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Abstract: Rigid endoscopes like graded-index (GRIN) lenses are known
tools in biological imaging, but it is conceptually difficult to miniaturize
them. In this letter, we demonstrate an ultra-thin rigid endoscope with a
diameter of only 125µm. In addition, we identify a domain where two-
photon endoscopic imaging with fs-pulse excitation is possible. We validate
the ultra-thin rigid endoscope consisting of a few cm of graded-index multi-
mode fiber by using it to acquire optically sectioned two-photon fluores-
cence endoscopic images of three-dimensional samples.
OCIS codes:(000.0000)
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1. Introduction

Two-photon microscopy [1] is an important workhorse for studying biological tissue, for in-
stance the neuronal activity in the brain of living animals [2, 3]. For applications where mini-
mal invasiveness is required, miniaturized two-photon microscopes and endoscopes have been
developed [4]. But the approaches used are challenged to miniaturize the instrument below
the mm-scale because standard lenses and graded-index (GRIN) lenses are not available in
these dimensions. Indeed, at a certain diameter, propagation in the GRIN lens transitions from
a ray-optics phenomenon to a mode phenomenon. The so-calledlensless endoscopes which
have recently been demonstrated [5, 6, 7, 8, 9] might have thepotential to overcome this chal-
lenge, since they are able to utilize standard multi-mode fiber (MMF) as probes which conse-
quently have diameters down to 100µm, and which might in principle be used as insertable
needle-like imaging probes. However, achieving two-photon contrast in a lensless endoscope is
a challenge due to dispersion in optical fibers, and only sparse reports of a two-photon lensless
endoscopes exist [10, 11]. Here, we draw upon concepts from light control in complex media
[12, 13, 14, 15, 16] in order to propose an amalgam of the rigidendoscope and the lensless en-
doscope compatible with two-photon imaging which is, in effect, an ultra-thin rigid endoscope
consisting of a short piece of graded-index MMF. In doing so we demonstrate that rigid endo-
scopes can be miniaturized to sub-mm diameters and that the approach does not compromise
the optical sectioning capability of two-photon imaging. This paper is organized as follows.
Sec. 2 gives a brief overview of the employed concepts and methods. Secs. 3 and 4 deal with
the characterization of the MMF and detail the experimentalmethods and obtained results, re-
spectively. Secs. 5 and 6 account for the two-photon endoscopic imaging experiments that were
performed with the MMF as an ultra-thin rigid endoscope and detail the experimental methods
and results, respectively. Finally Sec. 7 discusses the performance and further developments of
ultrathin endoscopes for two photon based bio-imaging.

2. Experimental

2.1. Concept and formalism

Figure 1 shows a conceptual sketch of the ultra-thin rigid endoscope which is a short piece of
graded-index MMF. We use a simplified single-polarization phase-only transmission matrix ap-
proach [12, 15], in this case the MMF is represented by the transmission matrixHu

i which links
input modei to output modeu. The quasi-plane waves taken as input modes{i} and character-

ized by theirk-vector(k(i)x ,k(i)y ) are generated by wave front shaping methods with controllable
phasesφi (Fig. 1, left). We choose as the output basis the localized modes{u} characterized
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Fig. 1. (In color) Conceptual sketch of the rigid endoscope and the employed formalism.
Light travels from left to right. (Left) A full set of experimental input modes. (Right) A full
set of experimental output modes; the output light can be injected into any one of these.

by their location(x(u),y(u)) (Fig. 1, Right). The transmission matrix is then measured asthe
rows of input coefficients that maximize injection into output modeu. So, once we knowHu

i
of the MMF, we are able to do endoscopic point-scanning imaging by sequentially sending the
input coefficients defined in rowu of Hu

i to the wave front shaper and acquiring the integrated
fluorescence as a function of (xu,yu). The image formation procedure is completely analogous
to the now standard point-scanning two-photon microscope.

