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On the friable Turan—Kubilius inequality

R. de la Breteche & G. Tenenbaum

To the memory of Jonas Kubilius,
whose vision will enlighten our integers for ages

1. Introduction
An additive function, i.e. f : N* — C with

fn) =" ")  (neNY),

pIn

is the arithmetical analogue of a sum of independent random variables in probability
theory. However, in the arithmetical framework, independence is only partly fulfilled. A
quantitative measure of this tendency is furnished by Kubilius’ gauge, which measures the
gap between the probabilistic space €2, := {n € N* : n < 2} equipped with the uniform
law v, and its canonical probabilistic model. It may be equivalently stated in terms of
distance between formal probability spaces (see [16], section II1.6.5) or as a bound for the
total variation distance (see in particular [13]) between the truncation

fy(n) = f(")
pYln
P<Y
and its probabilistic model Z;, := Zpgy §p where the &, are independent geometric
random variables with laws

P& =fp")=0-1/pp™"  (¥v20).

In this latter setting, the best known uniform estimate, due to the second author [15],
states that

K(x,y) :=supsup |vy(f, € A) —P(Z;, € A)| <u™™ + 21" (r>2,y>2)
f ACR

where € > 0 is arbitrary and u := (logz)/logy.

Kubilius’ historical result ([8], [11]) yielded the optimal, qualitative statement that
K(x,y) approaches zero as x and u tend to infinity, and indeed provided the effective
bound K (z,y) < e~ " for some suitable positive constant c. This upper bound was later
improved from the quantitative viewpoint by Barban and Vinogradov [1]—see Elliott [4],
ch. 3, for details. More precise results, including an asymptotic formula for K (x,y), may
be given in wide subregions [15]. In particular, K (z,y) approaches a strictly positive limit
when x and y tend to infinity in such a way that « remains fixed.

These results show how friable integers, namely integers all of whose prime factors do
not exceed a given bound (y in the above), naturally occur in probabilistic number theory.

In the last twenty years the study of the distribution of friable integers has been
intensively developed. Letting P(n) denote the largest prime factor of an integer n, with
the convention that P(1) = 1, we say that n is y-friable if P(n) < y and we write

S(z,y) :={n<x:P(n) <y}

the set of friable integers not exceeding x.
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Another classical result in probabilistic number theory marks the discrepancy between
the empirical arithmetic situation and its probabilistic model based on independence
assumptions. This is the celebrated Turdan—Kubilius inequality which may be stated (see
in particular [9], [10], [6], [14], [3]) as

limsupsup V¢ (z)/V(Z¢,) = 2.
i)

T—00

where V¢(x) denotes the variance of the random variable variable f with respect to the
measure v, and the inner supremum is taken over all complex-valued additive functions f.
The constant 2 appearing in the above formula may be thought of as a quantitative
measure of the distance of analytic number theory and its probabilistic model. In all but
the last quoted result, one will actually observe a constant with value 3/2: this is due
to the fact that corresponding authors used various other normalisation terms instead
of V(Z¢ ). While the finiteness of the left-hand side proved to be a very fruitful tool
in probabilistic number theory, mainly because it is uniform with respect to f, the fact
that the constant is not equal to unity is quite significant from a theoretical viewpoint:
probabilistic number theory cannot be reduced to probability theory.

In [3] and [12], the friable version of this inequality is studied, thereby providing another
quantitative description of the propensity to independence as the parameter u is growing.
Thus, in accord to the Kubilius model, is is shown in [3] that, if Vi(x,y) denotes the
variance of the additive function f with respect to the uniform measure on the set S(x,y)
of y-friable integers not exceeding x, then, for a suitable model Z; . , defined as a sum of
independent geometric random variables on an abstract probability space (see (1-1) below
for a precise definition),

Clz,y) := sup Vi(@,y)/V(Zsay) =1+ 0(1)

provided 1/u+ (logz)/y — 0. In [12], it is shown that C(z,y) = C(u) 4+ o(1) when = and
y tend to infinity and u remains fixed. Moreover, the limit C'(u) is exactly determined in
a computable way—see [5].

All results described above rest on the saddle-point method, as developed by Hildebrand
and Tenenbaum [7]. Indeed, its specific feature of providing so-called ‘semi-asymptotic’
formulae yields simple estimates for ratios of the type

Vi (z/d,y)
V(x,y)

where U(z,y) := |S(z,y)| and

(1<d,y<z, meN")

Ui (2, y) = [{n € S(z,y) : (n,m) = 1}|.

