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Abstract

Raindrop impact is an important process in soil erosion. Through its
pressure and shear stress, raindrop impact causes a significant detach-
ment of the soil material, making this material available for transport by
sheet flow. Thanks to the accurate Navier-Stokes equations solver Gerris,
we simulate the impact of a single raindrop of diameter D, at terminal
velocity, on water layers of different thickness h: D

10 ,
D
5 ,

D
3 ,

D
2 , D, 2D, in

order to study pressures and shear stresses involved in raindrop erosion.
These complex numerical simulations help to understand precisely the dy-
namics of the raindrop impact, quantifying in particular the pressure and
the shear stress fields. A detailed analysis of these fields is performed and
self-similar structures are identified for the pressure and the shear stress
on the soil surface. The evolution of these self-similar structures are in-
vestigated as the aspect ratio h/D varies. We find that the pressure and
the shear stress have a specific dependence on the ratio between the drop
diameter and the water layer thickness and that the scaling laws recently
proposed in fluid mechanics are also applicable to raindrops, paving the
road to obtain effective models of soil erosion by raindrops. In particu-
lar, we obtain a scaling law formula for the dependance of the maximum
shear stress on the soil on the water depth, quantity that is crucial for
quantifying erosion materials.
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Introduction
Raindrop impact is a major driver of soil erosion and is acting through a wide
range of processes (Terry, 1998; Planchon and Mouche, 2010): the raindrop
impacts break down aggregates, leading to soil detachment and crust formation
(Bresson and Moran, 2003). They also cause splashes, i.e. the transport of soil
material in the air over distances of a few decimeters (Leguédois et al., 2005).
Also, raindrop impacts are essential in shallow overland flow (i.e. sheet flow) for
the detachment of particles. Indeed, sheet flow by itself does not have the ability
to detach particles because of its limited velocity and thus weak shear stress
(Kinnell, 1991). The impacts of the raindrops can detach the material that is
then transported by the sheet flow.

Drop impact effects can differ strongly depending on whether the soil is dry
or wet because both the shear strength of the soil and the shear stress caused
by the drops depend on the soil humidity. Rapidly, for raindrops, the soil can
be considered wetted so that we will focus here on the impact on a thin liquid
film. The presence of a thin water layer at the soil surface modifies the effect
of raindrop impacts (Kinnell, 1991). The consequences of drop impacts depend
primarily on drop properties. However, the drops of concern for soil erosion have
a narrow range of features: raindrops are considered at terminal velocity, leading
to a clear relationship between diameter and velocity (Atlas et al., 1973). This
contrasts with other usual applications in fluid mechanics (e.g. ink-jet printing
where the ink drop impacts the paper or the coating of a surface by multiple
drop impacts) where drops vary in viscosity, density, surface tension, velocity and
diameter (Marengo et al., 2011).

Raindrop-driven erosion depends also on soil properties such as soil resistance
to shear stress (Sharma et al., 1991; Mouzai and Bouhadef, 2011), hydropho-
bicity (Ahn et al., 2013) and roughness (Erpul et al., 2004). While raindrop
impacts cause splashes, the quantity of eroded material is controlled mostly by
the shear created by the impact, which is not strongly affected by the splash itself
(Josserand and Zaleski, 2003). Indeed, it has been argued that the erosion, in
term of bedload transport rate, is controlled by the shear stress affected at the soil
boundary, usually measured through the dimensionless Shields number (Parker,
1990; Charru et al., 2004; Houssais and Lajeunesse, 2012). Although these re-
sults have been deduced precisely for gravel river beds made of non-cohesive
granular materials with a narrow granulometric distribution, it is believed that
this bed shear stress and to a smaller extent the bed pressure, are the main
ingredients of most of erosion processes. Therefore, if the transport of eroded
materials can be influenced by the splashing itself, which is always present for
raindrop impact, the bedload transport rate is primarily due to the shear stress
created by the impact.
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The influence of the water layer on the erosion process has also drawn at-
tention: at first, one could argue that the erosion is limited by the shielding of
the soil surface by the water layer. Raindrop energy is absorbed by the water
layer, which lowers the pressure and shear stress exerted on the soil. It has been
in fact documented that a water layer can maximize sheetflow erosion rate in
comparison to a drained surface and that such erosion depends mostly on the
ratio between the water depth and the raindrop diameter (Singer et al., 1981). In
fact, there is a critical depth hc at which the splash transport rate is maximum:
beyond hc the transport rate decreases strongly. However, different values for
hc have been proposed in the literature as shown in Dunne et al. (2010): for
instance it can vary from hc = D (Palmer, 1963, 1965) to hc = 0.2D in Torri
and Sfalanga (1986), and even with 0.14D ≤ hc ≤ 0.2D according to Mutch-
ler and Young (1975). Finally, Ghadiri and Payne (1986) showed a reduction
of soil splash once a water layer covers the soil surface while Moss and Green
(1983) and Kinnell (1991) found that the outflow rate of raindrop-induced flow
transport reaches its maximum value when the flow depth equals two to three
drop diameters. For three drop diameters (and above), detachment by raindrops
becomes quite limited but drop energy still allows for particle suspension, leading
to a significant transportation rate (Ferreira and Singer, 1985).