2.2. Graded-index multi-mode fiber

The fiber used is a graded-index multi-mode fiber (GIF625, Thorlabs) with a core diameter
of 62.5 µm, a cladding diameter of 125µm, and a numerical aperture (NA) of 0.275. The
V-parameter of this fiber is [17]

V =
2πa
λ

NA = 51.4 (1)

wherea is the core radius and NA is the numerical aperture. The number of modesM supported
by the fiber is [17]

M ≈ p
p+2

V2

2
(2)

with p the grade profile (proprietary information for this fiber). Assumingp = 2 givesM = 637,
or around 319 polarization-degenerate modes. We have chosen to use graded-index MMF be-
cause it greatly reduces the mode dispersion as compared with step-index MMF. In standard
textbooks [17] estimations of the group velocity spread in the two kinds of fiber can be found:

vstep−index
lm ≈ c

n1
(1− (l +2m)2

M
∆), 2≤ (l +2m)≤

√
M (3)

vgraded−index
q ≈ c

n1
(1− q

M
∆2

2
), 1≤ q≤ M (4)

where∆ is the refractive index difference between the core (n1) and cladding (n2). From this,
one finds that the group velocity spread (defined as the difference between the largest possible
and the smallest possible value ofv) is smaller by a factor∆/2 ≈ 1/50 in the graded-index
MMF. In the employed MMF, we expect a group velocity spread per metre of fibre of 8.58 ps/m.
In the shortest piece of fibre used in the following experiments (2.3 cm), this gives a group
velocity spread of 197 fs which is comparable to the durationof the laser pulses employed.

3. Detailed methods: Fiber characterization

3.1. Setup

Figure 2(a) shows a detailed sketch of the experimental setup that we employed for this set of
measurements. Laser light is incident on a 2D-SLM (Hamamatsu X8267-15) on which a phase
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Fig. 2. (a) Experimental setup ’Setup1’. Laser, either a fs-laser (Amplitude Systèmes t-
Pulse) or a continuous-wave Yb fiber laser (IPG Laser, GmbH).λ /2, half-wave plate. Pol,
polarizer. 2D-SLM, two-dimensional spatial light modulator (Hamamatsu X8267-15). SF,
spatial filter. MMF, multi-mode fiber (Thorlabs GIF625, 16.1, 6.5, or 2.3 cm long). CMOS,
CMOS camera.f1 = 500 mm; f2 = 80 mm; f3 = 6.24 mm; f4, 20× microscope objective;
f5 = 150 mm. (b) Example mask on the 2D-SLM during transmission matrix measurement.
(c) Example mask on the 2D-SLM during output mode intensity measurement.

mask of hexagonal segments on a triangular grid is displayed[Fig. 2(b), 2(c)]. The segment with
index i diffracts light into the 1st order in order to project the incident light onto input modei
with a controllable phaseφi from 0 to 2π . The phase mask thus comprises 1027 segments of
the form

Φmask
i (~R) = sawtooth[φi +2π~fc · (~R−~Ri)], (5)

where~fc = 1/14.1 ( 1√
2
x̂+ 1√

2
ŷ) pix−1. The pitch of the segment positionsRi is 25 pix. The

1st order is isolated by a spatial filter. The 2D-SLM is located in a Fourier plane of the MMF
proximal endface; this way, the positionRi of an input modei on the wave front shaper is
proportional to its transversek-vector at the MMF proximal endface. The input basis is thus
the basis of quasi-plane waves (diameter of one input mode 83µm compared to the MMF core
diameter of 62.5µm; input NA 0.284, compared to the NA of the MMF of 0.275).

3.2. Measurement of transmission matrix

In the transmission matrix approach [12, 15], and considering only one polarization, the MMF
is represented by the transmission matrix

Hu
i = Au

i eiPu
i (6)

which links input modei to output modeu. It is important to note that the input modesi and
the output modesu have nothing to do with the eigenmodes of the MMF. The input and output
bases can in principle be chosen without any knowledge of theMMF eigenmodes. In practice
however one will of course choose input modes that couple efficiently into the MMF; and output
modes that lie within the emission cone of the MMF. In our approach, we measure onlyPu

i , i.e.
the phase part. In principle our method could be modified to measure the amplitude partAu

i as



Fig. 3. A graphical sketch of the procedure for measuring thetransmission matrix. (Left)
The stack of 8 images acquired on the CMOS camera for 8 equidistantφ j . (Right) Intensity
|b(u)|2 in the output mode u (the pixel marked by the white dot) as a function of φ j ; stack
of 1089.

