, and to obtain the throughput
by derivation. In practice, however, when the number of classes is large the expression
for the normalization constant easily becomes too cumbersome to be handled by hand
(or even by a symbolic program like Mathematica). For such cases it is desirable to have
a more direct way of calculating the throughput numerically. The denominator of (4) is
decomposed using (5) as

∂

∂ρi
G(ρ) =

N∑

k=0

∑

Ik

∂

∂ρi
GIk

(ρ) ≡
N∑

k=0

∑

Ik

H(i)
Ik

(ρ),

and each term is obtained by derivation of (6),

H(i)
Ik

(ρ) ≡ ∂

∂ρi
GIk

(ρ) =

1i∈I′
k
(GIk

(ρ) + GIk\{i}(ρ)) +
∑

j∈I′
k

ρjH
(i)
Ik\{j}(ρ)

Cσ(Ik) −
∑

j∈I′
k

ρj

,

where 1A is the indicator function having value 1 when event A is true and 0 otherwise.
This recursion for the H(i)

Ik
can be applied in parallel with the recursion (6) for the GIk

.

4. APPLICATION TO SPECIFIC NETWORK TOPOLOGIES

We now apply the above algorithm to a number of network topologies for which the
saturation property described in §3.1 holds.

4.1. Line
This configuration consists of L = n links with capacities Ci and N = n + 1 classes or

routes. Route 0 goes through all links and each of routes i = 1, . . . , n only goes through
link i. When only route 0 is active the link with minimum capacity, denoted by C, is
saturated. Whenever a route i = 1, . . . , n is active link i is saturated (Lemma 1 of [8]).

In this special case it is advantageous to redefine the sets in order to handle even larger
groups of states together. We define:

Ωi = {x : xj = 0 for j > i},
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Figure 2. Line and parking lot configurations.

and correspondingly Gi(ρ) is the state sum over Ωi. One easily sees that
⎧
⎨

⎩

G0(ρ) = C
C−ρ0

,

Gi(ρ) =
(
1 + ρi

Ci−ρ0−ρi

)
· Gi−1(ρ) = Ci−ρ0

Ci−ρ0−ρi
· Gi−1(ρ).

Thus we have the result

G(ρ) = C
C−ρ0

· C1−ρ0

C1−ρ0−ρ1
· · · Cn−ρ0

Cn−ρ0−ρn
.

Using (4) the throughput of flow 0 is found to be

γ0 =
(

1
C−ρ0

+
∑n

l=1

(
1

Cl−ρl−ρ0
− 1

Cl−ρ0

))−1
,

while the throughput of other flows is γi = Ci − ρi − ρ0, for i = 1, . . . , n (cf. [8]).

4.2. Parking lot
In the parking lot configuration, L = n links with capacities C1 ≤ C2 ≤ . . . ≤ Cn carry

N = n classes of flows. Class 1 flows go through all the links, class 2 flows go through
links 2 to n, and, in general, class i flows go through links i to n (see Figure 2).

Whenever xi > 0 but xj = 0 for j > i, link i = 1 is saturated (this follows again from
Lemma 1 of [8]). It is again advantageous to use the aggregate sets Ωi, i = 1, . . . , n, of
the previous section. Now one finds that
⎧
⎨

⎩

G1(ρ) = C1
C1−ρ1

,

Gi(ρ) =
(
1 + ρi

Ci−(ρ1+···+ρi)

)
· Gi−1(ρ) = Ci−(ρ1+···+ρi−1)

Ci−(ρ1+···+ρi)
· Gi−1(ρ),

from which it follows on denoting the link i load by Ri =
∑i

j=1 ρj,

G(ρ) = C1
C1−R1

· C2−R1
C2−R2

· · · Cn−Rn−1

Cn−Rn
.

Throughputs are again obtained by eq. (4)

γi =
(

1
Ci−Ri

+
∑n

l=i+1

(
1

Cl−Rl
− 1

Cl−Rl−1

))−1
, i = 1, . . . , n.

4.3. Concentration trees
We now consider tree topologies representing access networks. Routes are assumed to

attain the network core via a common link constituting the root of the access network.
The routes converge progressively over a number of levels. It can been shown that such
trees satisfy the property that a given link or given set of links is saturated in all states
corresponding a given set I of active flow classes. Limited space does not allow us to give
the proof here but it will published in a future paper.

A saturated link for a given set I of active flow classes can be found as follows: First
give each flow class the capacity of its access link. Proceeding from the leaves towards
the root, always apply the capacity constraint of the links. The uppermost link (closest
to the root) that is constraining is saturated in I.



Tree with two branches
The 2-branch tree has a common link with capacity C0 and two branches with capacities

C1 and C2. Here we assume that the capacities of both branches are less than or equal to
that of the common link, C1 ≤ C0 and C2 ≤ C0, but that their sum is greater than the
capacity of the common link (otherwise the system reduces to a simpler configuration).
This provides a straightforward application of the general recursion,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∅(ρ) = 1,

G1(ρ) = ρ1G∅(ρ)
C1−ρ1

,

G2(ρ) = ρ2G∅(ρ)
C2−ρ2

,

G1,2(ρ) = ρ1G2(ρ)+ρ2G1(ρ)
C0−(ρ1+ρ2) .

Collecting the terms together gives G(ρ) = G∅(ρ) + G1(ρ) + G2(ρ) + G1,2(ρ),

G(ρ) =
1

1 − ρ1+ρ2

C0

·
(

1 − ρ1

C0

1 − ρ1

C1

+
1 − ρ2

C0

1 − ρ2

C2

− 1

)

.

