
HAL Id: hal-01281348
https://hal.science/hal-01281348v1

Preprint submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Graphs: Unifying task and motion planning
for Navigation and Manipulation Among Movable

Obstacles
Joseph Mirabel, Florent Lamiraux

To cite this version:
Joseph Mirabel, Florent Lamiraux. Constraint Graphs: Unifying task and motion planning for Navi-
gation and Manipulation Among Movable Obstacles. 2016. �hal-01281348�

https://hal.science/hal-01281348v1
https://hal.archives-ouvertes.fr

Constraint Graphs: Unifying task and motion planning for Navigation

and Manipulation Among Movable Obstacles

Joseph Mirabel1,2 and Florent Lamiraux1,2

Abstract— We consider a class of advanced motion planning
problems including object manipulation, navigation among
movable obtacles and legged locomotion. Our approach uses
rearrangement rules, encoded in a Constraint Graph, a formula-
tion unifying high-level task planning and motion planning. Our
method can compute manipulation paths for complex robots
and movable - articulated - objects in a static environment,
allowing for instance to generate continuous grasps and object
placements. A new planning algorithm, Manipulation RRT,
makes use of the Constraint Graph to solve Rearrangement
problems and to produce rich feedbacks to higher level plan-
ners. Simulation results, for problems where movable objects
must be manipulated simultaneously or several times, involving
humanoid robots, are presented.

I. INTRODUCTION

Rearrangement Planning [1] is a class of complex mo-

tion planning problems, where a robot must automatically

discover a sequence of simple tasks necessary to perform

a given high level task. The topic includes Navigation

Among Movable Obstacles (NAMO) [2], [3] and Manipula-

tion Among Movable Obstacles (MAMO) [4]. For instance,

to swap the position of two boxes with a single robotic arm

(high level task), a MAMO algorithm should automatically

infer that it is first necessary to move one of the boxes to an

intermediary position (task decomposition). But if two arms

are available, it should directly swap the boxes.

Our first contribution is the introduction of the Constraint

Graph formulation. Where several contributions [3], [4],

[5], [6], [1] decouple task planning and motion planning,

the Constraint Graph addresses both issues simultaneously.

This formulation is not only more convenient, it also avoids

the implemention of complex feedback loops resulting from

hierarchical planning (i.e. a task decomposition is chosen,

does not succeed because the motion is not executable, such

that a new decomposition has to be chosen, and so on).

Fig. 1: Various motion planning problems handled in an

unified way with a rearrangement planning formulation.

1CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ de Toulouse, LAAS, F–31400 Toulouse, France

Our second contribution is a concrete algorithm using

this formulation: the Manipulation RRT . This algorithm

is particularly suited for rearrangement problems involving

more than one object. The strength of the algorithm is that

objects can be manipulated simultaneously, several times if

necessary, where other formulations usually only consider an

object one at the time, and only once. Furthermore, thanks

to the Constraint Graph, the Manipulation RRT understands

symbolic facts. This provides richer feedbacks than usual

motion planners, which makes our approach suited for an

integration in a task planner.

We claim that the Manipulation RRT is thus a significant

step towards a complete solution to N/MAMO problems.

The complete method presented in the paper has been

implemented in a clean, generic and open source software,

available as a module of the Humanoid Path Planner 1. All

the results presented in the paper can be directly reproduced

by simply following the software documentation.

II. RELATED WORK

A. Navigation Among Movable Obstacles

NAMO is the class of motion planning problems where a

robot navigates in an environment and is allowed to move

objects out of its way. This problem is PSPACE-hard (i.e.

polynomial) when the final positions of objects are specified

and NP-hard otherwise [2]. To the best of our knowledge,

no existing planner is able to solve generic instances of this

problem. The limitations are mostly the number of objects

and possible interactions between objects.

Rearrangement Planning [1] aims at using the robot to

act on the environment. On the contrary, NAMO aims at

navigating, i.e. finding a path for the robot. MAMO is a

combination of both. The robot must achieve a specific

task (e.g. moving an object) and is allowed to move other

obstacles.