well, but in the following we do not do so because we do not intend to do amplitude shaping (an
inherently lossy process). The amplitude part thus remainsan unknown which, however, has no
serious consequences [5, 15]. To measure the transmission matrix, we must measure the phase
of every output mode for every input mode. The measurement algorithm is as follows. We send
two modes, the reference mode 0 with phase 0 and the mode undertest i with phaseφ j , into
the MMF [using a mask like Fig. 2(b)]. As output modes we choose the localized modes{u}
whose locations are conjugated to the pixels of a CMOS camera(33×33 pixels, 43.2µm wide,
for a total of 1089 output modes). The intensity in all pixelsis recorded for 8 equidistant values
of φ j between 0 and 2π . Mathematically, when this field (mode 0 with coefficient 1 and mode
i with coefficient eiφ j ) is injected into the MMF the output intensity|b(u)|2 in theu’th output
mode will be

|b(u)|2 = |Hu
i eiφ j +Hu

0|2

= |Au
i eiPu

i eiφ j +Au
0eiPu

0 |2

= |Au
i |2+ |Au

0|2+ |Au
i A

u
0|cos(Pu

i −Pu
0 +φ j). (7)

In each pixel, theφ j that maximizes intensity equals−Pu
i +Pu

0 which is the sought after quantity.
In Fig. 3 the measurement is described graphically. We do so for all i (1027 input modes). With
this, we measure the complex part of the transmission matrixrelative to the complex part of
the first row,i.e. we measure exp[i(Pu

i −Pu
0 )]. The fact that we do not measure absolute phase

values has the consequence that we do not know the phases of the output modes{u}. But this
is inconsequential in this context since we aim to send as much energy as possible into one and
only one output mode at a time.

3.3. MMF characterization

Our aim is to determine the optimal trade-off between endoscope length and temporal broaden-
ing due to chromatic and mode dispersion in the MMF when usingultra-short pulses. In other
words, we seek the longest length of MMF where no effects of chromatic and mode disper-
sion on the transmitted pulse can be observed. To achieve this we take an empirical approach
based on the following rationale: A continuous-wave (cw) laser has negligible spectral width
and so it suffers no effects of chromatic dispersion, and neither is it adversely affected by mode
dispersion since its coherence length is much larger than the walkoff due to mode dispersion.
Since the detected quantity, the intensity on the camera, isa result of the coherent superposi-
tion of the fiber eigenmodes projected onto the output basis,the cw case always perfoms the
best. However, in the case of fs- illumination, the modal dispersion imparts a differential group



delay amongst the various modes. This would indeed lead to a reduction in the detected inten-
sity values obtained after the optimization procedure if they stretch the original pulse. Hence,
a comparison of the intensity enhancement can be pursued as ametric for determining the ef-
fects of mode dispersion on the pulse length. However, if andonly if material dispersion is the
singular reason for pulse stretching, the intensity enhancement is not a valid metric anymore.
This is far from being the case in MMF fibers and hence, the performance of the ultra-thin rigid
endoscope with a cw-laser can be used as a benchmark against which the performance with a
fs-laser can be compared; and the longest MMF length that gives similar performance in both
cases is the optimal trade-off.

As a measure of the performance we will use a mean of the achievable intensity of the output
modes. Once we have measuredPu

i (we omit the offset in the following), which we did above,
the maximum intensity in output modeu is achieved when a superposition of all input modesi
with phasesφi =−Pu

i is injected into the MMF. An example mask on the 2D-SLM that achieves
this is shown in Fig. 2(c). Put differently, the intensity|b(u)|2 in output modeu is given by

|b(u)|2 = |∑
i

Hu
i eiφi |2

= |∑
i

Au
i eiPu

i e−iPu
i |2.

= |∑
i

Au
i |2. (8)

The mean of the set{|b(u)|2} is then the measure of the performance that we will employ. To
measure it, we measure one|b(u)|2 at a time as the intensity of the CMOS camera pixel associ-
ated to output modeu when the 2D-SLM displays the mask for whichφi =−Pu