Tree with three branches
The tree has a common link of capacity C0 and three branches of capacities C1, C2,

and C3. Again we assume that the capacities of all branches are less than that of the
common link but that their sum is greater. It is necessary to distinguish between different
cases according to how the sums of the capacities of different pairs of links relate to the
capacity of the common link. Because of lack of space we deal with only one of the four
cases, namely the case where only the sum C1 +C2 is greater than C0, demonstrating the
application of the general recursion:

x1

x3

G1
G3

Gφ

ρ /C1 0
ρ /C1

ρ /C3 3

ρ /C3 3
ρ /C2 0ρ /C2 2

G2 G12
G23

G13

x2

1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∅(ρ) = 1,

G1(ρ) = ρ1G∅(ρ)
C1−ρ1

,

G2(ρ) = ρ2G∅(ρ)
C2−ρ2

,

G3(ρ) = ρ3G∅(ρ)
C3−ρ3

,

G1,2(ρ) = ρ1G2(ρ)+ρ2G1(ρ)
C0−(ρ1+ρ2) ,

G1,3(ρ) = ρ1G3(ρ)
C1−ρ1

= ρ3G1(ρ)
C3−ρ3

,

G2,3(ρ) = ρ2G3(ρ)
C2−ρ2

= ρ3G2(ρ)
C3−ρ3

,

G1,2,3(ρ) = ρ1G2,3(ρ)+ρ2G1,3(ρ)+ρ3G1,2(ρ)
C0−(ρ1+ρ2+ρ3) .

By simplification one obtains

G(ρ) =
1

1 − ρ1+ρ2+ρ3

C0

· 1

1 − ρ3

C3

(
1 − ρ1+ρ3

C0

1 − ρ1

C1

+
1 − ρ2+ρ3

C0

1 − ρ2

C2

− (1 − ρ3

C0
)

)

.



5. EXTENSION TO LIMITED ACCESS RATES

We have so far considered a model where flow rates are constrained by network links
only. In practice, the rate of a flow may additionally be constrained by a fixed maximum
limit representing the user’s access line for instance. Balanced fairness is then defined by
adding the corresponding constraints in the basic recursion (2) [4]. For sake of clarity,
we restrict the presentation of the extended algorithm to the particular case where the
network reduces to a single link of capacity C.

All flows in each class i are limited by an access rate ai, i.e., φi(x) ≤ xiai. As long as
the sum of the access rates of the active flows is less than C, each flow is allocated a rate
equal to its access rate. Denote by Ω∅ = {x :

∑
ixiai ≤ C} the set of the corresponding

states: For the present discussion it is most convenient to think in terms of integer valued
rates ai and capacity C. The Kaufman-Roberts recursion (cf., e.g., [9]) can be used to
obtain the partial sum over Ω∅:

G∅ =
C∑

c=0

g(c), g(c) =
N∑

i=1

ρi

c
g(c − ai), c = 1, 2, . . .

with g(0) = 1 and g(c) = 0 for c < 0. This also gives the measures of the “blocking sets”
(referring to a virtual multirate system, where flows are inelastic having fixed bandwidth
requirements of ai, cf. [9]),

Bi =
C∑

c=C−ai+1

g(c).

x1

x2

Ωφ ρ2/C
ρ1/Cρ2/C

Ω12
C/a2

C/a1x1

x2

Ωφ

ρ1/Cρ2/C
Ω12

ρ1/C
C/a2

C/a1
Figure 3. Boundary between inelastic and elastic capacity sharing between two classes.

Elastic capacity sharing only becomes effective when the sum of the access rates of the
active flows exceeds C. The boundary between inelastic, Ω∅, and elastic, Ω1,2, capacity
sharing is illustrated in Figure 3 for the case of two access rate classes. The blocking sets
of the respective classes are shown by the shaded areas. As in Section 3, each state x
in the blocking set of class i contributes as a “source of recursion” to the normalization
constant an amount equal to its own measure π(x) times the expression (ρi/C)/(1−ρ/C),
where ρ =

∑
i ρi is the total load. We deduce:

G = G∅ +
N∑

i=1

ρiBi

C − ρ
.



6. SUMMARY

Balanced fairness is a new notion of bandwidth allocation with the very gratifying prop-
erty that flow level performance metrics are insensitive to detailed traffic characteristics.
This is particularly important for data network engineering since performance can be
predicted from an estimate of overall traffic volume alone and is independent of changes
in the mix of user applications.

The balanced fair allocation for any network is uniquely determined by the basic re-
cursion (2). For larger networks, however, straightforward application of the recursion
is hampered by the usual state space explosion problem. Our main contribution is the
derivation of a recursive algorithm for directly calculating the normalization constant and
flow throughputs for any network satisfying the saturation property discussed in Section
3, viz. that in each set of states ΩI it is possible to identify a link which is always satu-
rated. While this crucial property is not generally valid, it is provably so for the line, the
parking lot and the concentration tree considered here. Simple examples were provided;
more complicated cases of concentration trees can easily be evaluated in the same way.

We have outlined an extension of the algorithm to take account of external limits on
flow rate due, for example, to the speed of user access lines. We consider the particular
case of an isolated bottleneck link with heterogeneous rate limits. The development of a
recursive algorithm for more general network topologies is the subject of current research.
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