Raindrop interaction with the soil surface has been investigated using numer-
ical simulations from the 1970 (Wang and Wenzel, Jr, 1970). They allow for the
computation of pressure and shear stress fields at the soil surface (Huang et al.,
1982; Ferreira et al., 1985; Hartley and Alonso, 1991; Hartley and Julien, 1992).
All these simulations considered a rigid soil surface, hence not accounting for
the elasticity of the soil or its granular nature. According to Ghadiri and Payne
(1986), the soil behaves like a solid during the short time of the impact, justify-
ing the simplification. These simulations have enabled the determination of the
critical variables. For example, the maximum shear stress was found to depend
mostly on the Reynolds number and of the water layer thickness–drop diameter
ratio (Hartley and Alonso, 1991; Hartley and Julien, 1992). However, due to
limitations in computer and algorithm performance, simulations were carried out
with critical parameters (such as the Reynolds number) well out of the natural
range, moderating confidence in the results.

The present paper takes advantage of the recent developments of detailed
and direct simulations in fluid mechanics to study the impact of single raindrops
on a soil surface with a water layer (see the reviews on drop impacts in the
fluid mechanics literature: Rein (1993); Yarin (2006); Marengo et al. (2011);
Josserand and Thoroddsen (2016)). The pressure field inside the water layer,
the pressure field at the soil surface and the shear stress at the soil surface are
analyzed for raindrop of diameter 2 mm and terminal velocity 6.5 m ·s−1, varying
the thickness of the water layer. Short time scales are considered, i.e. develop-
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Figure 1: Schematic configuration of a raindrop (diameter D and terminal ve-
locity U) impacting a water layer of depth h.

ment of stresses before particle splash initiation. A self-similar approach valid
for a thin liquid layer is used to analyze the results, showing that scaling laws
recently proposed in fluid mechanics apply to natural raindrops too. It confirms
that the ratio between the water depth and the raindrop diameter is critical to
understand the effect of raindrop impact.

Materials and Methods

Problem configuration
We consider the normal impact of a liquid drop of diameter D on a thin liquid film
of thickness h in the paradigm of rainfall (Figure 1). The liquid has a density and
dynamic viscosity denoted ρl and µl . The density and viscosity of the surrounding
gas are denoted ρg and µg . The drop impacts on the ground at velocity U =
−U0ez which corresponds to the terminal velocity for a raindrop. We will assume
here for the sake of simplicity that the raindrop has a spherical shape, even
though it is known that raindrops can have a deformed shape, particularly for
large diameters (Villermaux and Bossa, 2009). However, it is not expected to
significantly impact the dynamics and the effect of the specific shape of the
impacting drop is postponed to future work. The gravity is denoted g = −gez ,
and the liquid-gas surface tension γ.

Different dimensionless parameters can be constructed in this configuration.
Two of them are commonly used in drop impact problems, since they characterize
the balance between the inertia of the drop with the viscous and capillary forces
respectively: firstly, the Reynolds number Re which is the ratio between inertia
and viscous forces:

Re = ρlU0R
µl

.
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For raindrops, Re ranges from 6500 to 23000 (Hartley and Julien, 1992). Sec-
ondly the Weber number We which is defined as the ratio between inertia and
capillary forces:

We = ρlU2
0R
γ

.

The Weber number ranges from 50 (for a raindrop diameter of 0.5 mm and a
velocity of 2 m/s) to 12000 (for a raindrop diameter of 6 mm and a velocity of
9 m/s) for natural rainfall. The problem depends also on the aspect ratio of the
problem geometry, i.e. the ratio between the drop diameter and the thickness of
the liquid film:

h
D .

Additional dimensionless numbers are present in this problem, but are of limited
interest, either because they do not depend on the raindrop impact configuration,
or because they characterize a physical mechanism that can be neglected here.
It is the case of the Froude number

Fr = U2
0

gD ,

which quantifies the ratio between inertia and gravity forces, it can take values
between 800 and 1400 for natural rainfall. Indeed, although gravity is crucial
to accelerate the raindrop to its terminal velocity, the gravity itself plays quite
a limited role in the impact dynamics and hence is usually not accounted for in
the modeling and numerical simulation of drop impacts (Josserand and Zaleski,
2003). For instance, for a drop falling from a height H , the free fall velocity
gives U2

0 ∼ 2gH so that the Froude number is simply the ratio 2H/D. Since
the terminal velocity of a raindrop is equivalent to a free fall height H of several
meters, the Froude number will always be very high in the present problem.
Remark finally that while the Reynolds and Weber numbers are also high in
the present problem, it does not mean that viscous and capillary effects can be
neglected: the formation of a thin liquid layer means that viscous and capillary
effects will be important in some region of the flows - something that is not valid
for gravity, which can thus be safely neglected.

The two dimensionless numbers related to the liquid/gas properties, namely
the density ratio ρg/ρl and the viscosity ratio µg/µl , present a limited interest
too: while the surrounding gas can sometime influence the splashing properties
(Xu et al., 2005), in particular through the entrapment of an air bubble beneath
the drop at the impact (Thoroddsen et al., 2003, 2005), this effect is negligible
for the impact of a raindrop (Hartley and Alonso, 1991). Moreover, these two
dimensionless numbers are only related to the gas and liquid characteristics and
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not to the impact conditions. Therefore they do not vary significantly with the
raindrop radius and velocity.