i [like Fig. 2(c)]
(1089 measurements, one per output mode). We go through thisprocedure two times per MMF
length (once with the cw-laser, once with the fs-laser), andwe do it for three different MMF
lengths, 16.1 cm, 6.5 cm, and 2.3 cm. A graphical sketch describing the procedure of these
measurements are highlighted in Fig. 4 and the resulting analysis of the obtained intensities in
the output modes in each case are presented in Fig. 5. We note that for this set of experiments,
we chose a number of input modes (1027) much larger than the number of MMF eigenmodes
(around 300). By this massive oversampling we want to assurethat every MMF eigenmode has
an overlap with a subset of the input basis. The motivation behind this is twofold: (i) To probe
the adverse effects of mode dispersion; and (ii) to obtain the maximum achievable injection
into all output modes. We also note that in the resulting map|b(u)|2(xu,yu) there are some ele-
ments, even within the MMF boundary, that have very low values. This is caused by the fact that
for determining the transmission matrix we use a co-propagating reference—which is itself a
speckle containing dark and bright spots. For those output modesu that are located at positions
(xu,yu) coinciding with the dark points of the reference, it is difficult to measure the transmis-
sion matrix with acceptable precision. This in turn leads todifficulty injecting efficiently into
those output modes. This point was also made in Ref. [5]. We also note that all the results in
Fig. 5 originate from only one polarization state of the MMF output light, the other polarization
state was blocked by a polarizer. We have observed that for horizontally polarized input the
MMF effectively scrambles the polarization state so only half remains horizontally polarized at
the output. The presence of the polarizer thus implies a lossof half of the available light.

4. Results: Fiber characterization

4.1. Optimal trade-off between endoscope length and temporal broadening

In order to be useful a rigid endoscope must at the same time have a length greater than a certain
value and additionally—if short pulse excitation is to be used—a length smaller than a certain
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Fig. 4. (In color) Sketch of how to arrive at|bu|2(xu,yu), the measure of MMF performance
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Fig. 5. Finding the optimal MMF length. (a,b) Achievable intensity in output modeu vs.
(x(u),y(u)) for MMF length of 16.1 cm; (c,d) 6.5 cm; and (e,f) 2.3 cm; and for (a,c,e) fs
illumination; and (b,d,f) cw illumination. The intensity values for each MMF length are
normalized to the maximum of the cw-case intensity. g) and h)are a discrete subset of
the data in e) and f) plotted for better visualization and fora comparison of absolute en-
hancement of intensity in the output modes in fs and cw illumination schemes. Dashed line,
outline of the core of the MMF (Ø62.5µm).



value in order to avoid temporal broadening due to group delay spread. In order to find the opti-
mal trade-off, we take the empirical approach detailed in Sec. 3. Since a cw-laser is not subject
to any temporal broadening in the MMF, we first measureHu

i with a cw-laser and subsequently
record the achievable intensity in all of the output modesu. Next, we do the same, but with a
fs-laser, and again record the achievable intensity in the output modesu. We repeat these two
steps for three different MMF lengths. If the outcome with a cw-laser is identical to the outcome
with a fs-laser, then temporal broadening due to group delayspread is negligible. The results
are shown in Fig. 5 from which it is apparent that for MMF length of 16.1 cm the results from
the fs-case [Fig. 5(a)] and the cw-case [Fig. 5(b)] are divergent. However for shorter MMF
lengths, as well 6.5 and 2.3 cm, the fs-case [Fig. 5(c),5(e)]and the cw-case [Fig. 5(d),5(f)]
give virtually identical results. From this we conclude that the employed fs-excitation (180 fs
at 1035 nm) is negligibly temporally broadened in MMFs of length inferior to 6.5 cm. It is
important to note that, as seen from Fig. 5, this conclusion holds for all (x(u),y(u)) within the
MMF core area (delimited by dashed circles in Fig. 5) meaningthat both lower- and higher-
order MMF eigenmodes undergo negligible temporal broadening due to group delay spread.
The measurements were done with an overcomplete input basisof 1027 modes (compared to
around 300 supported eigenmodes in the MMF) spanning a region of k-space larger than the
MMF input space (input numerical NA of 0.284 versus MMF NA of 0.275), assuring that our
observations contain no artefacts stemming from an incomplete basis. The maximum observed
Strehl ratio in the considered linear polarization state were 69 % (16.1 cm MMF); 67 % (6.5 cm
MMF); and 83 % (2.3 cm MMF). To further confirm our results, we also measure the temporal
duration of output modes by background-free autocorrelation. With 4 cm of MMF the output
mode has a duration FWHM of 280 fs compared to 240 fs before theMMF, or a difference in
second-order spectral phase of 2000 fs2 (transform-limited FWHM 124 fs). A similar observa-
tion was also made in [11], by Morales-Delgadoet al.which demonstrated that if one employs
a subset of MMF eigenmodes one can to a large extent retain theshort pulse duration. The
difference in our present work is that we can retain the shortpulse duration while employing
all MMF eigenmodes simultaneously,i.e. we are not constrained to sacrificing spatial degrees
of freedom.