In spite of its complexity, practical solutions for subclasses

of NAMO have arisen. The case of regrasping has been

solved efficiently [7] thanks to a reduction property. This

property states that the search in the intersection of the set

of valid grasp and valid placement can be done regardless of

the manipulation rules. Though powerful for cases where

regrasping is required, this property does not reduce the

inherent complexity of NAMO.

Among most approaches [3], [4], [5], [6], [1], many only

consider monotone solutions, i.e. where each object is moved

at most once. They mostly use two-level methods composed

1http://projects.laas.fr/gepetto/index.php/Software/Hpp

of a symbolic or task planner and of a motion planner [8].

While the high level deals with discrete elements, such as

actions (“pick Object”, “put down Object”. . .), conditions

(“Object is on Table”,. . .) and propositions [5], the second

level deals with the geometry. The latter solves motion

planning problems of a specific case of the combinatorial

of the end-effectors, objects and their possible placements.

An interface between the two levels [5] is thus required.

These two-level approaches benefit from the existence

of efficient solutions to discrete problems. However, a first

drawback is the difficulty of sharing information between

the task planner and the motion planner. A motion planning

problem is specified in a continuous uncountable set whereas

a task planning problem only has a discrete representation

of the configuration space. A second and more important

drawback is the lack of integration between both levels.

When the task planner requests the motion planner to solve

a subproblem, it merely waits for a boolean answer, which

has false negatives - practical motion planner cannot prove

a problem is infeasible. Of course, in case of success, a

path is returned. In other words, from a complex and time

consuming search, the motion planner is merely returning a

boolean and a sequence of configurations. Motion planners

are usually not able to provide a reason for their failure.

Other approaches have tried to bring motion planning at

a higher level of abstraction. To this end, the configuration

space is segmented [9], [10], [11]. A graph representation of

the configuration space emerges from this segmentation. In

contrast with multi-level approaches, they are not specifically

reasoning about blocking objects.

B. Constrained planning

Motion planning algorithms were first developed to solve

problems such as the piano mover problem [8]. Randomized

planners succeeded in solving motion planning problems in

high dimensional configuration space.

Constrained problems concern a more generic class of

problems, such as motion planning for humanoid robots [12]

or closed chain kinematics [13]. Kinematic chain closure,

when two arm manipulators collaborate or when an object is

lifted, are also constrained problems. Constrained planning

is an essential component of Rearrangement Planning.

Randomized algorithms like Randomly Exploring Random

Trees (RRT) or Probabilistic Roadmap (PRM) fail to solve

constrained problems [14], [8, chap. 7] because the subman-

ifold satisfying the constraints, often denoted Cconst, has a

the zero volume. Most methods [12], [13], [14] rely on an

ability to efficiently sample Cconst, typically using inverse

kinematics. However these approaches do not apply when the

robot degrees of freedom (DOF) are correlated by stability

constraints. See [15] for details of existing methods.

In this paper, we focus on differentiable constraints and

we use the gradient descent method developed in [12], which

is similar to the first-order retraction algorithm. It tends to

have better results than other algorithms [15].

In section III we propose the first complete formal

definition of the rearrangement planning problem. This for-

mulation leads to the design of a generic algorithm, described

in details in Section IV. Results involving complex manipu-

lation scenarios and robots are then presented in Section V.

III. FORMAL DEFINITION OF THE REARRANGEMENT

PLANNING PROBLEM

A. Hybrid Robot

In the literature, a Rearrangement Planning problem usu-

ally involves a robot and movable objects [4], [5], [7]. This

work considers the robot and movable objects as parts.

Altogether, the parts form the Hybrid Robot, which is a kine-

matic chain starting with an anchor joint followed by each

part kinematic chain. With this formulation we can consider

seamlessly an under actuated legged robot, a manipulator arm

manipulating static or articulated objects, two robots moving

a table, a mobile manipulator crossing a door, etc.

