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Let f denote an additive arithmetical function with continuous limiting distribution F on the integers. Then f also has a limiting distribution G on shifted primes. Under some growth conditions on the values of f at primes, we provide optimal lower bounds for the modulus of continuity of F and G, at all points from a specified infinite set.

Introduction

The famous Erdős-Wintner theorem [START_REF] Erdős | Additive arithmetical functions and statistical independence[END_REF] states that a real, additive arithmetical function f has a limiting distribution if, and only if, the following three series converge [START_REF] Babu | Absolutely continuous distribution functions of additive functions f (p) = (log p) -a , a > 0[END_REF] 

|f (p)| 1 ϕ(p) p , |f (p)| 1 f (p) 2 p , |f (p)|>1 1 p ,
where, here and in the sequel, the letter p generically denotes a prime number. Moreover, the characteristic function of the limit law F (z) is the given by the formula

(2)

F (τ ) := R e iτ z dF (z) = p 1 - 1 p ν 0 e iτ f (p ν ) p ν .
It has been long conjectured that the same conditions are also necessary and sufficient for the existence of a limiting distribution on a sequence of shifted primes, i.e. for the weak convergence, as x → ∞, of the distribution functions

1 π(x) p x f (p+a) z 1
to a distribution function G(z) whenever a is a non-zero integer. The sufficiency part of this conjecture was established by Kátai [START_REF] Kátai | On distribution of arithmetical functions on the set prime plus one[END_REF] using the Bombieri-Vinogradov theorem, whereas the more difficult necessary part, known as the Erdős-Kubilius conjecture, has been proved by Hildebrand [START_REF] Hildebrand | Additive and multiplicative functions on shifted primes[END_REF]. In this setting, the characteristic function of the limit law takes the form

(3) G(τ ) := p a 1 - 1 p -1 + ν 1 e iτ f (p ν ) p ν
In both cases, it follows respectively from classical results of Jessen-Wintner and of Lévy that the limiting distribution is always of pure type and that it is continuous if, and only if, ( 4)

f (p) =0 1 p = ∞.
In the classical situation (2), some attention has been focused along the years on the local behaviour of the limit law. We refer the reader to the recent work [START_REF] De La Bretèche | Sur la concentration de certaines fonctions additives[END_REF] for a review of results on the concentration function of the law F , and to the papers of Toulmonde [START_REF] Toulmonde | Module de continuité de la fonction de repartition de ϕ(n)/n[END_REF], [START_REF] Toulmonde | Sur les variations de la fonction de répartition de ϕ(n)/n[END_REF], [START_REF] Toulmonde | Vincent Comportement au voisinage de 1 de la fonction de répartition de ϕ(n)/n[END_REF], and Tenenbaum-Toulmonde [START_REF] Tenenbaum | Sur le comportement local de la répartition de l'indicatrice d'Euler[END_REF] for progress in the study of the modulus of continuity in the case f (n) := log{n/ϕ(n)}, where ϕ denotes the Euler totient.

In the analogous problem for shifted primes, corresponding to formula (3), Deshouillers and Hassani [START_REF] Deshouillers | A note on the distribution function of ϕ(p-1)[END_REF] recently considered the question of differentiability of the distribution function G(z) when f (n) = log{n/ϕ(n)}, and showed that the left derivative is infinite at all points in f (2N * ).

The main purpose of this note is to supply fairly general hypotheses implying that F and G both have infinite derivatives at all points from a specified infinite set, and indeed to provide explicit lower estimates for the moduli of continuity at these points.