5. Detailed methods: Two-photon endoscopic imaging

In this section we describe the experimental procedures underlying the imaging experiments.
In order to facilitate imaging at reasonable speeds,i.e. at speeds higher than the update rate of
the 2D-SLM, we have employed a 163-segment piston-tip-tiltdeformable mirror (DM) which
has an update rate in excess of 1 kHz. This approach thus increases the achievable imaging rate
at the cost of number of input modes, limited to 163 by the number of segments of the DM.

5.1. Setup

Figure 6(a) shows the setup used for the two-photon imaging experiments. Laser light from the
fs-laser is incident on the 2D-SLM on which a phase mask of hexagonal segments is displayed
[Fig. 6(b)]. Each segment has a parabolic phase term,

Φmask
i =− π

λ fconc
|~R−~Ri|2, (9)

so that the mask works as an array of concave mirrors, and a triangular spot pattern results
at a distancefconc from the 2D-SLM. The pitch of the segment positions~Ri is 47 pix. The
spot pattern is imaged onto the DM (f1, f2), in such a way that there is one spot centered on
each DM segment. This configuration mitigates any adverse effects that might arise from beam
clipping on the DM segment borders. Here, it is now the pistonof a DM segment that imposes
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Fig. 6. (a) Experimental setup ’Setup 2’. Laser, fs-laser (Coherent Inc., Chameleon).λ/2,
half-wave plate. Pol, Polarizer. 2D-SLM, two-dimensionalspatial light modulator (Hama-
matsu X10468-07). DM, deformable mirror (Iris AO, PTT-489). SF, spatial filter. DC,
dichroic mirror. MMF, multi-mode fiber. S, sample. Pol, polarizer. CMOS, CMOS camera.
BP, Bandpass filter. APD, avalanche photodiode.f1 = 300 mm;f2 = 150 mm;f3 = 500 mm;
f4 = 80 mm; f5 = 3.1 mm; f6 = 20× objective, NA = 0.45;f7 = 150 mm; f8 = 100 mm;
f9 = 150 mm; f10 = 4.55 mm. (b) The static mask on the 2D-SLM during the experiments.

the desired phase on the input mode respresented by a spot, according toφi = 4π/λ ·pistoni .
The MMF proximal endface is located in a Fourier plane of the DM and the 2D-SLM. So here,
as before, the position~Ri of input modei is proportional to its transversek-vector at the MMF
proximal endface. The input basis is thus still a basis of quasi-plane waves (diameter of one
input mode 56µm compared to the MMF core diameter of 62.5µm; incident angle of input
mode up to 0.217, compared to the NA of the MMF of 0.275).

5.2. Measurement of the transmission matrix

For the two-photon imaging experiments we measure the transmission matrix in a way com-
pletely similar to what was described in Sec. 3.2 and Fig. 3 with a few exceptions: The input
basis set consists of only 169 input modes, limited by the number of DM segments; and the
phase of thei’th input modeφi is set by the piston of the corresponding DM segment; and
finally, the transmission matrix is generalized toHu

i (Z) by which we mean the transmission
matrix measured with the CMOS camera conjugated to a plane located a distanceZ from the
MMF distal endface. Before each imaging experiment, we measureHu

i (Z) for a number of dif-
ferentZ, typically 16 equidistantZ between 0 and 150µm, which facilitates point-scanning in
three dimensions.

5.3. Imaging experiments

Two-photon imaging is performed in a way very similar to whatwas described in Sec.3.3 and
Fig. 4 with the following difference: For eachu the integrated two-photon fluorescence signal



was detected on a single-point detector, an avalanche photodiode (APD), located at the proximal
end of the MMF. That is, part of the two-photon fluorescence generated in the sample at (xu,
yu, Z) is back-collected through the MMF, split off by a dichroic mirror, sent onto the APD and
detected in photon-counting mode.

6. Results: Two-photon endoscopic imaging

6.1. Point-spread function and field-of-view
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Fig. 7. (a,b) Transverse and axial two-photon point-spreadfunction measured in the epi
direction andZ = 50 µm. Dots, slices of the images. Full lines, fits to the slices. FWHMs
retrieved from the fits: (a, top) 1.55, 2.01, 2.72µm. (a, right) 1.97, 1.80, 1.19µm. (b)
18.1µm.