The Hybrid Robot is highly under actuated. As in Motion

Planning for under actuated systems [11], the configuration

space is foliated and a solution path is a sequence of transit

and transfer paths [7]. For instance with this definition quasi-

static walking for a humanoid robot is a rearrangement

planning problem. A transit path corresponds to the robot

in equilibrium on its two feet. A transfer path corresponds

to the robot on one foot.

This model standardizes interactions between parts. In-

deed, interactions between a robot and an object, between

two robots or between two objects are considered as in-

teraction between parts. There is no difference in finding a

configuration with a contact between two different parts, two

surfaces of the same parts, or a part and the environment.

The configuration space C of the Hybrid Robot is the

Cartesian product of the configuration space of each part.

In the following, the direct path from configuration q0 to

q1 refers to the interpolation between the two configurations

and is denoted [q0,q1].

B. Differentiable functions and constraint solver

The Hybrid Robot is subject to constraints. For instance, a

static object cannot move when the robot is not grasping it,

and a legged robot must be in static equilibrium at all time.

We consider first the standard definition of such constraints,

before introducing the numerical methods that we use to

sample a configuration respecting a constraint.

1) Constraints definition: In this work, a constraint is

defined by f(q) = b, where f ∈ C1
(

C,Rd
)

is a differ-

entiable function and b ∈ R
d is a reference vector. d is the

constraint dimension. We say that configuration a q satisfies

the constraint if and only if f(q) = b. Two constraints of

dimension d1 and d2 can be merged into one constraint of

dimension d1 + d2 by stacking them element-wise.

On purpose, we keep a redundancy in this formulation.

Indeed, f(q) = b and g(q) = 0, with g(q) = f(q)−b, are

the same constraint. The right hand side b is convenient as

it parameterizes the level sets of f .

We also define the error function e, associated with a

constraint f(q) = b by

e(q) = f(q)− b

The error function is a differentiable function from C to

R
d, and we write ė(q) = ḟ(q).
Many constraints can be implemented in this way: for

instance our framework handles end-effector position and

orientation, relative position and orientation of a joint with

respect to another joint, the robot center of mass and place-

ment constraints.

For a function f , a level set is defined as

Lq0
(f) = {q ∈ C|f(q) = f(q0)} (1)

2) Constraint solver: Our constraint solver is based on

the Newton-Raphson method (see [12, Alg. 2]). For robot

configuration q0, the algorithm iteratively finds a sequence

(qn) such that ||e(qi+1)|| < ||e(qi)||. qn+1 is given by qn:

qn+1 = qn − α
(

˙e(qn)
)†

e(qn) (2)

where A† denotes the Moore-Penrose pseudo-inverse of the

matrix A. The algorithm succeeds when ||e(qn)|| ≤ ǫ and

fails after a maximum number of iterations or if it could not

find qn+1 such that the error decreases.

C. Grasping and placement constraints

As our focus is on Rearrangement Planning, essential

constraints are grasping constraints (to specify that an ef-

fector grasps an object), and placement constraint (to make

the position of a body coincide with an objective, e.g. to

create a contact). Furthermore, we assume an affordance step

provides relevant information about objects - movable or not

- relatively to grasping and placement. This step is out of

the scope of this work. In our framework, grasps and contact

surfaces specification is using the Semantic Robot Definition

Format (SRDF).

For more details about how this can be done automatically,

the reader may refer to [16]. We refer to affordance as the

object documentation.

The grasping and placements constraints are each charac-

terized by two functions:

• a function Pf (q) = 0, which defines the set of confi-

gurations that verify the constraint;

• a complement function Pf (q), which gives a

parametrization of the constraint.

1) Placement constraints: Possible contact surfaces are

defined as convex planar polygons. This representation is

generic enough to represent most objects (object meshes

being typically composed of convex triangles). We only con-

sider planar contact between polygons though more complex

contact models could be considered.

Two parts A and B (B can be the environment) are in

contact if their associated contact polygons are in contact,

that is the distance between the surfaces is lesser than a

threshold ǫ. The difficulty is to define the distance, which

includes the relative orientation of the surface normals,

and the minimal distance between the surfaces. A possible

distance is defined in Appendix VI-A.