We write

N a := {n ∈ N * : (n, a) = 1} and put v := 1 if 2 a, v := 0 if 2 | a.
Theorem 1. Let δ > 0 and c := δ/(1 + δ). Under hypotheses (4) and

(5)

f (p) 1/(log p) 1+δ ,
we have, as ε approaches 0,

F (z + ε) -F (z -ε) z ε 1-c (z ∈ f (N * )), G(z + ε) -G(z -ε) z ε 1-c (z ∈ f (2 v N a )).
It is interesting to note that, in the example of a strongly additive function f satisfying f (p) := 1/(log p) 1+δ with 0 < δ < 1, we know from a result of Babu (see also Exercise 259 of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF], with solution in [START_REF] Tenenbaum ; With | Exercices corrigés de théorie analytique et probabiliste des nombres, Cours spécialisés[END_REF]) that F is absolutely continuous. This cannot happen when f (p) 1/p δ , since a result of Erdős [START_REF] Erdős | On the smoothness of the asymptotic distribution of additive arithmetical functions[END_REF] then guarantees that F is purely singular. Such property also holds for G, as can be shown by adapting the solution, given in [START_REF] Tenenbaum ; With | Exercices corrigés de théorie analytique et probabiliste des nombres, Cours spécialisés[END_REF], of Exercise 256 of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF].

We also remark that our result above provides, as a weak consequence, the estimates

Q F (ε) ε 1-c , Q G (ε) ε 1-c (0 < ε < 1)
for the concentration functions associated to F and G respectively. While the second appears to be new, the first of these lower bounds recovers that of Erdős and Kátai [START_REF] Erdos | On the concentration of distribution of additive functions[END_REF], stated in the case of strongly additive functions such that f (p) = 1/(log p) 1+δ and which is optimal up to a factor (log log 1/ε) 2 -see [START_REF] De La Bretèche | Sur la concentration de certaines fonctions additives[END_REF] for an improvement.

The author takes pleasure in expressing here warm thanks to Jean-Marc Deshouillers, for drawing his attention to this topic and fruitful subsequent exchanges, and to Régis de la Bretèche, for helpful discussions on this matter.

Proof of Theorem 1

We restrict to the case of G with a = ±1, since the cases of arbitrary a and of F are analogous. We may plainly assume δ < 1.

Given y > 2, we let

G y (τ ) := 2<p y 1 - 1 p -1 ν 1 e iτ f (2 ν ) 2 ν 2<p y 1 + p -1 p -2 ν 1 e iτ f (p ν ) p ν
denote the characteristic function of the distribution function

(6) G y (z) := 2<p y 1 - 1 p -1 P + (n) y f (2n) z 1 k(2n)
where k is the multiplicative function defined by k(2 ν ) := 2 ν (ν 1), k(p ν ) := (p -2)p ν /(p -1) (ν 1, p > 2). We have

G y (τ ) = G(τ ) 1 + O τ /(log y) 1+δ |τ | (log y) 1+δ .
Thus the Berry-Esseen inequality implies, for all T 1,

sup z∈R |G(z) -G y (z)| Q G 1 T + T (log y) 1+δ ,
where Q G designates the concentration function associated to G. Selecting T = T y := (log y) (1+δ)/2 , we obtain [START_REF] Hildebrand | Additive and multiplicative functions on shifted primes[END_REF] sup

z∈R |G(z) -G y (z)| Q G 1 T y .
Now, for all ε > 0, 2 < v y, and letting r denote an integer all of whose prime factors belong to ]v, y], we have

|f (r)|>ε 1 k(r) r 1 k(r) e -(log v) 1+δ {ε-|f (r)|} e -ε(log v) 1+δ log y log v •
For fixed z := f (2m), sufficiently small η > 0, ε > 0 and large y, we select v := exp{(ηε) c-1 } and thus obtain, with a suitable constant K,

P + (n) y |f (2n)-z| ε 1 k(2n) 1 k(2m) |f (r)| ε 1 k(r) 1 k(m) v<p y 1 + 1 p -2 -Ke -1/η log y log v η ε 1-c log y k(m) •
Inserting back in ( 6) taking [START_REF] Hildebrand | Additive and multiplicative functions on shifted primes[END_REF] into account, we get, with suitable c 0 > 0, c 1 > 0,

G(z + ε) -G(z -ε) c 0 ε 1-c k(m) -c 1 Q G 1 T y
whence, letting y tend to infinity,

G(z + ε) -G(z -ε) ε 1-c k(m) •