Based on the water hammer pressure, that is the pressure created by the
inertia of the drop hitting a solid surface, it was first suggested in soil erosion
literature that the amplitude of the stress on the soil surface can be quite large
(2 − 6 MPa), with a limited duration of about 50 microseconds (Ghadiri and
Payne, 1980), this duration increasing with the depth of the water layer (Ghadiri
and Payne, 1986). However, such high water hammer pressures have not been
observed experimentally (Ghadiri and Payne, 1986; Hartley and Julien, 1992;
Josserand and Zaleski, 2003) and, following the argument of Ghadiri and Payne
(1980), it can be shown that this pressure should arise only during a very short
time of the order of D/c (where D is the drop diameter and c the sound speed)
leading to a typical time scale of the order of one microsecond as found by Ghadiri
and Payne (1986). Then, the pressure decreases rapidly with time as shown in
numerical simulations (Josserand and Zaleski, 2003). Moreover, as discussed
by Nearing et al. (1986) and Nearing et al. (1987), compressible effects can be
neglected since they will only influence the very early time of contact and a very
small region of the impacted zone. This is in agreement with former theoretical
and experimental studies on drop impacts where compressible effects were shown
to appear only at much higher drop velocities, typically of the order of a fraction
of the sound velocity in water (Lesser and Field, 1983). Therefore, as shown
and as used in the recent studies, the liquid can be assumed incompressible
during the impact (Rein, 1993; Yarin, 2006; Marengo et al., 2011; Josserand and
Thoroddsen, 2016).

The two-fluid Navier-Stokes equations
Both the gas and the liquid obey the incompressible Navier-Stokes equations
(with respective densities and viscosities) with jump conditions at the interface.
This complete dynamics can be described within the one fluid formulation of the
incompressible Navier-Stokes equation, that reads:

ρ

(
∂u
∂t + u∇u

)
= −∇p + ρg+ µ4u+ γκδsn (1)

to which is added the equation of mass conservation, which for incompressible
fluid yields

∇ · u = 0, (2)
where u is the vector of fluid velocity, ∇ is the usual differential operator, p the
pressure field, function of space x and time t, and 4 the Laplacian operator. In
these equations, the density ρ(x, t) and viscosity µ(x, t) are discontinuous fields
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of space and time. ρ(x, t) (µ(x, t)) is ρl or ρg (µl or µg) depending on whether
we are in the liquid or gas phase. The term γκδsn represents the surface tension
force, proportional to the curvature κ and localized on the interface (the Dirac
term δs) with normal is n. The curvature is defined by the divergence of this
vector:

κ = ∇ · n.
An additional equation has to be considered for the motion of each phase (gas and
liquid) leading eventually to the movement of the interface. Indeed, considering
the characteristic function χ(x, t) which is equal to one in the liquid phase and
zero in the gas phase, the volume conservation of both phases implies that χ is
solution of the advection equation:

∂χ

∂t + u · ∇χ = 0. (3)

Within this framework, both fluids satisfy the incompressible Navier-Stokes equa-
tion with the applicable density and viscosity.

From here on the soil surface is taken to be rigid. This simplification comes
from the unavailability of a realistic deformation law for soils at the scale of a
raindrop.

Numerical Method and dimensionless version
The Navier-Stokes equations (1,2,3) are solved by the open source Gerris flow
solver (version 2013/12/06) (Popinet, 2007). Gerris uses the Volume of Fluid
method on an adaptive grid (Popinet, 2003, 2009). The rotational symmetry of
the problem around the vertical axis is used to perform 2D numerical simulations
using cylindrical coordinates (called 3D-axisymmetric coordinates).

The discretization of the equations is made on a quadtree structure for square
cells. The quadtree structure allows for a dynamic mesh refinement: when
needed, a "parent" cell of the mesh is divided into four identical square "children"
cells (which length is half the one of the parent cell), up to a maximum level
n of refinement. Similarly, a cell merging is performed whenever the precision
of the computation is below a user-defined threshold. The refinement/merging
criterion is based on a mix of high values of the density and velocity gradients.
Hence, smaller cells are used at the gas/liquid interface and at locations showing
large changes in velocity.

The interface between the gas and liquid phases is tracked using a color
function C which corresponds to the integral of the characteristic function in each
grid cell. C is taken as the fraction of liquid phase inside the cell. This allows for
the interface to be reconstructed using the piecewise linear interface calculation
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(Li, 1995), leading to a conservative advective scheme for the advection of the
interface (Brackbill et al., 1992; Lafaurie et al., 1994). For each phase, the
viscosities (µg or µl) and the densities (ρg or ρl) are constant because the fluids
are assumed incompressible. Hence, each cell crossed by the interface has a
viscosity µ and a density ρ determined by the relative volume fraction of each
phase, following:

ρ = Cρl + (1− C)ρg ; and µ = Cµl + (1− C)µg . (4)

Finally, the Navier-Stokes equations are solved in Gerris in a dimensionless
form to lower numerical errors. The domain length has a size of one. The other
lengths are rescaled by a factor λ using a numerical diameter of the raindrop
D′ = 0.3 in Gerris (so λ = D/D′), the velocities, densities, time and pressure by
U0, ρl , λ/U0 and ρlU2

0 , respectively. Hence, the effective Navier-Stokes equation
to solve reads:

ρ′
(
∂u’
∂t ′ + u’∇′u’

)
= −∇′P ′ + ρg’+ µ′4′u’+ γ′κ′δ′sn (5)

where the primes represent dimensionless variables.