We assume that A is moving (along with its moving poly-

gon M), and B is static (as its support polygon S), without

loss of generality. We make the simplification assumption

that S is flat (its normal pointing in the direction opposite to

the gravity). Let I, J = argmini,j d(Mi, Sj) be the points

of each polygon that are the closest according to the distance

function d and

T (i, j) = (RMi)−1RSj = [x, y, z,Ωx,Ωy,Ωz]

be the relative transformation between the reference frame

of RMi and RSj . We can now define the placement function

and its complement as:

Pf (q) =

{

[x, 0, 0,Ωy,Ωz] if QM,S ∈ S
[x, y, z,Ωy,Ωz] otherwise

(3)

Pf (q) =

{

[y, z,Ωx] if QM,S ∈ S
[0, 0,Ωx] otherwise

(4)

with QM,S the projection of the centroid of M onto S.

If Pf (q) = 0, the distance function is minimal, so we

are in contact. Using these two functions to constrain a mo-

tion is equivalent to constraining the relative transformation

between the closest polygons. Indeed, by adding zero on

unconstrained dimensions, we get

Pf (q) + Pf (q) = T (I, J)

The presented method is compatible with other primitives

such as cylinder, resp. sphere, which would define linear,

resp. punctual contacts. With additional calculations, one can

similarly define distances for those primitives.

These functions are only piecewise continuous and dif-

ferentiable. Though this may cause instability in the solver,

we encountered none in all the cases and the efficiency of

our solver was not altered. A more complex approach can

provide continuous gradient [17].

2) Grasping constraint: We model grasping with a grip-

per/handle model between two parts in an arbitrary configu-

ration. Again without loss of generality, we consider that the

gripper is moving while the handle is not.

Grasping is in fact a placement problem, but the con-

straints apply to predefined reference frames rather than

surfaces. New constraints are given by the grasping type:

• in “solid” grasping, a reference frame from the gripper

must match exactly a frame from the handle. This can

be used to model a hand grasping a door handle;

• in “axial” grasping, the rotation about the z axis of the

handle is free (as for grasping a glass in the subway);

• in “long” grasping, the translation about the z axis of

the handle is free (as for grasping a pen)...

Using the same development as for the placement con-

straints, we can obtain the following methods for the solid

and axial cases:

Gsolid
f = [x, y, z,Ωx,Ωy,Ωz] (5)

Gf
solid

= [] (6)

Gaxial
f = [x, y, z,Ωx,Ωy] (7)

Gf
axial

= [Ωz] (8)

Similar constraints can be defined for other handle types.

D. Constraint Graph

Manipulation rules, when expressed in C, induce a foli-

ation [7], [11]. We assume all grasps and placements are

continuous. In this section, q ∈ C is a configuration of the

Hybrid Robot and the reachability set in q represents the

accessible subset of C by a direct path. We represent the

manipulation rules in the form of a Constraint Graph.

In Figure 2, the vertices A and B represent subman-

ifolds of C. For instance, the set of valid placements of

an object Sa = {q ∈ C|Pf (q) = 0} and of valid grasps

Sb = {q ∈ C|Gf (q) = 0}.
The manipulation rules state that:

• an object is either at a valid placement or grasped, i.e.

q ∈ Sa ∪ Sb,

• an object cannot move if not grasped. It must stay in the

same placement so Pf (q) must be constant when the

object is not grasped. The placement reachability set at

q0 is

RSplace(q0) = Sa ∩ Lq0
(Pf)

• an object cannot move wrt to an end-effector when

grasped so, similarly, we must have Gf (q) constant

when an object is being grasped. The reachability set

for grasp in q0 is

RSgrasp(q0) = Sb ∩ Lq0
(Gf)

• when the object is grasped and at a valid placement, the

reachability set is the intersection, RSi = RSg ∩RSp.

With the reduction property [7], it becomes

RSi {q ∈ C|Gf (q) = 0 and Pf (q) = 0}.