We turn now to two-photon imaging through the ultra-thin rigid endoscope which is now a
MMF of length 4 cm. To measure the transverse and axial two-photon point-spread function
(PSF) of the system, we image 200 nm fluorescent beads with epi-detection of the two-photon
signal, Fig. 7. Given the MMF NA of 0.275 we expect the one-photon PSF to have transverse
and axial FWHM of 2.33 and 28.4µm respectively. This in turn predicts a two-photon PSF
with transverse and axial FWHM of 1.65 and 20.1µm respectively, which is in agreement
with the experimental results in Fig. 7. Another important conclusion to draw is the fact that
forward and epi-detected images are virtually identical (See Appendix A for a side-by-side
comparison), which testifies the near-optimal performanceof the imaging system in endoscopic
(epi-) mode. As the imaging depth (Z, measured from the MMF tip) is increased, the size of the
PSF increases due to the geometric decrease in NA available for focusing (See Appendix B).
The dimension of the images in Fig. 7(a-d) is 41×41 µm which we found to be the useful field
of view for two-photon imaging, an area slightly smaller than the MMF core area because of the
nonlinear dependency of the two-photon signal upon excitation intensity and the dependence
of the NA of the graded-index MMF which decreases towards thecore boundary.

6.2. Imaging of three-dimensional samples

An inherent property of TPEF microscopy is the optical sectioning capability, allowing to pro-
duce 3-dimensional images of the sample. The present ultra-thin rigid endoscope also retains
this ability when used in conjunction with the transmissionmatrix approach. In order to show-
case this, we fabricate a 3-dimensional sample consisting of a microscope coverslip with a
layer of 2µm fluorescent beads on either side. We image this sample at several depthsZ by
employing theZ-dependent transmission matrixHu

i (Z) (See Sec. 5). Figure 8 shows an excerpt
of the results. As theZ is increased from one image to the next, one sees no visible features at
Z = 10 µm [Fig. 8(a)]; the first layer of beads appears atZ = 40 µm [Fig. 8(b)]; atZ = 70 µm
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Fig. 8. Two-photon endoscopic images of a 3-dimensional sample consisting of two layers
of 2 µm fluorescent beads. Images acquired at differentZ: (a) 10 µm; (b) 40 µm; (c)
70 µm; (d) 100µm The intensity scale is the same in all images. Scale bar, 10µm.

there is once again a zone with no visible features [Fig. 8(c)]; and finally, atZ = 100 µm
the second layer of beads becomes visible [Fig. 8(d)]. This measurement thus clearly demon-
strates that the optical sectioning capability of two-photon imaging is retained when using the
ultra-thin rigid endoscope as the imaging element. The fullstack of images can be found in
Appendix C.

Further more, we also image the actin cytoskeleton of CHO cells labelled with ATTO-532
fluorophore in two-photon imaging mode with both distal and endoscopic detection. The results
are presented in Fig. 9. The cellular resolution and sensitivity is clearly demonstrated in both
the modes. And distally collected images appear marginallybrighter due to the increased NA
of the collection objective (measured-NA = 0.38 as comparedto the fiber collection NA of
0.275). Nevertheless, high detection sensitivity is exhibited in the endoscopic configuration for
conventionally labelled samples.
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Fig. 9. Two-photon proximal and endoscopic images of cellular samples.

6.3. Mode scrambling: comparison to ’free-space’ imaging

In this section, we assert that the ultra-thin rigid endoscope in the form of a short graded-index
MMF is a near-perfect mode scrambler. By ’mode scrambling’,we refer to a process whereby
a single input mode spanning a region ofk-space is mapped to a different region ofk-space by
traversing the MMF. This also applies to an ensemble of inputmodes with consequences that
will be detailed in the following. We can establish this if wecan measure significant differences
in the input and output spatial frequency spectrum. We measure the input spatial spectrum with
a camera in the pupil plane of the last lens before the MMF, andthe output spatial spectrum
with a camera in the pupil plane of the first lens after the MMF.Figures 10(a)-10(d) show the
chosen input spatial spectra while the corresponding output spatial spectra that result therefrom
are shown in Figs. 10(e)-10(h). It is immediately apparent that in no case is the output spatial



spectrum a subset of the input spatial spectrum. Two important differences appear, the output
does not have the periodicity or segmentation of the input; and the output in general contains
components at higher as well as lower transversek-vectors than the input meaning that new
transversek-vectors are generated in the MMF.