These estimates depend on the parameter o = «(x,y) defined as the unique solution to
the equation

1

S EP _logz  (2<y<a)
p—1

PY

and which incidentally turns out to be the saddle-point corresponding to the Perron

integral for ¥(z,y). Writing g, (s) := [[,},,(1 —p~), it turns out that

Ui (z/d,y) /¥ (2, y) = gm(a)/d”

in a wide region for d,m,x,y [2].
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The Kubilius probabilistic model Zy ;. ,, for a complex additive function f restricted to
S(z,y) is defined as

(1-1) Zfay = pr,a
Py

where the £, , are abstract independent geometric random variables with laws

PG = f09) = 22 o012,

It is then a standard computation to show that

Vo) = X 0P - T ae)

pveS(z,y) P<yY ISy 8L

A natural upper bound for this is

Biew? = Y 29

p” €S (z,y)

Indeed, we have By(x,y)> = V(Z;,,) when the &, , are centred and we have in full
generality

(1-2) (1-27)By(z,y)* < By (2,9)? < V(Zjay) < By(x,9)%,
with
~ gp(a)? .
(1:3) By (z,y)* =Y, o Calie
p¥€S(z,y)

When y > logx log, z, we may replace the variance V¢ (z,y) by its semi-empirical
variant, namely

Vi(z,y) == Z |f(n) — E(Zf,a:,y)|2'

Indeed, writing Ef(x,y) for the empiric expectation of f over the set S(x,y) and
u := min(u, y/logy), we have, under the above condition on z and y,

Vi(z,y) = Vi(z,y) = |Ef(2,y) — E(Zf0y)|* < Bia,y)/t < V(Zfay),

where the last estimate follows from (1-2), standard estimates for o and theorem 2.4 of [2].
In [3], we show that

(14) Vf((E,y) < B?(J},y)

holds uniformly for all additive f and x > y > 2. However, from the estimates given in
[3], we can only infer that the bound

(1-5) Vi(z,y) < V(Zfuy)

holds in the region clogx < y < x where ¢ is an arbitrary positive constant.

Even if applications—see [3]—usually only require (1-4), the theoretical study necessi-
tates to analyse the status of (1-5) in complete generality.

We now provide a wider region for the validity of (1-5).

Theorem 1.1. The upper bound (1-5) holds uniformly for all complex, additive f
provided x >y > +/log z log, x.
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2. Proof

We first note that, with no loss of generality, we may restrict to the case of real functions.
Indeed, if f = fi + if2, then

Vf(SU,y) =V (z,y) + Vi, (z,9), V(Zf,m,y) = V(thr,y) + V(Zfzym,y)-

We could also assume that f > 0 since, defining f*(p”) := max(0,£f(p")), we plainly
have
Vf($7 y) < 2‘/f+ (JJ, y) =+ 2Vf+ (.’L’, y)v
V(Ziay) =V(Zi+ay) +V(Zsay) + 2E(Z5+ 0y E(Z5 2 y)
2 V(Zg+ g,y) +V(Zj- 2y)-

However, we shall not need this extra assumption.
As noted above, we may assume y < logx: in the opposite case, the required estimate

follows from theorem 1.1 of [3] and the computations appearing in the proof of corol-
lary 5.2.

Setting
_Un(z/dy)  gm(a)
Rm(x/dvy) T \I/(x,y) da 9
we have
Ejp2(2,y) Z f(n
Y nGS(ac y)
_ ac/p y pq($/pl’qu7y)
= 2 S 20 U(x,y)
pv€S(z,y) p#q ’
Y T
=E(Zf.,)+ ), f ( y,y) + Y )f(q“)qu(p—W,y)
pveS(x,y) p#q
p”g"eS(z,y)
and

Z
E(Zf,0,)Ef(z,y) = f’ ’y St
neS(z,y)

57w Y S0 4 (50))

pv€S(z,y)

=E(Zpay)+ Y %J‘(V)f(#)&(%@-

prqreS(z,y)

Write, when p # ¢,

z gp(a) z gq(ax) z Apv qn (7,Y)
D”,“ €,y =R ( ay) R (7ay)_ R (733/) = .
p”,q ( ) Pq gt pro P P qr q qr \I[(x7y>puaq,ua