Figure 3 represents the configuration space. RSplace(q),
resp. RSgrasp(q), are included in manifolds parallel to the

(Lfi(f))i, resp. (Lgi(g))i. The lines show a sequence of

valid direct paths. Direct paths stay in one particular leaf of

the foliation, that is RSplace(q) or RSgrasp(q).
The function Gf parametrizes the foliation induced by the

continuous grasp. Similarly, Pf parametrizes the foliation

induced by the object placement.

A B
1

Fig. 2: A Constraint Graph with two nodes and an edge.

On Figure 2, edge 1 represents the set of direct paths from

A to B. All the configurations along such motions must be

in Sa or Sb. The particularity of the graph is that an edge

is associated to a vertex. Let τ : [0, 1] 7→ C be a direct path.

We must have ∀s ∈]0, 1[, τ(s) ∈ V , V being either Sa or

Sb, independently of s.

So, if edge 1 is in vertex A, edge 1 is:

S1 =
{

(q0,q1) ∈ Sa × Sa ∩ Sb|Pf (q0) = Pf (q1)
}

(9)

and, if edge 1 is in vertex B:

S1 =
{

(q0,q1) ∈ Sa ∩ Sb × Sb|Gf (q0) = Gf (q1)
}

(10)

Note that this holds if A and B are the same vertex.

Figure 6 provides the Constraint Graph for one example.

Fig. 3: Example of level sets of two constraints f and g in C.

A manipulation path leading from one level set to another is

represented, with its elementary paths. A dashed line, resp.

solid, represents an elementary path in a level of f , resp. g.

Note that every elementary path lie in a unique level set.

E. Rearrangement Planning problem

We define the Rearrangement Planning problem in the

following terms:

• a Hybrid Robot with grippers, handles and contact

surfaces,

• environment with contact surfaces,

◦ a Constraint Graph, built automatically in most cases,

• an initial and one or several goal(s) configurations.

Next section presents an algorithm to solve this problem.

IV. Manipulation RRT

Algorithm 1 Manipulation RRT

1: function EXPLORETREE(q0)

⊲ RRT from q0 using the constraint graph

2: T .init(q0)

3: for i = 1→ K do

4: qrand ← RAND(C)

5: qnear ← NEAREST(qrand,T)

6: e← CHOOSEEDGE(qnear)

7: path ← CONSTRAINEDEXTEND(qnear,qrand,e)

8: if last step succeeded then

9: T .INSERTPATH(path)

The Manipulation RRT is introduced by a basic example

where Baxter manipulates a box.

A. Example

Figure 4 shows the Constraint Graph for this simple case.

To keep the example minimal, the box can be grasped by at

free

Right gripper - Box

Left gripper - Box

Fig. 4: Constraint Graph for the Baxter robot manipulating

a box

most one gripper and the grasps are rigid. The constraints

are Pf (q) = 0, Pf (q) = ref, Gleft
f (q) = 0, Gright

f (q) = 0.

The Manipulation RRT (Alg. 1) incrementally builds two

trees of configurations from an initial configuration and from

a goal configuration. These two trees necessarily contain

configurations in one of the node of the Constraint Graph.

It works as follow:

• a random configuration qrand is shot, regardless of any

constraints.

• for each tree, the configuration qnear nearest to qrand

is found (function NEAREST).

• qnear is in a vertex of the Constraint Graph, for in-

stance ”free”. This vertex has three outgoing edges, one

for each type of path: put left gripper in grasp position,

put right gripper in grasp position, unconstrained Baxter

path. In all cases, the box cannot move. One of these

types is selected. For clarity, at this stage, this choice

is made at random (function CHOOSEEDGE).

• the reachability set in qnear is built using

the selected type. If “put left gripper in

grasp position” is chosen, then this set is
{

q|Pf (q) = 0, Pf (q) = Pf (qnear) and Gleft
f (q) = 0

}

- unchanged placement and left grasp (functions

GETEDGESET and SETLEFTREFERENCE).

• qrand is projected into the reachability set

(APPLYCONSTRAINTS)

• qnear is extended towards qproj , the projection of

qrand onto the manifold satisfying the constraints, up

to collision (function GETCOLLISIONFREELEFTPART).

When a configuration is added to a tree, a connection

between the new configuration and the other tree is tried.