Simulated cases and conditions
We performed numerical simulations for typical raindrop impacts falling on a
water layer. All computations were done for spherical raindrops of diameter
equal to D = 2mm. Considering the scaling factor D′ = 0.3, this leads to a
domain of 6.67mm in both width and height. The raindrop velocity was set to
its terminal velocity, U0 = 6.5m s−1. The thickness of the water film h varied
from D/10 (i.e 0.2mm) to 2D (i.e. 4mm), with the intermediate cases D/5,
D/3, D/2 and D.

Standard air and water properties were used: ρl = 103 kgm−3, µl =
10−3 kgm−1 s−1, ρg = 1 kgm−3, µg = 2× 10−5 kgm−1 s−1, with a surface ten-
sion γ = 0.02 kg s−2. In this configuration, the Reynolds number Re was 6500
and the Weber number We 2112.5. These large values indicate that inertia dom-
inates a priori the other forces. Preliminary testing confirmed that the effect of
gravity was negligible during a raindrop impact. Consequently, gravity was not
included in the simulations.

At high velocities, drop impacts develop angular instabilities leading to the
famous pictures of splashing, popularized for instance in commercials. Splash is
one of the key issue of drop impacts identified already by Worthington (1876)
in the first studies on drop impacts, leading for instance to secondary droplet
breakups (Rein, 1993). These splashing dynamics can be important in soil ero-
sion because it can transport eroded material at large distances as shown by

8



Planchon and Mouche (2010). In the present case, the axisymmetric geometry
can be used because 1) we are focusing on the erosion mechanism itself and not
on the transport of particle, and 2) such instabilities become relevant for time
scales much larger than the typical time scale of the pressure and shear stress
development at the soil surface. Consequently, an axial boundary condition was
imposed on the symmetry axis (r ′ = 0). At the soil surface (z ′ = 0), a zero
velocity boundary condition (also known as Dirichlet condition) was set. This
ensured that both 1) no infiltration (u′z = 0) and 2) no slip (u′r = 0) occurred.
For the top (z ′ = H ′max = 1) and radial (r ′ = R ′max = 1) boundaries, either Neu-
mann (no slip) or Dirichlet (zero velocity) boundary conditions could potentially
be used. Preliminary testing showed that the type of boundary condition did not
influence the results because the simulated domain was large enough compared
to the area of interest. For the simulations, a Dirichlet condition was used at
z ′ = H ′max and r ′ = R ′max .

During the simulation of a raindrop impact, the water height h can become
zero (especially for thin initial water depths). The occurrence of cells with h = 0
requires special attention, because it involves the motion of the contact line
separating the water and the air along the soil surface (i.e. a triple-point occurs).
In general, a specific boundary condition should be applied at the moving contact
point to account for the high viscous stresses involved (Afkhami et al., 2009). In
our case, an alternative approach can be used by acknowledging that a real soil
surface is not exactly smooth but involves some roughness that can be crucial
for the dynamics of the impact. This roughness can be taken into account by
imposing a Navier slip boundary condition on the soil surface with a slip length
of the order of the roughness (Barrat and Bocquet, 1999). Technically, since the
usual no-slip boundary condition imposed by the numerical scheme corresponds
to a Navier slip condition with a slip length of the order of the mesh size, one
has to simply take the no-slip boundary condition here with a mesh size similar
to the surface roughness. Therefore, the numerical no-slip boundary conditions
imposed for a constant level of refinement can be interpreted as a natural model
for the soil roughness. In that framework, throughout the simulations, we can
consider that a surface roughness equal to 65 µm was used (level of refinement
n = 10).

Results and discussion

Overall dynamics
The phenomenology of a drop impact on a thin water layer is illustrated for the
case h = D/10 in Figure 2, where the interface, the velocity and the pressure
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fields are shown together for different times. In the following, the initial time
t ′ = 0 is taken as the theoretical time of impact, defined by the falling velocity
U ′0 = 1 of a sphere onto the undeformed flat liquid layer.

At t ′ = 10−3 (i.e. 1 µs after the impact initiation), the drop and the water
layer are still separated by a narrow sheet of air (Figure 2a). Nevertheless, the
pressure has started to increase in the water, mediated by the high lubrication
pressure created in the cushioning air layer located between the drop and the
liquid film. The maximum pressure (P ′max = 1.85, i.e. Pmax = 78.2 kPa) is
between the drop and the water layer.

At t ′ = 10−2 (i.e. 10 µs after the impact initiation), the drop and the water
layer have started to merge and some air is trapped inside the water (Figure 2b)
due to the air cushioning (Thoroddsen et al., 2003; Korobkin et al., 2008). A high
pressure field is created, with a maximum pressure of P ′max = 2.68 (i.e. Pmax =
113.2 kPa) now located close to the wedge formed by the intersection between
the drop and the liquid layer. At t ′ = 0.03 (i.e. 31 µs after the impact initiation),
most of the water which belonged to the raindrop still have its terminal velocity
(Figure 2c). It is only in the impact region that the velocity vectors rotate from
the vertical. In this same area, the velocities are smaller than the terminal velocity
but in the small wedge region one can see the formation of a high-speed jet
created by the high pressure peak. Indeed, the maximum pressure is still located
near the wedge but has started to decrease (P ′max = 1.47, i.e. Pmax = 62.1 kPa).
A few droplets are emitted from the wedge.

