Frank Vega
email: vega.frank@gmail.com

A Simple Proof of P versus NP

Keywords: P, NP, coNP, maximum, succinct

P versus NP is one of the most important and unsolved problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? Another major complexity class is coNP. Whether NP is equal to coNP is another fundamental question that it is as important as it is unresolved. We shall show there is a problem in coNP that is not in P. Since P = NP implies P = coNP, then we prove that P is not equal to NP.

Introduction

P versus NP is a major unsolved problem in computer science. This problem was introduced in 1971 by Stephen Cook [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Fortnow | The Status of the P versus NP Problem[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [START_REF] Fortnow | The Status of the P versus NP Problem[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. The deterministic and nondeterministic Turing machine have become in some of the most important definitions related to this theoretical model for computation. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational complexity[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Papadimitriou | Computational complexity[END_REF].

Another huge advance in the last century was the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF].

In computational complexity theory, the class P contains those languages that can be decided in polynomial-time by a deterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF]. The class NP consists in those languages that can be decided in polynomial-time by a nondeterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF].

The biggest open question in theoretical computer science concerns the relationship between these two classes:

Is P equal to NP?

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF] Gasarch | The P=?NP poll[END_REF].

If NP is the class of problems that have succinct certificates, then the complexity class coNP contains those problems that have succinct disqualifications [START_REF] Papadimitriou | Computational complexity[END_REF]. That is, a "no" instance of a problem in coNP possesses a short proof of its being a "no" instance [START_REF] Papadimitriou | Computational complexity[END_REF]. We discuss one problem that is not in P. At the same time, we show this language is also in coNP. But, we already know if P = NP, then P = NP = coNP [START_REF] Papadimitriou | Computational complexity[END_REF]. In conclusion, we demonstrate the existence of a coNP language that is not in P, and therefore, P NP [START_REF] Papadimitriou | Computational complexity[END_REF].

Results

Definition 2.1. Given a set S of n (distinct) positive integers and an integer x, MAXIMUM is the problem of deciding whether x is the maximum number in S .

How many comparisons are necessary to determine when some integer is the maximum in a set of n elements? We can easily obtain a upper bound of n comparisons: examine each element of the set in turn and keep track of the largest element seen so far, and finally, compare the final result with x [START_REF] Cormen | Introduction to Algorithms[END_REF]. Is this the best we can do? Yes, since we can obtain a lower bound of n -1 comparisons for the problem of determining the maximum in a set of integers [START_REF] Cormen | Introduction to Algorithms[END_REF]. And one final comparison for the verification of whether this maximum is equal to x. Hence, n comparisons are necessary to determine whether an element x is the maximum in S . This naive algorithm for MAXIMUM is optimal with respect to the number of comparisons performed [START_REF] Cormen | Introduction to Algorithms[END_REF].

On the other hand, a Boolean circuit may be viewed as the computation on the binary input sequence proceeds by a sequence of Boolean operations (called gates) from the set {∧, ∨, ¬} (logical AND, OR and NEGATION) to compute the output(s). While an algorithm can handle inputs of any length, a circuit can only handle one input length (the number of input gates it has). The efficiency of a circuit is measured by its size. Definition 2.2. A succinct representation of a set of (distinct) b-bits positive integers is a Boolean circuit C with b input gates [START_REF] Papadimitriou | Computational complexity[END_REF]. The set represented by C, denoted S C , is defined as follows: Every possible integer of S C should be between 0 and 2 b -1. And j is an element of S C if and only if C accepts the binary representations of the b-bits integer j as input. The problem SUCCINCT MAXIMUM is now this: Given the succinct representation C of a set S C and a b-bits integer x, where C is a Boolean circuit with b input gates, is x the maximum in S C ? Let's state our principal Theorem. Theorem 2.3. SUCCINCT MAXIMUM P.

Proof. As we mentioned before, we should need n comparisons to know whether x is the maximum in a set of n (distinct) positive integers when the set S is arbitrary. And this number of comparisons will be optimal [START_REF] Cormen | Introduction to Algorithms[END_REF]. This would mean we cannot always accept every instance This previous language is very similar to SUCCINCT MAXIMUM, but the set S C might not contain the b-bits integer x. QUESTION: Is there some element y of S C such that x < y?

Every "yes" instance C; x of coSUPREME could be verified in polynomial-time with a given certificate. Indeed, we can prove in polynomial-time whether x is an integer of a bit-length equal to b, where b is the number of input gates in C. Moreover, given a b-bits integer y, we can check whether C accepts the binary representation of y (which means that y is an element of S C) and x < y in polynomial-time, since the comparison of two b-bits integers can be done in polynomial-time and the efficiency of the acceptance of y by C only depends in the size of the circuit. Since the bit-length of the certificate y is more short than the size of C; x , then the language coSUPREME will be in NP. Consequently, SUPREME would be in coNP.

We say that a language L 1 is polynomial-time reducible to a language L 2 if there exists a polynomial-time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
Theorem 2.7. SUCCINCT MAXIMUM ∈ coNP.

Proof. Given an instance C; x of SUCCINCT MAXIMUM and over the assumption that x is in S C , we can state that C; x would belong to SUCCINCT MAXIMUM if and only if C; x is in SUPREME. In addition, we could decide whether x is in S C in polynomial-time just verifying whether C accepts the binary representation of x, because the efficiency of the acceptance of x by C will only depend in the size of the circuit. Hence, it will exist an identity polynomial-time reduction from SUCCINCT MAXIMUM to SUPREME, such that this will first check whether x is in S C . We say that a complexity class G is closed under reductions if, whenever L 1 is reducible to L 2 and L 2 ∈ G, then also L 1 ∈ G [START_REF] Papadimitriou | Computational complexity[END_REF]. Since coNP is closed under reductions, then we obtain that SUCCINCT MAXIMUM is in coNP [START_REF] Papadimitriou | Computational complexity[END_REF]. Theorem 2.8. P NP.

Proof. The existence of a problem in coNP and not in P is sufficient to show that P NP, because if P would be equal to NP, then P = coNP [START_REF] Papadimitriou | Computational complexity[END_REF].

Conclusions

This proof explains why after decades of studying the NP problems no one has been able to find a polynomial-time algorithm for any of more than 300 important known NP-complete problems [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF]. Indeed, it shows in a formal way that many currently mathematically problems cannot be solved efficiently, so that the attention of researchers can be focused on partial solutions or solutions to other problems.

 C; x of SUCCINCT MAXIMUM in polynomial-time, because we must use at least n = |S C | comparisons for infinite amount of cases, where |S C | is the cardinality of S C . However, n could be exponentially more large than the size of C; x . Now, let's define a new problem. Definition 2.4. Problem SUPREME: INSTANCE: The succinct representation C of a set S C and a b-bits integer x, where C is a Boolean circuit with b input gates.QUESTION: Does every element y of S C comply with x ≥ y?

Lemma 2 . 5 .Definition 2 . 6 .

 2526 SUPREME ∈ coNP. Proof. Let's state the complement language of SUPREME. Problem coSUPREME: INSTANCE: The instances of SUPREME.

Although this demonstration removes the practical computational benefits of a proof that P = NP, it would represent a very significant advance in computational complexity theory and provide guidance for future research. In addition, it proves that could be safe most of the existing cryptosystems such as the public-key cryptography. On the other hand, we will not be able to find a formal proof for every theorem which has a proof of a reasonable length by a feasible algorithm.