When this connection succeeds, the algorithm succeeds.

B. Manipulation RRT

The Manipulation RRT algorithm integrates the manipula-

tion rules via the Constraint Graph. A pseudo-code is given

in Algorithm 1. The algorithm selects and applies constraints

in order to respect the manipulation rules. It is based on RRT,

with the following noticeable changes:

• Line 6: an outgoing edge of the vertex of the Constraint

Graph containing qnear is chosen. Several strategies

are possible for this choice. The strategy we use is

random choice, with a probability law proportional to

user defined edge weights.

• Line 7: Extend qnear towards qrand while respecting

the manipulation rules encoded by the selected edge.

This procedure is presented in Algorithm 2.

Algorithm 2 first generates qnew by projecting qrand into

the set {q|(qnear,q) ∈ Eset} where Eset refers to the edge

set in Eq. 9 or 10. The function finally checks for collisions

and returns the longest direct sub path of (qnear,qnew)
starting at qnear.

This approach allows us to transform numerical informa-

tion into symbolic information. This may constitute a very

helpful feedback to a task planner, to refine the edge selection

strategy, apdated online. Possible feedbacks are:

• The success rate of the projection onto the edge set.

This reflects the difficulty of performing an action. The

harder the action, the lower the success rate;

• Statistics on which geometries are colliding and prevent

full extension, highlights blocking objects.

Currently, we compute the success rate of the projection

but are not using it for feedback. We believe the interpretation

of these feedbacks must be done by a task planner.

Algorithm 2 Constrained extension

1: function CONSTRAINEDEXTEND(qnear,qrand,edge)

⊲ Extend qnear towards qrand while staying in the

subset of Sedge starting at qnear

2: f ← edge.GETEDGESET()

3: f .SETLEFTREFERENCE(qnear)

4: qnew ← f .APPLYCONSTRAINTS(qrand)

5: p← (qnear,qnew)
6: p← GETCOLLISIONFREELEFTPART(p)

7: return p

1) Connected component visibility: Care has to be taken

for cases with continuous grasps and/or placements. Con-

sider the case of an arm manipulator to which we ask to

permute the position of two boxes b1,2. All the solutions

have an intermediate valid placement for one of the boxes.

There is no monotone solution. Running the Manipulation

RRT would grow two trees: T1, from the initial Hybrid

Robot configuration, and T2, from the goal Hybrid Robot

configuration. When extending a tree, always choosing new

valid placements from random configurations leads to a

zero probability of finding a common valid placement. The

problem is thus unsolvable.

To overcome this issue, for each tree, we must try to

discover new valid placements and to reach valid placements

found by the other tree. This can simply be done by mem-

orizing, for each tree, the reached placements, i.e. the set:

{

Pf (q)|q ∈ Ti, Pf (q) = 0
}

(11)

We also memorize the number of times a given placement

has been reached. When an attempt, from T1, to reach a

placement reached by T2 is made, an element of the set

defined in Eq. 11 is randomly chosen. We use a probability

law which is proportional to the frequency of each element

because, if this trial succeeds, there will be more possibilities

of linking the two trees.

Naturally, the same remark holds for continuous grasps.

2) Waypoints: Motion Planning problems with narrow

passage are still very challenging for today’s motion planner.

In Rearrangement Planning, this issue is encountered when

performing a grasp or a put-down, because, in both cases,

Hybrid Robot is close to collision.

To overcome this issue and help the planner finding a

solution, we also define pre-grasping and pre-placement

tasks. These tasks do not require more information than grasp

and placement. For pre-grasps, we shift the grasp position of

the sum of the clearance of the gripper and handle, along the

x-axis. For pre-placements, we shift the shape position of a

constant value along the supporting shape normal.