a) b) c) d)

e) f) g) h)

Fig. 10. Measurements of MMF mode scrambling properties. (a-d) Example inputk-
spaces. (e-h) Corresponding outputk-space with inputk-space as in (a-d). Dashed circles,
delimitation of the MMFk-space corresponding to an NA of 0.275.
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e) f) g) h)

20 um

Fig. 11. Consequences of the MMF mode scrambling properties. (a-h) Images of the actual
intensity distribution when injecting maximally into the output mode marked by the arrow
for (a-d) MMF length of 0 cm,i.e. without MMF. (e-h) MMF length of 2.5 cm. Dashed
circles, delimitation of the MMF core (Ø62.5 mm).

These observations are reminescent of those done for propagation of light in scattering me-
dia [16] and their impacts become apparent in Fig. 11 where the intensity of an output mode is
optimized with and without the MMF in place. In Figs. 11(a)-11(d) the intensity of four output
modes along a horizontal line have been optimized at the position marked by the arrow in the
absence of the MMF (MMF length equal to 0). What is displayed is the actual intensity dis-
tribution from which it is immediately clear that the choiceof a periodic input base gives rise
to replicas—optimizing injection into one output mode alsocauses significant injection into
modes located at regular intervals from the targeted mode. The targeted mode can be disentan-
gled from its replicas by a passage through the MMF. Now, the input modes are coupled into
2.5 cm MMF, and optimizing injection into the same output modes at the output of the MMF
now gives the actual intensity distributions shown in Figs.11(e)-11(h). Contrary to before light
is not injected preferentially into any other output modes than the targeted one. A fraction of the
light does however go into a broad speckle background. In thecontext of two-photon imaging
a speckle background is strongly discriminated against by the nonlinear dependence of two-



photon signal upon excitation intensity (cf Figs. 7,8)—which would not be the case if strong
replicas were present as in Figs. 11(a)-11(d). From this we may conclude that even a short
piece of MMF scrambles an ensemble of periodic input modes enough that all input periodic-
ity and its derived artefacts are cancelled. Another important conclusion is that the localized
output mode can be smaller with the MMF in place than without the MMF. This can be appre-
ciated from comparing Fig. 11(b) (FWHM = 2.6µm) to Fig. 11(f) (FWHM = 2.3µm). This
is due to the broader spectrum ofk-vectors in the output which is evidenced in Fig. 10. The
enlarged outputk-space seems to be in contradiction with previous reports onspatial control of
light in step-index MMF where it was observed that the radialk-vector was to a large degree
conserved through even metre-long sections of step-index MMF [7]. The discrepancy might
be due to more complex mode coupling in graded-index MMF. A recent paper [18] measured
the full transmission matrix of a 2 metre long graded-index MMF and indeed found coupling
between all members of the mode groups and even between mode groups. Such mode coupling
would be accompanied by lack of rotational symmetry of the MMF, which is indeed what we
have observed; the same measuredHu

i is not valid for the rotated MMF. These conclusions are
reminiscent of the conclusions in numerous studies of lightfocussing through scattering media
[16, 14]. Indeed, we could say that we are using the MMF in a wayanalogous to the scattering
medium in the cited references. The main difference is that the MMF supports a much lower
number of eigenmodes compared to the number of input modes than general scattering media,
which translates into lower light loss into the speckle background, crucial for our application in
two-photon imaging where throughput is essential; and in the graded-index MMF there is much
less temporal spread than in scattering media of the same thickness, which is equally crucial for
two-photon imaging. Indeed, as seen in Fig. 8 we retain sufficient intensity to allow two-photon
imaging at low average powers.

7. Discussion and conclusions

As has already been noted in several articles on lensless endoscopes based on MMF, the trans-
mission matrix is extremely sensitive to twists and bends ofthe MMF [19, 20]. Hence, the
MMF has to remain static—this also applies for our ultra-thin rigid endoscope. In an applica-
tion it would thus have to be held in shape byi.e. a rigid steel canulla. As long as the shape is
maintained the measurent of the transmission matrix of the ultra-thin rigid endoscope can be a
once-and-for-all measurement.