At t ′ = 0.08 (i.e. at t = 82 µs), a complex velocity field is formed (Figure 2d).
Firstly, a jet has been emitted by the impact, leading to a splash of which
the specific dynamics would be fully three dimensional and which is not at the
heart of the present study. Secondly, close to the soil surface, the velocity
field is expanding mostly radially due to the spreading of the raindrop into the
water layer. Together with the no-slip boundary condition on the soil surface, it
leads to a radial velocity field depending both on the radius r ′ and the vertical
coordinate z ′. In fact, the no-slip boundary condition imposed at z ′ = 0 induces
the formation of a viscous boundary layer between the substrate and the radial
flow created by the impact (Roisman, 2009; Eggers et al., 2010). Hence, the soil
is subjected to a significant shear stress which is crucial for erosion processes.
The pressure field is now maximum near the soil surface, directly under the
impact region, but its maximum value has decreased to P ′max = 0.8 (i.e. Pmax =
33.8 kPa).

This general description is in agreement with the previous publications on
raindrop impacts on a water layer (Wang and Wenzel, Jr, 1970; Ghadiri and
Payne, 1977, 1980, 1986; Hartley and Alonso, 1991; Hartley and Julien, 1992;
Marengo et al., 2011).

Since the erosion rate depends mostly on the shear stress applied on the soil
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Figure 2: Pressure and velocity fields in the water (colors and arrows respectively)
as function of time for a film layer of h = D

10 .
The drop diameter is 2mm with a terminal velocity of 6.5m s−1.
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surface, a detailed analysis of the dynamical evolution of the stress tensor during
the impact is needed. In particular, the Meyer-Peter and Müller equation is often
used, relating the erosion rate qs to the shear stress τ through (Meyer-Peter and
Müller, 1948; Houssais and Lajeunesse, 2012):

q′s = c(τ ′ − τ ′c)3/2,
where the dimensionless erosion rate and shear stress are defined by:

q′s =
qs√

(ρs/ρl − 1)gd3
and τ ′ = τ

(ρs − ρl)gd

where d is the typical size of the grains composing the soil, ρs its density and
c an empirical constant fitted through experimental data. In the following, we
will use the numerical simulations done for raindrop conditions to deduce scaling
laws for the shear stress induced by the impact that we will compare with simple
formulas obtained using a self-similar model. Prior to the shear stress itself,
we will investigate the pressure field created by the impact, where self-similar
behavior has already been observed (Josserand and Zaleski, 2003). Here, self-
similarity means that the pressure field depends only on a quantity that is time
dependent. In particular, it means that the pressure field conserves the same
shape with time, with only amplitude and size varying with time.

Pressure evolution inside the water and self-similar approach
In fluid mechanics, scaling laws have been deduced from numerical simulations
of the pressure evolution inside the water during the impact of a droplet on a
solid surface or in the limit of thin liquid films, using a self-similar approach
(Josserand and Zaleski, 2003; Eggers et al., 2010). However, their validity has
not been studied in the context of raindrop impacts yet, in particular when the
liquid film thickness varies. The self-similar approach is based on a theory first
developed by Wagner (1932) using as the typical length scale involved in the
impact, the intersection between a falling spherical drop and the unperturbed
liquid layer surface. In other words, the pertinent length scale of the impact
rc(t) (or r ′c(t ′) in dimensionless form) follows:

rc ∝
√
DU0t or r ′c ∝

√
t ′, (6)

where t (t ′) is the time after the contact of the falling drop on the surface.
This formula corresponds to the intersection of the drop (taken as a circle of
radius D/2) that is in contact with the water surface at time t = 0. The self-
similar theory takes advantage of the observation on the numerical simulations
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that the perturbed region of the drop at short time after impact is governed by
rc (Josserand and Zaleski, 2003). Such self-similar approach is possible when no
specific length scale is dominating the dynamics: this is precisely the situation
at short time for high Reynolds and Weber numbers, where only the intersection
between the falling drop and the impacting liquid layer is thus playing a role.

Indeed, figure 3 shows the evolution with time of the radial position r ′c of
the maximum pressure in the water for different liquid layer thicknesses. This
evolution can be separated into three stages. For t ′ < 2.10−3 (i.e. for durations
smaller than 2.1 µs), the evolution of r ′c depends on the ratio h/D. This is also
true for t ′ > 2.10−2 (i.e. for durations larger than 20.5 µs), where it can also be
noticed that, at the beginning of this period, r ′c is of the order of one raindrop
radius (i.e. r ′c = 0.15 in Figure 3). In the intermediate stage, all the values of r ′c
collapse onto a single straight line (in log-log scale), meaning that the relationship
between the location of the maximum pressure and time is independent of the
ratio h/D. Over this period, the position of the maximum pressure r ′c(t ′) is in
good agreement with the former square-root law (6), yielding quantitatively:

r ′c = 0.65
√
t ′.