Algorithm 3 Graph builder

1: function GRAPHVERTEX(grasps)

⊲ Constraint set for vextex grasps
2: constraints← {}
3: for (g, h) ∈ grasps do

4: constraints← constraints+Gf (g, h)

5: for all o ∈ objects not grasped do

6: constraints← constraints+ Pf (o, S)

7: return constraints
8: function GRAPHEDGE(grasps, (g, h))

Constraint set for edge from vertex grasps to grasps+
(g, h)

9: constraints← {}
10: for all o ∈ objects not grasped do

11: constraints← constraints+ Pf (o, S)

12: for all o ∈ objects grasped do

13: constraints← constraints+Gf (o, S)

14: return constraints

3) Graph builder: It may be cumbersome to write the

Constraint Graph by hand as it exponentially increases with

the number of grippers and handles. In most cases however,

it is possible to build it automatically. Algorithm 3 gives

two procedures creating the constraint sets for respectively

vertices and edges. These procedures can be extended to pre-

grasp and pre-placement, as done in the simulations. To build

the graph, one has to call these procedures on each possible

pair of handles and grippers. However, adding infeasible

states to the Constraint Graph affects the solving time.

pregrasp

freeintersec

pregrasp

intersec

preplace

r_gripper grasps box1

preplace

r_gripper grasps box2

Fig. 6: Constraint Graph for case 1 with the Baxter robot:

2 boxes and considering only the right arm

V. RESULTS

We are able to compute manipulation paths using our

method for a wide range of examples. This section presents

these examples and shows some benchmarks.

A. Manipulation

On these simulations, the Baxter robot moves boxes on

a table, in 4 different cases. In cases 1 and 2, we explicitly

specified, by removing the right part of the Constraint Graph,

that only the left arm is used. In cases 3 and 4, both arms are

used. The Constraint Graph is given in Figure 6. In the first

case, the box positions are only shifted and the problem is

monotone. In the other 3 cases, the boxes are to be permuted

so the solutions to these 3 problems are not monotone.

Table I, the accompanying video and Figure 5 summarizes

the results. The planner is run on a standard 2.4GHz, RAM

4Go, 4 cores, desktop computer with no parallelization. The

solver is able to find solutions in all the four cases. For cases

1 and 2, the problem is not difficult and the solution comes

quickly. Cases 3 and 4 corresponds to artificially-hard toy

problems, yet the planner is able to discover a solution in a

reasonable amount of time.

The first case allows a comparison with other approaches

of the state of the art. As we are not using any task planner,

we are not performing as good on monotone cases. In

contrast, we can solve non-monotone instances, as shown

in cases 2, 3, 4. These cases shows the ability to discover

new common valid placement. Case 3 and 4 also show the

ability of the planner to consider simultaneous manipulation.

B. Grasping behind a door

We demonstrate here the implementation of a more com-

plex motion planning. A mobile (humanoid) robot has to

Cases 1 2 3 4

Nb boxes 2 (monotone) 2 2 3

Arms Right Right Both Both

Time (s) 7.6± 7.2 27± 19 38± 24 1959± 1045

TABLE I: Mean solving time, ± standard deviation, on 100

runs, for various cases with Baxter robot.

Fig. 5: Baxter permutes the position of 3 boxes.

Fig. 7: Romeo puts a box in a fridge.

Fig. 8: HRP-2 walking quasi-statically.

grasp an object and place it inside a fridge while opening the

fridge door. Once more, the sequence of high level actions is

not given. We also demonstrate that this approach, valid for

mobile robots, can simply be extended to humanoid robots.

First, we generate a path for the sliding robots. Then the

path can be post processed [12], [18] to generate a walking

trajectory. We successfully planned a path where the Romeo

robot take an object and put it in a fridge. The solution found

is included in the video and summarized in Figure 7.

C. Solving locomotion problems

In this example, we show our ability to model locomotion

problems as Rearrangement Planning problems. With our

approach, we are able to compute a quasi-static walking path

for HRP-2. This example shows the ability of finding com-

mon valid foot placement and that our approach is generic.

Foot placement are considered in the same way as object

placement. The exact same planner, used for manipulation,

is then used the locomotion trajectory. The planner was able

to find a suitable common foot step for both expansion trees.

The result is shown in the video and summarized in Figure 8.