We have observed no memory effect,i.e correlations between differential input and output
wave front tilt—correlation were not expected either, since otherwise the MMF would not be a
mode scrambler (cf Fig. 11). On the other hand, we have observed a high degree of resilience
of an output mode to differential input wave front tilt. Thisis interesting in view of the need to
interface a microscope objective with the rigid endoscope.This result shows that there is some
tolerance.

From recent results demonstrated in Ref. [21], it may be envisaged that a numerical correc-
tion to the measured transmission matrix could sufficientlycompensate for further fiber distor-
tions. In conjunction with the results we have demonstrated, this further enhances the viablity
of MMF based two-photon endoscopes forin-vivoapplications.

We have demonstrated two-photon endoscopic imaging through an ultra-thin rigid endo-
scope, a few cm long graded-index multi-mode fiber of only 125µm diameter.To unlock its
full potential and exploit light in both output polarization states, a transmission matrix approch
considering both phase, amplitude, and polarization alongthe lines of Ref. [5] might be re-
quired.

A current challenge in brain activity imaging is to simultaneously image activity in parts of a
network that extend beyond the field of view of a microscope objective, typically 500µm wide.



Reference [22], by Lecoqet al., proposed a solution based on a two-photon microscope with
two articulating arms, each terminating in a rigid endoscope, a GRIN lens of 1 mm diameter.
Another challenge is to image activity from brain regions deeper than 1 mm [3]. We believe that
the present findings and the outlined perspectives can be an enabling factor for endoscope-based
simultaneous interrogation of neuronal activity in multiple distant and deep brain regions.
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Appendix

A. Comparison of forward and epi-detected images
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Fig. 12. Side-by-side comparison of the efficiency in forward detection and endoscopic
detection. (a,b) Image of 200 nm fluorescent beads acquired by distal collection. (c,d) Im-
age of the same sample acquired by proximal (endoscopic) detection. All images are on the
same scale. Scale bars, 10µm.

Figure 12 is an expanded version of Fig. 3 in the main manuscript. It shows, additionally,
the image of the same sample of 200 nm fluorescent beads when the two-photon fluorescent
signal is acquired on a distal detector [Figs. 12(a),12(b)]. Figures 12(c),12(d) are identical to
Fig. 3(a),3(b) in the main manuscript. From the fact that theimages are almost indistinguishable
it can be appreciated that endoscopic detection through theMMF is efficient.



B. Point-spread function vs.Z
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Fig. 13. One-photon PSF versus distance from the MMFZ. (a) Axial width FWHM versus
Z, measured for the output mode in the center of the MMF. (b) Minimum transverse (x and
y) width FWHM versusZ.

Figure 13(a),13(b) present the measured axial and transverse one-photon PSF respectively.
At 0 < Z <50 µm the measured points are well described by

∆x =
0.61λ
NA

(10)

∆z =
2λ
NA

(11)

where the NA corresponds to the fiber NA (0.275). AtZ>150µm the measured points are well
approximated by the same equations with NA replaced by an effective NA NAeff(Z) = d/(2Z).
In the intermediate region 50< Z <150µm it is less trivial to define an effective NA due to the
fact that the NA of graded-index fibers is a function of the radial coordinate. Figure 14 presents
a more detailed view, the lateral width of the one-photon PSFin the entire plane. As can be
seen the width remains fairly homogenous over the entire field of view.
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Fig. 14. Lateral width of the one-photon PSF (x-direction) for differentZ: (a) 0 µm; (b)
50 µm; (c) 100µm; (d) 150µm; and (e) 200µm. Dashed circle, outline of the core of the
MMF (Ø62.5µm).



C. Imaging of 3-dimensional samples

In Fig. 15 we present the complete dataset of which an excerptwas shown in Fig. 7 in the main
text.
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Fig. 15. Two-photon endoscopic images of a 3-dimensional sample consisting of two layers
of 2 µm fluorescent beads. Images taken at differentZ: (a) 0 µm; (b) 10µm; (c) 20µm;
(d) 30µm; (e) 40µm; (f) 50 µm; (g) 60µm; (h) 70µm; (i) 80 µm; (j) 90 µm; (k) 100µm;
(l) 110 µm; (m) 120µm; (n) 130µm; (o) 140µm; (p) 150µm. Pixel dwell time 8 ms.
Total average power on the sample 1 mW. Scale bar, 20µm.
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