Remarkably and as predicted by the theory, this law is independent of the
layer thickness, in addition to being found independent on the Reynolds and
Weber numbers in previous studies (as long as these numbers are high enough)
(Thoroddsen, 2002; Josserand and Zaleski, 2003).

As geometrically deduced, this geometric law should not be valid for rc >
D/2. However, it is well known that the square-root law for rc is in fact observed
for much larger values and in the figure, the law is typically valid up to rc ∼ 2 D.
Indeed, it has been argued that such a square-root law is also the cylindrical
shock solution of the shallow-water equations as explained in Yarin and Weiss
(1995) so that the geometric law matches this shock solution for longer times.
The limitation of this regime at short and long times can be explained by two
distinct arguments. At short time, the cushioning of the air layer delays the
contact between the drop. At long time scales, numerical limitations can also be
present: because the drop spreading has a large spatial extent, finite size effects
coming from the size of the numerical box start to affect the dynamics.

Similar regimes are observed for the maximum pressure in the water P ′c as
shown in Figure 4. Firstly, the pressure is slightly varying at short time t ′ <
2.10−2 (i.e. lower than 20.5 µs) and does not depend on the h/D ratio. At
this stage the contact between the raindrop and the water layer is weak and we
attribute this effect to the lubrication pressure created in the gas layer. At long
time, typically corresponding to r ′c > D/2, the pressure is rapidly dropping to
very small values. In between, corresponding roughly to 2.10−2 ≤ t ′ ≤ 10−1
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after impact for different water depth/drop diameter ratios.
Note: the exponent was not fitted.

the pressure is decreasing with time following power law behaviors. However,
two distinct regimes are observed depending on the ratio h/D: for small aspect
ratio (typically h/D < 1/4) the maximum pressure is found to decrease following
the inverse of the square-root of the time (Figure 4 a), as usually observed for
the impact on thin liquid layer (Josserand and Zaleski, 2003). For thicker water
layers (i.e. for h/D > 1/4), another regime is observed where the maximum
pressure decreases first like the inverse of time (Figure 4 b), while the inverse of
the square-root of the time seems to remain valid at larger time. The crossover
between these two time dependances increases with the aspect ratio h/D.

As detailed in Josserand and Zaleski (2003), the thin water layer behavior
can be understood using a simple momentum balance in the self-similar impact
region. Indeed, it has been observed that in this regime, the pressure field is
perturbed in the impacted region only, defined by the characteristic length rc(t).
Therefore, one can develop a self-similar approach using this length and perform
the vertical momentum balance in the self-similar volume of radius rc(t) (the
volume being that of a half sphere of radius rc , namely 2πr 3

c /3), yielding:

d(2ρlπrc(t)3U0/3)
dt ∼ πrc(t)2Pc(t),

where Pc(t) is the typical amplitude of the pressure field created by the impact.
This equation balances the variation of vertical momentum in the self-similar
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half-sphere of radius rc(t) with the force of the pressure on the liquid layer,
giving thus:

Pc(t) ∝ ρlU0
drc(t)
dt ∼ ρlU2

0

√
D
U0t

.

This regime is in good agreement with the observed maximum pressure evo-
lution for thin liquid films (Figure 4a). Moreover, this regime start to fail at
longer time (typically corresponding to rc(t) ∼ D/2) and the dynamics can then
be described by the shallow-water equation (Yarin and Weiss, 1995; Lagubeau
et al., 2010).

For thick water layers, the former vertical momentum balance does not work
since the liquid layer dynamics have to be taken into account. However, inspired
by the former balance, one can deduce a simple model: considering that the
radial characteristic length is still rc but that the vertical one is now h, we obtain

d(ρlπrc(t)2hU0)
dt ∼ πrc(t)2Pc(t),

which gives the observed scaling for the pressure:

Pc(t) ∼ ρlU0
h

rc(t)
drc(t)
dt ∼ ρlU2

0
h
U0t

.

The former thin layer regime is retrieved at larger time in this configuration
and one can argue that it comes from the fact that the liquid contained in the
layer has been pushed away by the impact so that only a thin residual liquid layer
remains beneath the drop.

Therefore, we have exhibited that the pressure field due to the impact fol-
lows self-similar laws involving the spreading radius rc(t). However, as explained
above, the crucial quantity for the erosion process is not the maximum pressure
in the liquid but rather the shear stress at the soil surface. The self-similar ap-
proach can be used a priori to compute the soil surface quantities, but one has
to notice that the soil surface does not coincide with the self-similar geometry
(which involves the liquid layer interface rather than the solid surface). In con-
clusion it leads to the difficult challenge of determining the shear stress at the
intersection between the self-similar geometry and the soil surface. Moreover,
the shear stress is also a consequence of the boundary layer created by the large
scale flow and the no slip boundary condition imposed at the surface (Roisman,
2009; Eggers et al., 2010; Lagubeau et al., 2010), which makes its prediction
even more difficult.

Scaling laws for stresses onto the soil surface
We thus now investigate the pressure and shear stress fields onto the soil surface,
quantities of interest for understanding and modeling erosion processes, keeping
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in mind the underlying self-similar structure of the impact.