We may infer from the above that

(2:1) Vi(z,y) =V(Zfwy) + Ti(z,y) + Vi(z,y) — Us(z,y),
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where
Vf* (,y) = Z F@") (@) Dy gu(z,y)

P#q
p”q" €S (x,y)

Tr(w,y):= Y, [()°Ry (1% y)

p” €S (z,y)

Up(og) =25 Y f0")f(")gp(a) Rp(i,y)-

vo o
Py logz p p

logp

VS

In theorem 3.8 of [3], we give an estimate of Ay ¢(z,y). We now improve on this. We
put

lo?g_pl (k> 1).

vi(a) = logk — gi () /gr(a) = logh =) »

plk

We also write

dk-1 logp (ulogy)*
(2:2) o= T | | <

<
PRY s—a

Lemma 2.1. Let K > 0. There is a constant C', depending only on K such that, uniformly
forx >y >2 u>+logy, k{ <z, (k,f) =1, wkl) < K, P(kl) <y, we have

vk (@) ve(a)

(K 4 75/2(k 5
29 e =t S o8 P P )

where k := (logk)/logy, A := (log¥)/logy.
Proof. Let

@ —2/3 1
Gm(5) ::m_l (m>1), Tp:=— 5. wogy.

ulogy’ ’ u

For P(m) < y, w(m) < 1, s = a +i7, |7| < Tp, an expansion of G,,(a + i) to the third
order furnishes that

G(s) = —itvp(a) — 372Gl (a) + O(7°(8 + log m)?).

and G (o) < (6 +logm)?. This implies that
Gul(s)Gel)c(s.) s = T 2t erafy (a)ug(a) + 1) + O(1D' ()}

(07

where I(7) is an odd function of 7, b := § + log(kf) < (logy){(u/u) + £ + A} and
D'(1) := 7126 + 7503 + oy + b2 72 (1 + bl7)).

The required estimate now follows from the formulae

o 142k ,—0a72/2 To k_ —oa72/2 1
T e dr =0, "7" e 72 dr < /2 (k S N)
_TO —To 0’2
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We may now embark the final part of the proof of our theorem.
In the domain under consideration for z,y, we have 1/u < a < u/(ulogy), hence it
follows from (1-2) that
V(Zf.ay) > By(z,y)*/u.

Inserting the estimate of Lemma 2.1 into the proof of formula (4.24) of [3] yields, mutatis
mutandis,

Vi(z,y) =S"+ O(%’yy) = 5"+ O0(V(Ztwy)),

with
- VTIIN )
(2-4) S* — -1 Z Gpa (@) f(07) f(g")vpr (@) vy (a).
o2, x pragre
p”,q" €S (z,y)
p7q
Moreover, for a suitable constant C' > 0, we have

Indeed

s*:—_1< T gp<a>f<py>vpu<a>>2+aiz< 3 gp<a>f;€:>vpu<a>>?

0‘2 pl/OL 2
pv€S(z,y) p<y ‘v<(logz)/logp

Since, by the Cauchy-Schwarz inequality, (2-2) and the estimate o < u/(ulogy), valid for
y < logz, the second term is < V(Zy¢, ), we get (2-5).

Put v := Au/u where A is a large constant. It follows from lemma 3.5 of [3] that, when
p” < yY, we have Ry(z/p”,y) < gp(a)/(up’®). Therefore those prime powers p” not
exceeding y¥ contribute to T¢(z,y) a quantity < By (x,y)?/u < V(Zf .4 ,). Moreover, the
same bound for R, implies that the complementary contribution is negative.

It remains to deal with Uy(z,y), that we bound appealing to lemma 3.5 of [3] which
furnishes, uniformly for p* < x,

m (o) < 52 (5 + )

where t := (nlogp)/logy. From the Cauchy—Schwarz inequality, we then get that the
contribution arising from any fixed prime p < y is

1 gp( gp( |fp“)| wlog pH\ 2
<gp 3 @l 5 el (1+<Togy>>

< < B
| 1+ (@logpt) fulogy)t\
g g ulogp™)/ulogy
< i Z e ( . Z gp(a) pHa )
log x log © log x
VS 10217 VS 10§p Hs 10§p
1 gp ) u 1/2 1 gp(a)f(p’“)2
! (4 )" ¥
U ZIO: . + (ualogy)t U ZIO: . prer
VS IOE:D VS logp

Summing over p < y, we get
Uf(xy y) < Bf(xa :‘/)2/ﬂ < V(Zf,x,y)'

This completes the proof.
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