VI. CONCLUSION

Future works concern the integration of our motion plan-

ner into a higher level task planner and a collision detection

that would make use of the Constraint Graph. We believe

both can reduce solving time. The former helps guiding the

search while the latter avoids checking for collision between

object not moving relative to one another.

REFERENCES

[1] J. Ota, “Rearrangement of multiple movable objects-integration of
global and local planning methodology,” in Robotics and Automation,

2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
vol. 2. IEEE, 2004, pp. 1962–1967.

[2] G. Wilfong, “Motion planning in the presence of movable obstacles,”
in Proceedings of the fourth annual symposium on Computational

geometry. ACM, 1988, pp. 279–288.

[3] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[4] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Robotics and Automation,

2007 IEEE International Conference on. IEEE, 2007, pp. 3327–3332.

[5] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2014.

[6] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 87–102.

[7] T. Simon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-
tion planning with probabilistic roadmaps,” International Journal of

Robotics Research, vol. 23, no. 7/8, July 2004.

[8] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[9] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International

Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[10] S. Dalibard, A. Nakhaei, F. Lamiraux, and J. Laumond, “Manipulation
of documented objects by a walking humanoid robot,” in IEEE

International Conference on Humanoid Robots (Humanoids). IEEE,
2010, pp. 518–523.

[11] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The International Journal of Robotics Research,
2009.

[12] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal

of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[13] S. M. LaValle, J. H. Yakey, and L. E. Kavraki, “A probabilistic
roadmap approach for systems with closed kinematic chains,” in
Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, vol. 3. IEEE, 1999, pp. 1671–1676.

[14] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” The Interna-

tional Journal of Robotics Research, p. 0278364910396389, 2011.

[15] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” 2010.

[16] A. Stoytchev, “Behavior-grounded representation of tool affordances,”
in Robotics and Automation, 2005. ICRA 2005. Proceedings of the

2005 IEEE International Conference on, April 2005, pp. 3060–3065.
[17] A. Escande, S. Miossec, M. Benallegue, and A. Kheddar, “A Strictly

Convex Hull for Computing Proximity Distances With Continuous
Gradients,” IEEE Transactions on Robotics, vol. 30, no. 3, pp. 666–
678, 2014.

[18] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A Versatile and Efficient Pattern Generator for Generalized Legged
Locomotion,” Sept. 2015, this paper has been submitted to the IEEE
International Conference on Robotics and Automation (ICRA) 2016.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01203507

APPENDIX: DISTANCE FUNCTIONS

A. Placement distance functions

For a polygon P , nP denotes its normal, CP its center2,

ePj its jth edge and:

• RP = (CP ,n
P, eP0 ,n

P ∧ eP0) a reference frame asso-

ciated with P ,

• QP,S the projection of CP onto the plane containing

the planar polygon S.

Three distances between a moving polygon M and a

support polygon S are defined in 12. S is assumed to be

orthogonal to the gravity to ensure stability. Note that if

QM,S /∈ S then, d(M,S) is merely the euclidian distance

between of the centers, otherwise, it is the distance orthog-

onal to S. Strictly speaking, d is not a distance function as

it is not symmetric.

d⊥(M,S) = CSCM.nS

d‖(M,S) =

{

||CSQM,S||2 if QM,S /∈ S
0 otherwise

d(M,S) =
√

d⊥(M,S)2 + d‖(M,S)2 (12)

2We define the center of a polygon as the centroid of its vertices. We
could also use convex optimization method to compute a better geometric
center.

https://hal.archives-ouvertes.fr/hal-01203507

	INTRODUCTION
	Related work
	Navigation Among Movable Obstacles
	Constrained planning

	Formal definition of the rearrangement planning problem
	Hybrid Robot
	Differentiable functions and constraint solver
	Constraints definition
	Constraint solver

	Grasping and placement constraints
	Placement constraints
	Grasping constraint

	Constraint Graph
	Rearrangement Planning problem

	Manipulation RRT
	Example
	Manipulation RRT
	Connected component visibility
	Waypoints
	Graph builder

	Results
	Manipulation
	Grasping behind a door
	Solving locomotion problems

	Conclusion
	References
	Placement distance functions