Dependency of the maximum shear stress with the water depth

First of all, let us mention that the dependence of the shear stress with the water
depth has already been studied using numerical simulations by Hartley and Alonso
(1991) and Hartley and Julien (1992), leading to an algebraic fitted relationship
for the maximum (over time and space) shear stress at the soil surface, as a
function of the Reynolds number and the water depth:

τmax = 2.85ρlU2
0 (

h
D/2 + 1)−3.16Re−0.55C1. (7)

The prefactor C1 is almost a constant number varying only slightly with the
impact parameters between 0.91 and 1 and deviating from one only for slow drops
and thick water layers. However, this relationship was based on simulations that
included only Reynolds numbers within the range 50–500 and Weber numbers
in the range 18–1152 (Hartley and Alonso, 1991; Hartley and Julien, 1992),
values much lower than the range of natural raindrops (6500 6 Re 6 23000,
50 6 We 6 12150). Hence, their simulations underestimated the inertia forces
compared to both viscous and capillary forces.

In the present study, we have performed numerical simulations for realistic
Re and We numbers for raindrops, varying only the water depth. Figure 5 shows
the maximum shear stress τmax as a function of the liquid depth plus the drop
radius normalized by the drop radius, which can be written as: 1 + 2h/D. It is
well fitted by the following relationship:

τmax ∝ ( h
D/2 + 1)−2.6 (8)

The maximum shear stress is observed around the time (D/2 + h)/U0 that
would correspond to the penetration of half of the unperturbed drop over all the
liquid layer. This relationship was fitted only varying the ratio h/D so that the
physical prefactor involves ρlU2

0 multiplied by some function of the dimension-
less numbers (in particular the Reynolds number). As the aspect ratio h/D is
concerned, we observed that our fitted law is slightly different than the Hartley
law (7), the exponent of the fraction being smaller. However, given the variation
of 1 + 2h/D studied here, one should remark that the quantitative differences
between our results and those of Hartley are not very large. In order to suggest
an explanation for such dependence, a detailed study of the evolution of the
stress tensor at the soil surface is first needed.
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Figure 5: Maximum physical shear stress at the soil surface as a function of
(1 + 2h/D).

Self-similar evolution of the stress tensor on the soil surface
Pressure

The pressure field on the soil surface shows a bell-shape curve with a maximum
on the symmetry axis (r = 0) for all times, the amplitude of this curve decreasing
with time while its width increases. We thus define the characteristic length for
the pressure field on the soil surface as the radius where the pressure is half
the pressure on the axis r ′P1/2

(t). The width r ′P1/2
(t ′) is shown in Figure 6 as a

function of time for different aspect ratios h/D. For short time after impact, the
evolution of r ′P1/2

(t) can be fitted by a power-law, the exponent m decreasing
with the aspect ratio. For the thinnest simulated water layers, r ′P1/2

(t) evolves
as the square-root of t ′ (m ∼ 0.5) which is consistent with the law obtained for
thin films. The exponent m of the power-law decreases when the water layer
increases (see insert of Figure 6) Thus the water layer can be seen as a shield
protecting the soil surface against the disturbance caused by raindrop impacts
and it is only for the thinnest water layers, i.e. when the shielding is the lowest,
that the disturbance (here the pressure) is similar inside the water layer and at
the soil surface.

For deeper water layers, the shielding is more efficient, leading to a discon-
nection between the behavior of the pressure inside the liquid and the behavior
of the pressure at the soil surface. This disconnection becomes quite significant
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for a water layer equal to the drop radius.
However, a self-similar structure of the pressure field on the soil surface can

also be exhibited for the different aspect ratios h/D. Indeed, rescaling the pres-
sure on the soil surface P ′(r ′, z ′ = 0, t ′) at different times by the maximum
value P ′(0, 0, t ′) and the coordinate r ′ by r ′P1/2

(t), we observe a good collapse
of the different pressure curves into a single one for t ′ < 10−1 (i.e. smaller than
102.6 µs) (Figure 7). However, these self-similar curves vary with the aspect ratio
h/D (Figure 8), the width e of the self-similar curve increasing with h/D.

Shear stress

The shear stress at the soil surface is computed numerically using the shear rate,
yielding:

τ = µl
dur(r , z = 0)

dz .

and it exhibits a ring shape of which the radius r ′τmax (t ′), corresponding to the
maximum shear stress location, increases with time. For thin liquid layers, r ′τmax (t)
evolves again approximately as the square-root of t ′ again (Figure 9a) while the
situation is more complex for h/D > 1, where no tendency could be extrapolated
(Figure 9b).

We rescaled again the dimensionless shear stress τ ′(r , z = 0, t) by its maxi-
mum value (noted τ ′max(r , z = 0, t)) and plotted it as a function of the rescaled
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radius r ′/r ′τmax (t) (where rτ ′
max (t) is the position of the maximum value of τ ′ at

t) for small time t ′ < 10−1 (i.e. smaller than 102.6 µs)(Figure 10). The collapse
of the profiles is reasonable for small (< 1/3) and large (> 1) aspect ratios h/D
but the situation is much more complex for intermediate cases where only a par-
tial collapse is found. The shear stress has a quasi-linear profile for small radius
(r ′ < r ′τmax (t)) and then relaxes to zero for large r ′. Such behavior for small
radius can be understood within the dynamics of thin films (Yarin and Weiss,
1995; Lagubeau et al., 2010). This regime is valid after the self-similar regime
of the impact for which the pressure is high. Then, assuming a small gradient
of the interface, the dynamics follows the so-called thin film equations for which
the radial velocity yields:

u = r ′
t ′ ,

for r ′ < r ′τmax (t). This radial velocity is not consistent with the no-slip boundary
condition on the z = 0 solid boundary so that a viscous boundary layer of
thickness lv =

√
µt/ρ grows from the solid (Roisman, 2009; Eggers et al., 2010).

Therefore, one obtains for the shear stress on the solid (in dimensionless form):

τ ′(r , z = 0, t) ∝ r ′
t ′3/2Re1/2 ,

which is consistent with the linear behavior for small r ′. On the other hand, this
regime can also explain the dependence of the maximum shear stress. Indeed,
assuming that for the maximum shear stress obtained at time t ′ = 1 + 2H/D,
the radial momentum of the thin film is equal to the vertical momentum of the
impacting drop, one obtains approximately:

D3U0 ∼ hcD2U0
(r ′τmax )3

t ′τmax

,

where hc is the film height in the impacted zone, a priori different than the
unperturbed film height h. Then, we obtain, taking the time of maximum shear
stress at t ′τmax ∝ 1 + 2h/D

r ′τmax

1 + 2h/D ∼
1

(r ′τmax )2hc/D
.

Then using the observed relation r ′τmax ∝
√
t ′τmax , we have

τ ′max ∝
1

(1 + 2H/D)3/2hc/D
Re−1/2.
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Assuming the same scaling relation for the film height hc/D ∝ 1 + 2h/D we
obtain

τ ′max ∝
1

(1 + 2H/D)5/2Re
−1/2

which is in good agreement with the numerical results. Note that the exponent
5/2 is obtained from assumptions that are very speculative and which would need
further studies to validate. However it is very close to the 2.6 fitted exponent of
relation (8), shedding light on the underlying mechanism for the film thickness
that is at play in the shear stress formula. In particular, this exponent combines
the contribution of the thin film velocity field with the viscous boundary layer.
The Re−1/2 is a direct consequence of the boundary layer structure and has
thus better scientific grounds although it has not been tested in our numerics.
Notice that it is in good agreement with the previous observed behavior (Hartley
and Alonso, 1991; Hartley and Julien, 1992). We would like also to emphasize
that such analytical formula is very important since it could be implemented in
macroscopic models coupling raindrop and erosion.
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Figure 10: Rescaled dimensionless shear stress for different aspect ratios h/D for
t ′ < 10−1.

Conclusions
Using present numerical methods to solve the Navier-Stokes equations for liquid-
gas dynamics, we have studied raindrop impacts on water layers for realistic
configurations. Quantities of interest for soil erosion, such as pressure and shear
stress at the soil surface have been, therefore, accurately computed, paving the
way for quantitative understanding of soil erosion driven by rain.
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The simulations confirm that the maximum shear stress at the soil surface
depends in particular on the ratio between the water depth and the drop size.
The variation of the pressure inside the water layer during the raindrop impact
is well explained by a self-similar approach where the self-similar length is the
spreading radius. The position of this radius corresponding to the maximum
pressure moves as the square-root of time after impact. Such a relationship comes
from very general geometrical arguments and it was in fact previously observed
numerically and experimentally for a wider range of drop impacts (especially with
drop velocities different from the terminal velocity). Importantly, the present
study shows that this relationship is independent of the ratio h/D.

At the soil surface, the maximum pressure is located at the center of the
impact. Considering half of this pressure, it was found that it moves radially
with a square-root of the time after impact only for thin water layers h/D < 1/5.
For low h/D ratios, the location of both the maximum pressure inside the water
and the pressure at the soil surface follow the same law because the shielding
caused by the water layer is minimal. The shielding becomes significant for larger
h/D ratios, especially for h/D > 1, leading to a disconnection between pressure
behaviors inside the water and at the soil surface. Nevertheless, for all h/D
ratios, a self-similarity was found for the pressure rescaled by its central value
P(r , z = 0, t) as a function of the radius rescaled by the half-pressure radius.
The existence of this self-similarity shows that the dynamics of the pressure at
the soil surface is quite similar for different h/D ratios (even though the rescaling
depends on h/D).

The shear stress at the soil surface was also rescaled, but the self-similarity
was not as consistent as the one for the pressure. This indicates that the dynamics
of the shear stress is more complex, and that additional variables may have to be
taken into account. In particular, one would need in further study to elucidate
the interplay between the growth of the viscous boundary layer and the spreading
dynamics.

By clarifying the dynamics of the raindrop impact on a water layer, these re-
sults could foster experimental and numerical studies of soil erosion by raindrops.
By identifying the variables of interest, it will simplify the design of these studies.
More precisely, the equations for the maximum shear stress could be implemented
in macroscopic model of erosion to estimate the quantities of materials eroded.
New insight could also come from theoretical developments carried out in fluid
mechanics, such as the influence of the air cushioning prior to the impact on the
interface deformation (Xu et al., 2005) or the changes in the flow due to the
granular structure of the soil.

Indeed, the biggest drawback of current numerical modeling is probably the
hypothesis of a rigid soil surface, which comes from the unavailability of a suitable
deformation law. To be realistic such law should account for the aggregated
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status of soils. Finding such a law remains a challenge for soil physicists.
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